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FerriTag is a new genetically-encoded inducible tag
for correlative light-electron microscopy
Nicholas I. Clarke 1 & Stephen J. Royle 1

A current challenge is to develop tags to precisely visualize proteins in cells by light and

electron microscopy. Here, we introduce FerriTag, a genetically-encoded chemically-inducible

tag for correlative light-electron microscopy. FerriTag is a fluorescent recombinant electron-

dense ferritin particle that can be attached to a protein-of-interest using rapamycin-induced

heterodimerization. We demonstrate the utility of FerriTag for correlative light-electron

microscopy by labeling proteins associated with various intracellular structures including

mitochondria, plasma membrane, and clathrin-coated pits and vesicles. FerriTagging has a

good signal-to-noise ratio and a labeling resolution of approximately 10 nm. We demonstrate

how FerriTagging allows nanoscale mapping of protein location relative to a subcellular

structure, and use it to detail the distribution and conformation of huntingtin-interacting

protein 1 related (HIP1R) in and around clathrin-coated pits.
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To understand cell biology, we must explore subcellular
organization in 3D and locate proteins at high resolution.
Correlative light-electron microscopy (CLEM) is a pow-

erful technique to do this, since we can combine the specificity
and dynamics of fluorescence light microscopy with the high
resolution and cellular context of electron microscopy. A current
challenge is to develop tools that allow us to track intracellular
events using CLEM. Immunogold labeling has long been used for
this purpose, however, pre-embedding immogold electron
microscopy (EM) is invasive and its applications are limited1,2.
More recently, attention has turned to genetically-encoded tags
for CLEM.

The ideal tag for CLEM should meet the following criteria: (1)
fluorescent and electron dense so that it can be visualized by light
and electron microscopy, (2) the electron density should be tightly
focused and provide good signal-to-noise ratio so the tag is easily
distinguishable from background by EM, (3) genetically encoded
so that the cell can be processed in its native state without the need
for permeabilization, and (4) non-toxic and non-disruptive so as
not to interfere with normal cellular function.

Existing tags do not meet all of these criteria. A popular
approach has been to use diaminobenzidine (DAB) to form an
electron-dense precipitate either by enzymatic-based poly-
merization using peroxidase3,4 or singlet oxygen-based poly-
merization during photo-oxidation5,6. Although these tags allow
CLEM, they result in low labeling resolution by EM due to the
diffuse nature of the precipitate. Therefore, only proteins situated
inside organelles, or those discretely localized at high densities
can be successfully visualized7.

The search for an ideal tag for CLEM has continued towards
metal ligand-based tags combined with fluorescent proteins.
Metal clusters contain elements that are able to scatter electrons
and, if tightly focused, should improve resolution and be readily
distinguishable from background. Two such tags are concatenated
metallothionein7,8 and bacterioferritin9, however each have sig-
nificant drawbacks in their current form. Use of metallothioneins
is limited to high abundance proteins and only minimal ultra-
structural information is currently possible7. Tagging with bac-
terioferritin is technically demanding, limited to bacteria, and can
lead to aggregation and mislocalization of the target9.

Human ferritin is a complex of 24 polypeptide subunits of light
(FTL) and/or heavy (FTH) chains that form a spherical protein
shell with internal and external diameters of approximately 7 nm
and 12 nm, respectively. Under iron-rich conditions ferritin is
able to store iron (<4300 Fe(III) atoms) as a mineral core and is
therefore easily visualized by EM10. The electron density of fer-
ritin has been exploited for immunoEM for decades11,12 and we
hypothesized that it could be used as an ideal CLEM tag following
some modifications.

Here we introduce FerriTag, a new genetically-encoded indu-
cible tag for CLEM. FerriTag is an engineered ferritin particle that
can be acutely attached to a protein-of-interest using rapamycin-
induced heterodimerization. We demonstrate how FerriTag can
be used to tag single proteins at nanometer resolution. As exam-
ples we label several proteins including huntingtin-interacting
protein 1 related (HIP1R) which links clathrin-coated membranes
to the actin cytoskeleton. We find evidence for different con-
formational states of HIP1R which depend on its localization at
clathrin-coated pits or uncoated parts of the plasma membrane.

