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Abstract: Background: There are no exact data about the prevalence of familial chylomicronemia
syndrome (FCS) in Central Europe. We aimed to identify FCS patients using either the FCS score
proposed by Moulin et al. or with data mining, and assessed the diagnostic applicability of the FCS
score. Methods: Analyzing medical records of 1,342,124 patients, the FCS score of each patient was
calculated. Based on the data of previously diagnosed FCS patients, we trained machine learning
models to identify other features that may improve FCS score calculation. Results: We identified
26 patients with an FCS score of ≥10. From the trained models, boosting tree models and support
vector machines performed the best for patient recognition with overall AUC above 0.95, while
artificial neural networks accomplished above 0.8, indicating less efficacy. We identified laboratory
features that can be considered as additions to the FCS score calculation. Conclusions: The estimated
prevalence of FCS was 19.4 per million in our region, which exceeds the prevalence data of other
European countries. Analysis of larger regional and country-wide data might increase the number of
FCS cases. Although FCS score is an excellent tool in identifying potential FCS patients, consideration
of some other features may improve its accuracy.

Keywords: data mining; familial chylomicronemia syndrome; FCS score; machine learning; screening

1. Introduction

Fasting chylomicronemia may rarely be due to a monogenic disorder that markedly re-
duces the activity of lipoprotein lipase (LPL), resulting in a decreased clearance of the
triglyceride-rich lipoproteins from plasma [1]. This condition, referred to as familial
chylomicronemia syndrome (FCS), is characterized by severe hypertriglyceridemia and
sustained fasting chylomicronemia, thus predisposing affected individuals to recurrent
episodes of pancreatitis. With an estimated frequency of one per million in the population,
FCS is usually due to the homozygous or compound heterozygous mutations of the LPL
gene, leading to a severe lack of functioning LPL protein [2]. Although, the majority of
the FCS patients are carriers of loss-of-function mutations in the LPL gene, similar muta-
tions are found to be causal in FCS, including apolipoproteins C2 and A5 (APOC2 and
APOA5, respectively), lipase maturation factor 1 (LMF1), glycosylphosphatidylinositol-
anchored high-density lipoprotein-binding protein 1 (GPIHBP1) and glycerol-3-phosphate
dehydrogenase 1 (G3PDH1) [3–6].

Compared to those with multifactorial chylomicronemia syndrome (MFCS), patients
with FCS are usually younger and less likely to possess any of the aggravating factors of
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hypertriglyceridemia; however, they are more prone to develop pancreatitis on the basis
of the sustained chylomicronemia [7]. Interestingly, FCS patients are less likely to have
cardiovascular disease (CVD), probably because of the severe reduction in LPL activity
reducing the formation and accumulation of the atherogenic chylomicron and very low
density lipoprotein (VLDL) remnants [2]. With a mortality rate of 2–5%, acute pancreatitis
is the most dangerous consequence of hypertriglyceridemia [8]. Recently, an international
expert panel proposed an excellent and easy-to-use diagnostic tool named the FCS score
(Table 1) for the better identification of FCS patients [6]. According to Moulin et al., the
FCS score turned out to have a sensitivity of 88% and specificity of 85% in identifying
individuals with “very likely FCS”.

Table 1. Familial chylomicronemia syndrome scoring, according to Moulin et al.

Score

1. Fasting TGs > 10 mmol/L for three consecutive blood analyses +5

Fasting TGs > 20 mmol/L at least once +1

2. Previous TGs < 2 mmol/L −5

3. No secondary factor (except pregnancy and ethinylestradiol) +2

4. History of pancreatitis +1

5. Unexplained recurrent abdominal pain +1

6. No history of familial combined hyperlipidemia +1

7. No response (TG decrease <20%) to hypolipidemic treatment +1

8. Onset of symptoms at age:

- <40 years
- <20 years
- <10 years

+1
+2
+3

Score > 10: FCS very likely; Score < 9: FCS unlikely; Score < 8: FCS very unlikely.

Although the disease represents a great health burden, exact data are lacking about the
frequency of the disease in Hungary and other European countries as well [6]. Therefore,
we aimed to identify FCS patients using the above mentioned FCS score with data mining
methods in two major hospitals of the Northern Great Plain region of Hungary. We also
tried to assess the usability of the FCS score using various machine learning methods that
were trained on the data of previously identified FCS patients, individuals likely to have
FCS based on their FCS score and the total clinical population in Debrecen (n = 590,500).

2. Materials and Methods
2.1. Patients and Methods

We obtained raw data from the hospital record system of the two leading medical
centers of the Northern Great Plain region of Hungary including University of Debrecen
Clinical Center (UDCC) and the County Hospital of Szabolcs-Szatmár-Bereg (CHSSB).
Summing up eight total years, the data source contained all medical records from these two
centers between 1 January, 2007 and 31 December, 2014. Through the servers of Aesculab
Medical Solutions (Black Horse Group Ltd., Debrecen, Hungary), we accessed, cleaned,
preprocessed and structured anonymous data that contained all medical records from these
healthcare providers. As discussed previously [9], the studied population was consid-
ered to be representative for the regional population, therefore, the calculated prevalence
may precisely estimate the regional prevalence of FCS. The information processed for
the study contained three data sources as (i) laboratory data, (ii) diagnostic data using,
and transforming to, the International Statistical Classification of Diseases and Related
Health Problems (ICD)-10 convention and (iii) textual data including all hospital appoint-
ments. Data cleaning, preprocessing steps, detailed methodologies and software used
were described previously [9]. The feature set (feature space) for the training included
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(i) all available nominal laboratory data during the medical history with nominal values
calculated for the same units (e.g., triglycerides above 1.7 mmol/L) and (ii) the medical
history either available from the diagnosis or mined from the textual data and calculated to
5 characters of the ICD-10, (e.g., E7800). The FCS score calculations and chart generation
were performed with open-source software solutions on the textual data (Appendix A).

From the mined data, we calculated the previously proposed FCS score for each
patient and grouped them according to the likelihood of FCS. Following data selection
and screening, the medically evaluated data were trained with multiple machine learning
techniques, including rectified linear unit neural networks (ReLU), adaptive boosting
(AdaBoost), gradient boosting (XGBoost) and support vector machines (SVM). The training
was carried out with an open source software (Appendix A) using the UDCC site clinical
data. Tests were performed both on the trained data (with a 50–50 split) and on the CHSSB
data as well. Labelling previously identified FCS patients as “positive” and individuals
with no previous diagnosis of FCS as “negative”, we trained binary classification models
on a dataset, which contained all previously identified FCS patients labeled as “positive”,
and randomly selected patients from the remaining part of the clinical population labelled
as “negative”. We also experimented with models trained on a dataset where we treated
individuals likely to have FCS based on their FCS score as patients belonging to the
“positive” label.

2.2. About Machine Learning

We may define the problem as a traditional binary classification as we have a finite,
real valued descriptor and a binary label for each patient. Thus, a patient may either have
FCS, thus labelled as “1”, or lack FCS and labeled as “0”. Based on the annotated dataset,
several ways exist to identify relations between the features (including the elements of
the descriptors that contain the ICD-10 diagnosis, as well as laboratory test values) and
the known labels. In order to determine the best method for FCS classification and to
approximate the performance of the models over the whole population, we built models
using subsets of patients with known true labels as clinically diagnosed FCS, and evaluated
the performance of the learned models on an independent dataset with known true labels.
Our reasoning was based on the fundamental theory of generalization introduced by
Vapnik and Chervonenkis in 1971 [10] and as a set of consequences of the theorem, which
apply to all methods but a set of special neural networks. For the latter, we refer to
Nagarajan and Kolter [11] and Devroye et al. [12]. Therefore, even if the bounds in the
Vapnik–Chervonenkis generalization are not informative about deep neural networks on
the first hand, there may be an underlying structure for which the theorem is meaningful in
practice, too. There are three key rules based on the theorem, which are in shape with the
fundamentals of data mining and machine learning: (i) prefer models with low complexity
to provide capacity to learn any labeling [13], (ii) evaluate on an independent test set and
(iii) use a training set as large as possible.