Results
Design and implementation of FerriTagging. FerriTagging
involves the creation of a ferritin particle (FerriTag) which can be
inducibly attached to a protein-of-interest using the FKBP-
rapamycin-FRB heterodimerization system (Fig. 1a). To do this,

FerriTag is co-expressed with the protein-of-interest which is
fused to FKBP-GFP. FerriTag is untagged FTL and FRB-mCherry-
FTH1 transfected at a ratio of 4:1. When rapamycin is added, it
induces the heterodimerization of FKBP and FRB domains
resulting in the target protein becoming FerriTagged (Fig. 1a).

Our initial attempt to use Ferritin as a tag involved the direct
fusion of FTH1 to a protein-of-interest, similar to a bacterial
system described previously9. Mammalian cells expressing
mCherry-FTH1 fused to the mitochondrial targeting sequence
of Tom70p were cultured under iron-rich conditions and then
visualized by fluorescence microscopy (see Supplementary
Note 1). It was clear that this direct fusion resulted in aggregation
and mislocalization of mitochondria, most likely due to the
multivalent nature of the ferritin molecule. This observation
drove us to engineer a novel ferritin tag that could form a ferritin
particle independently and then be inducibly added to a protein-
of-interest to avoid such aggregation issues. The dilution of FRB-
mCherry-tagged FTH1 subunits with untagged FTL subunits is
also an important step because aggregation was observed when
FRB-mCherry-FTH1 was expressed alone. The outcome of this
diluted-tagged version of ferritin, was no aggregation nor
mislocalization before or after the addition of rapamycin (see
Supplementary Fig. 1).

Our first target protein for FerriTagging was clathrin. HeLa
cells expressing FerriTag and clathrin light chain a (LCa) tagged
with GFP and FKBP were imaged by fluorescence microscopy
(Fig. 1b). These experiments show that, after the addition of
rapamycin (200 nM), FerriTagging of clathrin-coated structures
occurs within seconds (Fig. 1c). The diffuse FerriTag signal can be
seen to specifically decorate clathrin-coated structures throughout
the entire cell, with full labeling after 30 s (Fig. 1b and
Supplementary Movie 1). We also tested if FerriTagging of
clathrin inhibited its endocytic function. To do this, we measured
transferrin uptake in cells where clathrin had been FerriTagged
and compared them to control cells with no rapamycin treatment
(Fig. 1d, e). We found no difference in uptake of transferrin,
suggesting that FerriTagging on a short (12 min) timescale does
not grossly interfere with clathrin function. Inhibition of CME
could readily be detected by pre-treatment of the cells with
hypertonic sucrose (0.45 M). With this approach working, we
next wanted to observe FerriTagging by EM.

Visualizing FerriTagged proteins by electron microscopy. In
order to assess whether or not FerriTagging works at the EM
level, we used correlative light-electron microscopy (CLEM). Our
EM protocol was optimized so that we could easily distinguish
FerriTag from background and still be able to see cellular ultra-
structure (Fig. 2a). We initially FerriTagged two different proteins
in disparate locations: 1) monoamine oxidase (MAO), an outer
mitochondrial membrane protein, and 2) clathrin light chain a
(LCa), part of the clathrin triskelion (Fig. 2b). Following the
addition of rapamycin, FerriTag was confirmed by fluorescence
microscopy to specifically label each protein-of-interest rapidly.
After fixation and processing, ultrathin resin sections taken from
the same cell were imaged by EM. In each case, electron-dense
particles of approximately 7 nm diameter could be easily dis-
tinguished from background, and the ultrastructure of the cell
was visible. We were able to locate particles specifically in the
vicinity of mitochondria (in the case of MAO) or clathrin-coated
pits and vesicles (in the case of LCa) where each protein-of-
interest is localized (Fig. 2b).

Since the FerriTagging CLEM protocol involves preincubating
cells in iron-supplemented media and subsequent treatment with
rapamycin, we explored if these steps perturbed normal cell
biology (Supplementary Note 2). Briefly, we found conditions for
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iron preincubation in HeLa cells which were non-toxic and did
not affect ultrastructure (Supplementary Fig. 2). Iron-loading and
rapamycin treatment did not affect the localization of a range of
cellular markers representing the actin cytoskeleton, lysosomes,

mitochondria, caveolae, endoplasmic reticulum, clathrin coated
structures, microtubules, intermediate filaments, nuclei, and
adhesion complexes (Supplementary Fig. 3). Incubation of cells
with rapamycin for FerriTagging is typically brief, and not
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Fig. 1 Design and implementation of FerriTagging. a Schematic diagram of FerriTagging clathrin light chain. Simultaneous expression of FerriTag and GFP-
FKBP-tagged clathrin light chain. Addition of rapamycin induces the heterodimerization of FKBP and FRB domains resulting in FerriTagging of clathrin in a
clathrin-coated vesicle. b Stills from live-cell imaging of FerriTagging clathrin light chain. Rapamycin (200 nM) was added at timepoint zero, as indicated by
the orange bar. Specific, rapid labeling of clathrin by FerriTag can be observed immediately. Time, min: sec, scale bar, 10 μm. Zooms show ×4 expansion.
See Supplementary Movie 1. c FerriTag (mCherry) fluorescence in GFP-FKBP-LCa-positive spots as a function of time. Red trace and shading indicate mean
± s.e.m. for 5 cells. Rapamycin was applied as indicated by the orange bar. d Typical images of transferrin (Tf-647, blue) uptake in HeLa cells expressing
FerriTag (red) and GFP-FKBP-LCa (green). Rapamycin (200 nM) or control is applied as indicated by dark and light orange bars, respectively. Negative
control of hypertonic sucrose to block CME is shown (purple). Scale bar, 10 μm. e Scatter dot plot of transferrin uptake. Dots represent measurements from
individual cells, from two independent experiments, bars show mean ± SD
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sufficient to induce autophagy (Supplementary Fig. 4a). A T2098L
mutant of FerriTag can be used with the Rapalog AP21967 if
prolonged FerriTagging is required and/or autophagy is a concern
(Supplementary Fig. 4b).

In Ferritagging experiments, the particles observed by EM most
likely correspond to FerriTag for four reasons. First, the size and
shape of the particles was consistent with ferritin and labeling was
observed in the expected places (Fig. 3a). Second, no labeling was
seen at clathrin-coated pits (CCPs) in cells when MAO was
FerriTagged, and mitochondria were not tagged in cells when
clathrin was FerriTagged (Fig. 3b). Third, no particles were
observed next to the appropriate organelle in cells where no
rapamycin had been added (Fig. 3c). Fourth, particles were less
dense or were absent when FerriTagging was done in cells with no
iron loading (Fig. 3d). From these experiments we conclude that

FerriTag works to specifically label proteins-of-interest at the
ultrastructural level.