To cover different but the most efficient methods, we selected three widely used ma-
chine learning frameworks, including tree ensembles (AdaBoost and XGBoost) [13,14],
“shallow” neural networks with kernel functions (SVM) [15] and fully connected “deep”
neural networks with ReLU activations [16]. In comparison to ReLU networks, tree ensem-
bles methods are less powerful as a function approximation technique, while the smaller
capacity helps in the case of small datasets like ours or non-spatiotemporal structural
variables, when there are no previously known reoccurring structures over the features.
The order of the features is arbitrary in our study as they do not form rigid structures, hence,
we used the only viable option and adopted fully connected artificial neural networks. Tree
ensembles and kernel-based methods are not sensitive to the order of the features.

Tree ensembles build a set of “weak” classifiers from small, almost random decision
trees. There are several methods to determine the set of decision trees and their importance
e.g., random forest [17], adaptive boosting [13] or gradient boosting machines [14]. In the
case of the neural networks, we built fully connected deep networks with ANN (artificial
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neural network) that were trained using ReLU as activations, and the parameters were
optimized with adaptive momentum [18]. Finally, SVM models were trained with various
kernel functions, including linear, polynomial or radial basis functions. Table 2 indicates
the best performing methods per class.

Table 2. Classification performance of models trained on FCS.

Training Set Test Set Method Exp. Mean
AUC

Std
AUC

Mean
ACC

Std
ACC

Mean
Sens.

Std
Sens.

Mean
Spec.

Std
Spec.

50% Exam. Ind. 50% Exam. ReLU 30 0.735 0.064 0.895 0.024 0.212 0.160 0.950 0.029

SVM 30 0.792 0.054 0.927 0.013 0.0 0.0 0.999 0.001

ADA 30 0.770 0.053 0.902 0.014 0.110 0.121 0.970 0.023

XGB 30 0.810 0.042 0.909 0.018 0.070 0.104 0.976 0.025

50% Exam. Ind. 50% Exam. UDCC
5000 patients w/o FCS ReLU 30 0.599 0.088 0.857 0.112 0.237 0.184 0.859 0.113

SVM 30 0.872 0.057 0.998 0.001 0.0 0.0 0.999 0.001

ADA 30 0.824 0.092 0.996 0.002 0.110 0.121 0.999 0.002

XGB 30 0.871 0.074 0.997 0.001 0.070 0.104 0.999 0.001

50% Exam. & UDCC
1000 patients w/o FCS

Ind. 50% Exam. UDCC
5000 patients w/o FCS ReLU 30 0.906 0.041 0.997 0.001 0.245 0.142 0.999 0.011

SVM 30 0.955 0.024 0.999 0.001 0.0 0.0 0.999 0.001

ADA 30 0.923 0.051 0.996 0.002 0.110 0.121 0.999 0.001

XGB 30 0.982 0.015 0.997 0.001 0.091 0.096 0.999 0.001

XGBoost (XGB) and AdaBoost (ADA) were trained with the default setup for every tree. For SVM, the chosen
kernel was normalized Radial Basis Function (RBF) [14]. ReLU networks were optimized with Adam [18]. The
networks contained five hidden layers, each with default units.

Besides sensitivity, specificity and accuracy, the most important metric is area under
the receiver operating characteristic curve (ROC AUC) as an evaluation method for our
binary classification method. Sensitivity is measured as the proportion of true positives in
patients with FCS, while specificity describes the proportion of true negatives in patients
without FCS. Accuracy is the proportion of the total number of patients that are correctly
identified in the studied population. ROC curve is defined by the point pairs of true
positive rates (sensitivity) and false positive rates (1 minus specificity) at different threshold
settings. AUC can be interpreted as the probability of classifying a positive sample with
higher confidence than a negative sample.

It is important to note that, based on the trees learned by a gradient boosted tree
model, it is possible to rank the features using their position in the trees. There are multiple
methods ranging from the simple count of occurrence to a complex subset identification
that may yield a generously good ranking of the features. We relied on a weighted version
of the former, most commonly used method [19]. Additionally, the order of the trees learned
during the boosting phase is of utmost importance, thus, we decided to investigate the
learnings of the first couple of trees learned by the model.