Efficiency of FerriTagging by electron microscopy. What are
the background concentrations of FerriTag and what densities are
seen on the target organelle after FerriTagging? To answer these
questions, FerriTag particles in TEM images from cells expressing
GFP-FKBP-LCa and FerriTag were counted by an experimenter
blind to the conditions (control vs. rapamycin-treated, see Image
analysis in Methods). The location of these particles in cyto-
plasmic or membrane-proximal regions was recorded and the
particle densities in each region calculated. Coated areas of the
membrane-proximal region could be distinguished and the den-
sities in these areas were also determined.
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Fig. 2 Visualizing FerriTagged proteins by light and electron microscopy. a Overview of sample preparation steps for correlating light microscopy (LM) with
electron microscopy (EM) using FerriTag. b Light and electron micrographs of HeLa cells co-expressing FerriTag with either FKBP-GFP-Myc-MAO (MAO)
or GFP-FKBP-LCa (LCa). Locator images (left) ensure the same cell can be followed throughout the workflow. Live cell imaging of FerriTagging (middle),
cells were treated with rapamycin (200 nM) as indicated by the filled orange bar. The last frame is shown before the cell was fixed and processed for
CLEM as described in a. TEM images (right) of sections taken from the same cell show FerriTag particles specifically labeling the GFP-FKBP-tagged
protein-of-interest in each CLEM experiment. Two particles per micrograph are shown expanded to the right. Light microscopy scale bar 10 μm and zoom
×12. Electron micrograph scale bar 50 nm and zoom ×7.25. c Electron micrographs from cells expressing FerriTag and GFP-FKBP-LCa, control (light orange)
or rapamycin-treated (dark orange). The location of visible particles, none in control, four in rapamycin-treated are indicated (yellow circles). The incidence
of particles in cytoplasmic regions (blue) or coated membrane-proximal regions (pink) was recorded. Membrane-proximal regions are defined as a 50 nm
zone on the cytoplasmic side of the membrane. This region is further subdivided into coated areas and areas where no obvious coat is seen. The example
micrographs have no uncoated membrane-proximal regions. Scale bar, 100 nm. Right, scatter dot plot to show the density of particles in cytoplasmic (cyto,
blue), membrane (mem, gray) or coated (coat, pink) volumes, comparing control (Nexp= 3) and rapamycin-treated cells (Nexp= 4). Volumes are
calculated by multiplying the area by the section thickness (see Image analysis in Methods)
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Fig. 3 Identity of FerriTag particles and specificity of FerriTagging. Electron micrographs from experiments where either FKBP-GFP-MAO or GFP-FKBP-LCa
were FerriTagged. Rapamycin addition or iron pre-incubation was done or not as indicated. Electron micrographs show a positive controls: labeling of
mitochondria in cells where MAO had been FerriTagged (left) and labeling of CCSs in cells where clathrin was FerriTagged (right), b internal controls: no
labeling of CCSs in cells where MAO had been FerriTagged (left) and no labeling of mitochondria in cells where clathrin was FerriTagged, c negative
controls: no labeling at the expected locations in the absence of rapamycin, and d particles were less dense or appeared to be absent at the expected
locations when rapamycin was added but no preloading of iron was carried out. Scale bars, 100 nm
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In the control condition, the cytoplasmic vs. coated membrane-
proximal density of particles was 34.6 vs. 0 particles per μm3

(Fig. 2c). In the FerriTagged samples, the densities were 72.5 vs.
1308.6 particles per μm3, a 18-fold enrichment (Fig. 2c). The
density of particles in coated membrane-proximal zones in
FerriTagged samples was significantly higher than all other
densities measured (p < 0.0022), all of which were similar to one
another (p > 0.29, one-way ANOVA with Tukey’s post-hoc test).

We used a stereological method to test if the relative labeling
intensity (RLI) was different to the expected rate of regular points
overlaid onto each image13. These points were tested for their
coincidence with the cytoplasm or the coated membrane-
proximal region. The summary counts and statistics from seven
individual CLEM experiments are shown in Table 1. The RLI in
the coated membrane-proximal region for rapamycin-treated
cells ranged from 2.6 to 4.3 times the expected values, indicating
enrichment. The cytoplasmic RLI in rapamycin-treated samples
was 0.2 to 0.6 of the expected, suggesting a depletion as particles
relocated to membrane regions. For comparison, in controls the
cytoplasmic RLI was 1.0 to 1.2 of the expected values. In
FerriTagged samples, particles were found at higher than
expected rates in membrane-proximal regions with no obvious
clathrin coat. Given the specificity of labeling, it is likely that these
particles represent FerriTagged clathrin which is in the process of
assembly/disassembly. This work indicates that any FerriTag
associated with a particular subcellular structure represents real
tagging, and that unbound FerriTag does not interfere with
detection of genuine FerriTag labeling.