3. Results

Based upon the features of the previously proposed FCS score, we calculated the score
of each individual that visited the two major healthcare providers in our region during the
study period (n = 1.341.722; mean age: 38.12 ± 23.37 years, male/female: 602.258/739.464;
45/55%). Patient characteristics and their calculated FCS score are listed on Table 3. We
identified a total of 26 patients very likely with FCS (score ≥ 10). These data suggest
that FCS might be more frequent, at least in our region, with an estimated prevalence of
19.4 per million.
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Table 3. Calculated familial chylomicronemia (FCS) scores of patients visiting medical providers in
the Northern Great Plain area of Hungary (pcm = 1:100,000; ppm = 1:1,000,000).

Cluster FCS Score Male Patients Female Patients Total Patients Percentage of Patients

Highly unlikely FCS

0+ 602.258 (45%) 739.464 (55%) 1.341.722 100%
1+ 5.612 (56%) 4.334 (44%) 9.946 7.41‰
2+ 1.659 (75%) 558 (25%) 2.217 1.65‰
3+ 1.441 (75%) 493 (25%) 1.934 1.44‰
4+ 1.307 (74%) 461 (26%) 1.768 1.32‰
5+ 1.272 (74%) 453 (26%) 1.725 1.29‰
6+ 909 (78%) 254 (22%) 1.163 8.67‱
7+ 705 (79%) 182 (21%) 887 6.61‱

Unlikely FCS 8+ 298 (82%) 67 (18%) 365 2.72‱
9+ 56 (81%) 13 (19%) 69 5.14 pcm

Likely FCS 10+ 17 (77%) 5 (23%) 22 1.64 pcm
11+ 3 (75%) 1 (25%) 4 2.98 ppm

For a rapid estimation of FCS scores, we gradually cut down data based on some
strong key features of the score system to estimate the number of the patients that fell into
the three major categories of “highly unlikely FCS”, “unlikely FCS” and “likely FCS”. As
FCS is a disease characterized by serum triglyceride (TG) levels, we chose features which
contributed markedly to the FCS score and were easily measurable with less subjectivity
(Figure 1).
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Therefore, we took patients with fasting TG levels exceeding 10 mmol/L for three
consecutive cases (+5 points) and those who never had TG levels less than 2 mmol/L
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(thus avoiding the −5 points), and added those patients who had no secondary causes
such as diabetes mellitus, metabolic syndrome, hypothyroidism, corticosteroid therapy
or alcohol abuse (+2 points). To further enhance this estimation of FCS scores and find
those that potentially live with undiagnosed FCS, we added key features of fasting TG
levels exceeding 20 mmol/L at least once (+1 point), symptoms below 40 years (+1 point)
and positive history of pancreatitis (+1 point). Key features in the two major healthcare
providers (UDCC and CHSSB) for FCS score estimation and the number of the patients
falling into the score categories are represented on Table 4, respectively. Some intra-regional
difference was detectable as we estimated the prevalence of “likely FCS” to be 8.47 per
million in UDCC and 5.32 in CHSSB, respectively.

Table 4. Familial chylomicronemia (FCS) score estimation on key features.

A. FCS score estimation on key features (UDCC, all patients *)

Cluster Feature FCS Score Number of Patients Percentage of Patients

Highly unlikely FCS
Clinical site patients 0+ 590.500 100%

TG 10+ mmol/L and TG never 2− mmol/L 5+ 665 1.13‰
No secondary medical factors ** 7+ 275 4.67‱

Unlikely FCS
TG 20+ mmol/L at least once 8+ 85 1.44‱

Symptoms below age 40 9+ 24 4.06 pcm

Likely FCS Treated with acute pancreatitis 10+ 5 8.47 ppm

B. FCS score estimation on key features (CHSSB, all patients *)

Cluster Key Condition FCS Score Number of Patients Percentage of Patients

Highly unlikely FCS
Clinical site patients 0+ 751.624 100%

TG 10+ mmol/L and TG never 2− mmol/L 5+ 1.046 1.39 ‰
No secondary medical factors ** 7+ 501 6.67‱

Unlikely FCS
TG 20+ mmol/L at least once 8+ 93 1.23‱

Symptoms below age 40 9+ 20 2.66 pcm

Likely FCS Treated with acute pancreatitis 10+ 4 5.32 ppm

(A): * Patients who visited University of Debrecen Clinical Center (UDCC) at least once between 2007–2014;
** diabetes, metabolic syndrome, hypothyroidism, corticosteroid therapy, alcohol abuse. (B) * Patients who visited
County Hospital of Szabolcs-Szatmár-Bereg (CHSSB) at least once between 2007–2014; ** diabetes, metabolic
syndrome, hypothyroidism, corticosteroid therapy, alcohol abuse.

As with the total population, we also calculated FCS score for every single patient
available in the hospital database, separately in the two medical centers (Table 5, respec-
tively). Based on our results, the calculated prevalence of FCS is 27.11 per million in the
Debrecen (UDCC) region and 13.3 per million in the Nyíregyháza (CHSSB) region. Overall,
male patients had a 4 to 5 times increased chance for a “likely FCS” than females. The
magnitude of the number of patients with a calculated FCS score of 10+ (“likely FCS”) was
comparable with the estimated prevalence when checking the patients individually.

As our estimated prevalence turned out to be one order of magnitude higher than
the literature data, we decided to evaluate thoroughly those patients of UDCC with an
estimated 7+ score (n = 275, see Table 3). Therefore, all patients of this medical center with
an estimated score falling into “unlikely FCS” and “likely FCS” diagnoses underwent a
detailed evaluation of their medical history, TG levels and clinical signs in order to find
those with undiagnosed FCS. During this data revision, we identified 7 patients with FCS
and, without genetic testing, marked an additional 14 individuals with potential FCS. These
data indicate an estimated prevalence of 11.8–35.6 FCS patients per million, which is a
similar magnitude to our calculation detailed above.
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Table 5. Familial chylomicronemia (FCS) score calculation of individual patients.

Cluster FCS Score Males (n) Females (n) Total (n) Percentage

A. FCS score calculation of individual patients (UDCC, all patients *)

Highly unlikely FCS

0+ 251.949 (43%) 338.149 (57%) 590.098 100%
1+ 2368 (53%) 2.108 (47%) 4.476 7.59‰
2+ 589 (74%) 208 (26%) 797 1.35‰
3+ 538 (73%) 198 (27%) 736 1.25‰
4+ 506 (73%) 188 (27%) 694 1.18‰
5+ 490 (73%) 183 (27%) 673 1.14‰
6+ 340 (76%) 107 (24%) 447 7.58‱
7+ 250 (78%) 71 (22%) 321 5.44‱

Unlikely FCS 8+ 110 (77%) 32 (23%) 142 2.41‱
9+ 31 (82%) 7 (18%) 38 6.44 pcm

Likely FCS 10+ 10 (77%) 3 (23%) 13 2.20 pcm
11+ 2 (67%) 1 (33%) 3 5.08 ppm

B. FCS score calculation of individual patients (CHSSB, all patients *)

Highly unlikely FCS

0+ 350.309 (47%) 401.315 (53%) 751.624 100%
1+ 3.244 (59%) 2.226 (41%) 5.470 7.28‰
2+ 1070 (75%) 350 (25%) 1.420 1.89‰
3+ 903 (75%) 295 (25%) 1.198 1.59‰
4+ 801 (75%) 273 (25%) 1.074 1.42‰
5+ 782 (74%) 270 (26%) 1.052 1.40‰
6+ 569 (79%) 147 (21%) 716 9.53‱
7+ 455 (80%) 111 (20%) 566 7.53‱

Unlikely FCS 8+ 188 (84%) 35 (16%) 223 2.97‱
9+ 25 (81%) 6 (19%) 31 4.12 pcm

Likely FCS 10+ 7 (78%) 2 (22%) 9 1.19 pcm
11+ 1(100%) 0 (0%) 1 1.33 ppm

(A) * Patients who visited University of Debrecen Clinical Center (UDCC) at least once between 2007–2014.
(B) * Patients who visited County Hospital of Szabolcs-Szatmár-Bereg (CHSSB) at least once between 2007–2014.