Determining the labeling resolution of FerriTag. Labeling
resolution refers to the accuracy with which the detected position
of the particle corresponds to the location of the labeled protein2.
The maximum possible distance that the FerriTag particle could
be from the tagged protein is theoretically 22 nm (Fig. 4a).
However, FerriTag may adopt a more compact conformation or
pose resulting in shorter observed lengths. To determine the
labeling resolution directly, we FerriTagged the transmembrane
protein CD8α and processed samples for EM (Fig. 4b). The
perpendicular distance from the center of the FerriTag particle to
plasma membrane was measured (median= 9.5 nm, N= 458
particles, Fig. 4c). To interpret the shape of this distribution, we
carried out computer simulations that modeled the detection of
particles in EM sections (see Supplementary Note 3). These
simulations indicate that FerriTag can exist in a number of length
states from 7 to 18 nm. The distribution has a broad spread
(FWHM ≈ 10 nm), which means that on average the particle will
be detected 10 ± 5 nm away from the target protein. This
resolution exceeds that of traditional immunogold labeling
which has a labeling resolution of 18 nm in pre-embedding
or 21 nm on-section2. This dataset also allowed us to directly

determine the signal-to-noise ratio (SNR) for FerriTagging
(8.7 ± 0.1, mean ± s.e.m., Fig. 4d, see Supplementary Note 4).
The high SNR is encouraging for future computational approa-
ches to automatically pick particles and quantify images from
FerriTagged cells.

Nanoscale mapping of HIP1R using FerriTagging. Having
developed FerriTagging, we next wanted to carry out contextual
nanoscale mapping of a protein-of-interest to answer a cell bio-
logical question. Huntingtin-interacting protein 1 related
(HIP1R), the human homolog of yeast Sla2p, can bind mem-
branes, clathrin light chain, and actin. It exists in two con-
formations: extended and kinked; and several models have been
proposed to explain how HIP1R links the clathrin machinery to
the actin cytoskeleton14–19. To test these models, we determined
the nanoscale distribution of HIP1R at CCPs using FerriTagging.
HeLa cells expressing HIP1R-GFP-FKBP and FerriTag were
processed through our CLEM workflow and TEM images of
FerriTagged HIP1R on CCPs were acquired (Fig. 5a). We col-
lected images of CCPs and segmented the plasma membrane
profile and position of FerriTag particles in each (Fig. 5b, see
Image analysis in Methods). Using spatial averaging, we plotted
the distribution of all particles symmetrically about an idealized
pit profile for visualization (Fig. 5c). These data revealed that the
distribution of HIP1R is homogenous over the entire crown of the
CCP. Moreover, by defining the edges of the CCP we could map
FerriTagged HIP1R distal to the CCP, i.e., in adjacent areas of
uncoated plasma membrane. Here, HIP1R was labeled at lower
density relative to that at the CCP itself (Fig. 5c, d). Interestingly,
the distance from particles to the plasma membrane was greater
for FerriTagged HIP1R at the pit vs. distal regions, a difference of
10 nm on average (Fig. 5e). FerriTagging is at the C-terminus of
HIP1R and any differences in distance to the membrane likely
translate into changes in conformation of the molecule (Fig. 5f).
These data suggest that HIP1R is in an extended form at the CCP;
yet when distal to the pit, HIP1R is in a kinked conformation
(Fig. 5f).

Discussion
In this paper we described FerriTag, a genetically-encoded che-
mically-inducible tag for CLEM that can be used to acutely label
proteins in mammalian cells. The fluorescence and electron
density of FerriTag allows proteins to be tracked by fluorescence
microscopy in live cells and then visualized at the nanoscale by
EM.