Then we utilized machine learning, which was trained and tested on the UDCC dataset
to identify those FCS patients who had ever been hospitalized. As trained data, we used the
above mentioned 7 confirmed and 14 potential FCS patients against those who scored 7+
in the FCS score system and against random individuals. The results of the mathematical
modeling are depicted on Table 2, while model parameters are detailed in Appendix B.
During classification, boosting models (i.e., AdaBoost and XGBoost) performed most
successfully in terms of ROC/AUC measures, tightly followed by support vector machines.
Deep neural networks lagged behind, notably in terms of overall performance.

Table 6 shows the summarized importance of conditions of the history in defining
FCS, using all model trainings. To evaluate the accuracy of the FCS score, we trained
these confirmed and potential FCS patients vs. patients with 7+ FCS score. Individual
laboratory measurements were mined from the medical histories of the patients with
no absolute values assigned to them. The parameters were ranked by the mathematical
models from 0 to 100, where the value of 100 indicates the most important condition in
decision making. Our results confirmed the foundational importance of the TG levels, as
(i) the highest TG level and (ii) the average TG level were found to be the most important
features, while (iii) conditions characterizing deviations in the TG concentrations (i.e., TG
fluctuation, as well as highest and lowest TG levels) were also among the top conditions of
the history. Cholesterol level also turned out to be a substantial feature in defining FCS.
These conditions are the most important ones to distinguish FCS patients from those with
no FCS but high FCS score.
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Table 6. Importance of conditions of the history in defining FCS, using all model trainings (expressed
in relative importance scores, in the fractions of the most important features).

Confirmed and Potential FCS Patients
vs. Patients with FCS Score of 7+

Confirmed and Potential FCS Patients
vs. Random Individuals

Condition Importance Condition Importance

Highest triglyceride 100 Average triglyceride 100

Average triglyceride 50 Highest triglyceride 70

Average cholesterol 25 Lowest triglyceride 40

Triglyceride fluctuation 20 Triglyceride fluctuation 35

Lowest triglyceride 17 Average cholesterol 30

Lowest carbamide 16 Highest cholesterol 25

Highest cholesterol 15 Lowest cholesterol 15

Average hemoglobin 14 Cholesterol fluctuation 15

Lowest glucose 12 Average hemoglobin 10

Average alkaline phosphatase 10 Glucose fluctuation 10

To find the most important conditions and decisive laboratory cut values that can
be used for population screening, we also trained machine learning using the data of the
confirmed and potential FCS patients vs. all patients (Table 7). The cut values do not make
distinction between their absolute importance but help the clinicians to get closer or away
from the likelihood of FCS. Altogether, we found that patients may be identified based
upon their highest and lowest TG levels, average TG levels and TG level deviations, as well
as the highest and lowest total cholesterol concentrations and the deviations of the total
cholesterol level. We also identified other parameters that may help to find individuals
with potential FCS, as increasing hemoglobin, MCHC, basophil granulocyte, lymphocyte,
or amylase above the cut levels raised the probability of FCS. On the other hand, elevated
GPT, GGT, glucose, sodium and creatinine measurement cut levels decreased the chance of
FCS. Interestingly, we also found that inflammatory markers as WBC and CRP, as well as
the amylase activity had a negative impact on the probability of FCS.

Table 7. Summary of the most decisive laboratory value cuts in machine learning models and their
impact on getting closer to (+) or away (−) from likelihood of FCS.

Laboratory Parameter Cut (>) Impact

Triglyceride 30 mmol/L +

Triglyceride 18 mmol/L +

Triglyceride 6.5 mmol/L +

Cholesterol 11 mmol/L −
Cholesterol 6.5 mmol/L +

Cholesterol 4.0 mmol/L +

Hemoglobin 95 g/L +

MCHC 330 (g/L) +

Amylase 20 U/L +

Basophile granulocyte 0.6% +

Lymphocyte 20% +

Sodium 145 mmol/L −
White Blood Cell 6.5 G/L −
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Table 7. Cont.

Laboratory Parameter Cut (>) Impact

Neutrophile granulocyte 65% −
GPT 15 U/L −
GPT 200 U/L −
GGT 35 U/L −
GGT 350 U/L −

Creatinine 68 µmol/L −
CRP 5.0 mg/L −

Glucose (fasting) 6.0 mmol/L −

4. Discussion

We suspected the regional frequency of FCS to be 19.4 per million among hospital
goers, which exceeds the estimated worldwide prevalence of 1 per million [20]. As FCS is
considered to be a rare disease, recent data indicate higher frequency of the disease when
using larger cohorts. Indeed, reviewing the data of more than 1.5 million patients, Pallazola
et al. found an FCS prevalence of 13 per million among the patients of a quaternary medical
center [21]. On a smaller dataset of thirty thousand children, the prevalence of type 1
hyperlipoproteinemia (i.e., familial chylomicronemia syndrome) was estimated to be about
1 in 300,000 [22]. It is important to emphasize that we studied a population that was treated
or checked in a hospital, which might have contributed to the variance of the disease
prevalence. Though falling into the same magnitude, we also found the FCS prevalence to
be different between the medical providers, either estimated with using key features of the
disease or calculated individually in each patient. These discrepancies are presumably due
to the different levels of care and the covered territories of the medical providers (university
hospital vs. county hospital). Indeed, with its various lipid/metabolic disease outpatient
clinics, our university hospital accepts patients from the county hospital, as well. More
targeted history taking, wider diagnostic and laboratory availabilities may also explain
our prevalence results after revisiting the university hospital data. Besides indicating the
usability of our methods in distinct populations, our findings highlight the need of the
specialist’s expertise in recognizing FCS.

The diagnosis of FCS is largely based upon genetic analysis and post-heparin LPL
activity assay [7]. Recently, an expert panel of lipidologists proposed a very practical FCS
scoring system for the better identification of patients with this rare, inherited disease [6].
A solid advantage of the FCS score is the strong reliance on the exact serum triglyceride
measurements. Indeed, the selection of the potential patients can be reduced to 1–2‰, if
studying those with TG levels exceeding 10 mmol/L for three consecutive occasions and
never below 2 mmol/L (as indicated on Table 4). Adding the other strong and measurable
condition (TG levels exceeding 20 mmol/L at least once) cut down the patient selection to
the zone of ten thousandths (‱).

On the other hand, we realized that patients with the highest FCS scores are not
necessarily the similar ones that we diagnosed. That can be due to incomplete history
taking (e.g., missing targeted questions on conditions aggravating hypertriglyceridemia),
which can hamper proper diagnosis [23]; therefore, FCS scoring seems to be perfect when
all such secondary factors can be excluded by the dedicated physician, while there could
be an area for improvement when approaching FCS score on a larger, automatized level.

Machine learning, however, may serve as a helpful tool to better identify rare diseases
when using larger datasets [9,24]. Trained and tested on the UDCC data, we also tried
to find those FCS patients who, with any diagnosis, had ever been hospitalized in our
university hospital. We found gradient boosting and SVM to be the most successful in
terms of ROC/AUC measures. Contrary to neural networks, these boosting-based models
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were more useful to find those with FCS. Our investigations on laboratories indicated that
mild-to-moderate or very high TG concentration cuts further improve identifying potential
FCS patients, even when peaking above 20 mmol/L. Interestingly, total cholesterol level
may also be a promising asset to improve identification. The role of cholesterol, however,
seems to be more complex, as the likelihood of FCS decreases below 4 mmol/L and
above 11 mmol/L. In other words, patients with low or with very high cholesterol levels
should not be considered to have FCS, which indicates the importance the triglyceride-rich
lipoprotein cholesterol and the intimate interplay between cholesterol and triglyceride
metabolism [25].