FerriTag meets all four criteria for an ideal CLEM tag: (1)
fluorescent and electron dense, (2) tightly focused electron den-
sity, (3) genetically encoded, and (4) non-disruptive. Currently,
the most widely used CLEM tags rely on the production of an
electron dense cloud of precipitate that precludes precise

Table 1 Observed distribution of particles in FerriTag experiments

Condition Expt Nimage NFTo Cyto NFTo Mem NFTo Coat NFTo Total NFTe Cyto NFTe Mem NFTe Coat NFTe Total χ2 p-value

Control 1 26 26 1 0 27 23.7 1.1 2.2 27 0.716 0.398
Control 2 29 44 0 0 44 37.9 1.6 4.5 44 2.971 0.085
Control 3 6 18 0 0 18 17.2 0.3 0.5 18 0.438 0.508
Rapamycin 1 26 69 7 89 165 123.3 7.7 34.0 165 38.531 5.39 × 10−10

Rapamycin 2 16 15 15 36 66 50.9 3.7 11.5 66 29.301 6.20 × 10−8

Rapamycin 3 5 4 1 5 10 7.1 1.1 1.8 10 1.092 0.30
Rapamycin 4 8 7 8 31 46 38.1 0.6 7.3 46 33.196 8.33 × 10−9

The total number of FerriTag particles observed (NFTo) in either the cytoplasm (Cyto), membrane (Mem) or coated membrane (Coat) regions of the indicated number of micrographs (Nimage). The
membrane-proximal region comprises Mem+ Coat. The expected number of FerriTag particles (NFTe) in each region is derived from 24 regular points per image, scaled to the total number of particles
observed. The Yates-corrected χ2 statistic is shown for df= 1 (2 × 2 contingency table—cyto vs. coat, ctrl vs. rapa), the calculated p-value
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localization of target proteins. Due to the tightly focused electron
density and good signal-to-noise ratio of ferritin, FerriTag can be
used for nanoscale mapping of protein location. There have been
previous attempts to use metal ligand-based tags to achieve this7–
9, however there are significant limitations to these methods
which have prevented their wide application.

The FerriTag protocol outlined here is simple and robust, with
the potential to be used for any protein-of-interest which can be
fused to FKBP. Ultrastructure is well preserved due to absence of
detergent and it will also possible to incorporate high-pressure
freezing into the protocol to better preserve ultrastructure20,
something that is not currently possible with DAB-based
genetically-encoded tags. Potential future innovations of Ferri-
Tagging include: (1) alternative CLEM protocols that allow for
ultra-precise correlated single spot fluorescence localization with
FerriTag21–23, (2) improving staining to enhance the visualization
of ultrastructure, (3) combining FerriTag with other tagging
methods, perhaps with two-color EM24, allowing for multicolor
EM, and (4) harnessing the magnetic properties of FerriTag for
use as a purification tag, or perhaps for direct magnetic manip-
ulation of proteins in living cells. We think FerriTag may also be
useful for cryoEM and cryoCLEM applications as the FerriTag
particles are likely to provide significant contrast in samples
prepared in this way.

FerriTagging has limitations. It is not possible to tag proteins
which are located inside organelles, since FerriTag must be able to
access the FKBP for FerriTagging to occur. However, successful
tagging can be easily assessed by light microscopy, before any
samples are processed for EM. Secondly, the iron-loading
required for visualizing FerriTag may not be possible in iron-
sensitive systems. In these cases it might be possible to enhance
the basal iron bound by FerriTag, after fixation during processing.

FerriTagging can be used to track events by light microscopy
prior to visualization by EM, but there are two concerns here.

First, does FerriTagging interfere with protein function? We did
not observe any adverse effects of FerriTagging on clathrin’s
endocytic function, suggesting that CCSs could be tracked for
long periods. Although any functional impact of FerriTagging of
other target proteins would need to be assessed. Second, rapa-
mycin has other effects which may affect live cell imaging. These
effects occur on a much longer timescale (tens-of-minutes to
hours)25. If imaging on this timescale is required, rapalogs may be
used together with a mutated form of FerriTag (see Supplemen-
tary Note 2). Our results showed that FerriTagging occurs within
seconds. For most applications this timescale is sufficient to track
events and proceed to EM.