On the other hand, we found several metabolic parameters including liver transami-
nases and serum glucose, whose increased activities or concentrations affected negatively
the probability of FCS. These findings might be due to the common presence of insulin
resistant conditions as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease
(NAFLD) among hospital goers and are concordant with the recent report of Paquette et al.,
who found higher activities of gamma-glutamyl transferase (GGT) in MFCS compared to
FCS [7]. Of note, although occurring in both FCS and MFCS patients, NAFLD was observed
to be significantly less frequent in patients with familial chylomicronemia syndrome [26].

Interestingly, we found that elevated amylase activity had a negative impact on FCS
probability, which indicates a high prevalence of such laboratory findings in the studied
population. Longitudinal studies on well-characterized patient populations, however, con-
firmed the higher incidence of acute pancreatitis in FCS patients [27]. These investigations
may also shed light on cardiovascular outcomes in these subjects, as well. Nevertheless,
besides indicating the potential existence of multifactorial backgrounds, our findings may
also help to increase FCS awareness, as higher glucose levels or transaminase activities
decrease the probability of FCS.

Limitations also exist in our study. Hospital goers represent a population that differs
from the normal population; therefore, our calculations might overestimate the frequency
of the disease. Although we could study a relatively large cohort of patients, it did not
directly represent the total population in our region, as not 100% of the population goes
to hospital each year. Also, we were unable to assess the data about family history and
did not perform genetic testing to diagnose FCS. Verifying the existence of confirmed or
potentially pathogenic mutations in LPL or other genes modulating lipoprotein lipase
activity would have contributed to improve identification of potential FCS patients in the
studied population. Genetic analysis of gene variants with triglyceride-lowering effect
would also have modified our results. In addition, hospital goers tended to be older and
checked more frequently. On the contrary, younger patients usually had less thorough
laboratory examinations and their history was less detailed and asked less frequently. Such
tendencies bias the identification of FCS patients towards the elderly. Additionally, a larger
population is needed to define those exact cuts in cholesterol levels that could improve FCS
scoring. Although our machine learning models found their impact on the likelihood of
FCS, the real-life importance of the other laboratory parameters should also be addressed
in future studies. While machine learning may overestimate the incidence of FCS, it also
may help to reduce the number of those individuals that would require expensive and
time-consuming genetic analysis.

5. Conclusions

Using the previously proposed FCS scoring based on a large hospital database, we
found an increased prevalence of familial chylomicronemia syndrome in our region. Data
mining and machine learning seem to be promising tools in screening for FCS; however,
further studies on larger, national or international datasets are of major importance to prove
their accuracy and usefulness. Also, an analysis of larger populations might increase the
number of discovered FCS cases.

Although FCS scoring is an easy-to-use tool to set FCS and MFCS apart, “fine tuning”
of the features and inclusion of the total cholesterol levels may be considered to better
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identify FCS patients. Although the weight of cholesterol levels in the score has to be
determined, this may alleviate the need for systematic genotyping in patients with severe
hypertriglyceridemia and would also help identify the high-priority candidates for genetic
analysis. Furthermore, early and accurate diagnosis is essential for effective treatment to
avoid severe, life-threatening complications of FCS.
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Appendix A

For the analysis of the textual data, we utilized Python 3.8.x (https://www.python.org,
Python Software Foundation, Beaverton, OR, USA, accessed on 12 February 2022) packages:
Pandas 1.2.x (https://pandas.pydata.org, open sourced, accessed on 12 February 2022),
Numpy 1.18 (https://numpy.org, open sourced, accessed on 12 February 2022), cython
0.29 (https://cython.org, open source, accessed on 12 February 2022), Natural Language
Toolkit (NLTK) 3.4.5 (https://www.nltk.org, open source, accessed on 12 February 2022)
and scikit-learn 0.23 (https://scikit-learn.org, open source, accessed on 12 February 2022).

Appendix B

For AdaBoost, SVM we used the implementations in scikit-learn 0.23 (https://scikit-
learn.org, open source, accessed on 12 February 2022), while for ReLU networks we used
PyTorch 1.6 (https://pytorch.org, open source, accessed on 12 February 2022) and XGBoost
1.2.1 (https://xgboost.readthedocs.io/en/latest/, open source, accessed on 12 February
2022) to train gradient boosted trees. We report the best results we found during the
parameter search.

https://www.python.org
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