The labeling resolution of FerriTag is 10 ± 5 nm, which exceeds
the predicted resolution provided by standard immunogold
labeling by either pre-embedding or on-section2. Furthermore,
FerriTag exceeds the resolution of currently available super-
resolution light microscopy methods, with the added benefit that
cellular context can be observed in relation to nanoscale locali-
zation of the protein-of-interest23,26. Note that this comparison is
not straightforward because super-resolution imaging of antibody
labeling has a spatial resolution of >15 nm, which is then slightly
degraded because of what we term here as the labeling resolu-
tion27; EM has sub-nanometer spatial resolution. These proper-
ties make FerriTag ideal for mapping protein distribution at the
nanoscale.

Contextual nanoscale mapping of proteins allows investigators
to detail the fine distribution of a protein-of-interest in the
context of subcellular ultrastructure. In this paper, we used Fer-
riTagging to do contextual nanoscale mapping of HIP1R in HeLa
cells. At least three models have been proposed previously to
explain how HIP1R distribution allows coupling of CCPs to the
actin cytoskeleton14–16. First, immunogold labeling in unroofed
cells suggested that HIP1R is restricted to the rim of CCPs14.
Second, HIP1R was proposed to decorate deeply invaginated
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CCPs towards the neck, where it serves as an anchor against
which the polymerizing actin can push to force the vesicle away
from the plasma membrane16. Note that this model precludes
HIP1R in distal regions. Third, HIP1R was suggested to be
throughout the pit and in distal regions. Away from the pit,
HIP1R was thought to be in an extended strong actin-binding
conformation, while in a closed weaker form at the pit itself15. In
our study, we found that HIP1R is localized throughout the CCP

and in surrounding areas of uncoated membrane, albeit at lower
density. HIP1R at the pit appeared to be in an extended con-
formation whereas in distal regions, the labeling was consistent
with a shorter, perhaps kinked, conformation of HIP1R14. Our
finding of HIP1R throughout the pit is contrary to the first
immunogold study, however the unroofing method used there
may have removed HIP1R and actin over the crown of the pit,
restricting labeling artificially to the rim14. In that paper, they also
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noted HIP1R immunogold labeling in distal regions, associated
with actin filaments14, which agrees with our findings. The
localization we describe is closest to the third model15, while our
conformation data more closely matches the second model16. We
propose that the N-terminal ANTH domain of HIP1R associates
with the plasma membrane and the C-terminal region THATCH
domain binds actin17. If this is in a distal, uncoated section of
plasma membrane the molecule is in a closed conformation. In
the clathrin coat, interaction of the middle domain with clathrin
encourages the extended conformation of the molecule allowing
the coat to link to the actin cytoskeleton28. This arrangement
allows the coat to be anchored against the cytoskeleton while
polymerizing actin serves to push the vesicle away from the
plasma membrane. Definitive answers to the conformational state
of any protein will require labeling at more than one place in the
molecule which should be possible by moving the FKBP domain,
provided the protein still localizes and functions normally.

These are exciting times for exploration of the subcellular
world and for investigations into protein function in cells at the
nanoscale. We hope FerriTag will be widely adopted as a dis-
covery tool on these expeditions.

Methods
Molecular biology. To make FRB-mCherry-FTH1, human ferritin heavy poly-
peptide 1 (IMAGE clone: 3459353) was amplified by PCR and inserted into pFRB-
mCherry-C1 via XhoI-EcoRI. For expression of FTL only, human ferritin light
polypeptide cDNA (IMAGE clone: 2905327) was amplified by PCR and inserted
into pEGFP-C1, removing EGFP, via AgeI-XhoI. Plasmids to express FRB-
mCherry-FTH1 and FTL are available from Addgene (100749 and 100750,
respectively). Rapalog-compatible FerriTag was made by site-directed mutagenesis
to introduce the T2098L mutation into FRB of FRB-mCherry-FTH1. FKBP-GFP-
Myc-MAO was a kind gift from Sean Munro (MRC-LMB, Cambridge)29. GFP-
FKBP-LCa was available from previous work30. To make CD8-GFP-FKBP, CD8α
was amplified by PCR and inserted into pEGFP-FKBP-N1 via NheI-AgeI. To make
HIP1R-GFP-FKBP, HIP1R (Addgene plasmid 27700) was amplified by PCR and
inserted into pEGFP-FKBP-N1 via XhoI-AgeI. Plasmids to express CD8-GFP-
FKBP or HIP1R-GFP-FKBP are available from Addgene (100751 and 100752,
respectively). To make pMito-mCherry-FTH1, FTH1 was inserted into pMito-
mCherry-FRB (from earlier work30) via BsrG1-XbaI. The following plasmids were
from Allele Biotech: pmNeonGreen-Actin-C-18, pmNeonGreen-alpha-Actinin-19,
pmNeonGreen-Caveolin-C-10, pmNeonGreen-Clathrin-15, pmNeonGreen-H2B-
C-10, mNeonGreen-LC3B-7, pmNeonGreen-LAMP1-20, pmNeonGreen-Tubulin-
C-35, pmNeonGreen-Vimentin-7, pmNeonGreen-Zyxin-6; whereas GFP-EB1 was
available in the lab and pAc-GFP-Sec61beta (Addgene plasmid 15108).

Cell biology. HeLa cells were cultured in Dulbecco’s Modified Eagle Medium
(Invitrogen) supplemented with 10% fetal bovine serum and 100 U/ml penicillin/
streptomycin at 37 °C and 5% CO2. Cells were transfected with a total of 1.5 μg
DNA (for 3.5 cm dishes) using Genejuice (Novagen) following manufacturer’s
instructions. The total amount of DNA for each plasmid transfected in FerriTag
experiments, unless otherwise specified, was 750 ng for GFP-FKBP tagged protein
of interest, 600 ng for FTL only vector and 150 ng for FRB-mCherry-FTH1. Cells
were imaged or fixed 2 day after transfection. Cells grown in iron-rich conditions
were supplemented with FeSO4·7H2O to a final concentration of 1 mM in growth
media, 16 h prior to imaging. As shown in Supplementary Fig. 2, we determined
that this concentration and duration of iron-loading was non-toxic to cells, since
3.3 mM FeSO4 for 72 h was previously shown to alter the ultrastructure of HeLa
cells31. For transferrin uptake analysis, HeLa cells were serum-starved for 20 min in
serum-free DMEM and then exposed to 200 nM rapamycin or ethanol vehicle for
12 min, with 0.05 mg/ml Alexa 647-conjugated transferrin (Invitrogen) added for
the final 10 min before fixing. As a negative control, 0.45M sucrose was applied 15
min at the serum starvation step to inhibit endocytosis. All dilutions were in
serum-free media32.

Light microscopy. Live cell imaging of FerriTagging kinetics was performed on a
spinning disc confocal microscope (Ultraview Vox, Perkin Elmer) with a ×100 1.4
NA oil-immersion objective at 37 °C. Cells were cultured in glass-bottom fluor-
odishes (WPI) and kept in Leibovitz L-15 CO2-independent medium supple-
mented with 10% FBS during imaging. Images were captured using an ORCA-R2
digital CCD camera (Hamamatsu) following excitation with 488 and 561 nm lasers.

Fixed cell experiments were performed in transiently transfected cells attached
to cover slips and fixed with 3% paraformaldehyde, 4% sucrose in PBS at 37 °C.
Cells were then washed in PBS before being mounted in Mowiol containing DAPI.
Imaging was performed on a Nikon Ti epiflorescence microscope with standard
filtersets, equipped with a heated environmental chamber (OKOlab) and CoolSnap

MYO camera (Photometrics) using NIS elements AR software. Where applicable,
rapamycin (Alfa Aesar) was added by flowing in a concentrated solution in media
at 37 °C to a final concentration of 200 nM.

Correlative light-electron microscopy. Following transfection, cells were plated
onto gridded glass MatTek dishes (P35G-1.5-14-CGRD, MatTek Corporation,
Ashland, MA, USA). Light microscopy was performed as described above. Cells
were kept at 37 °C in Leibovitz L-15 CO2-independent medium supplemented with
10% FBS during imaging. Transiently expressing cells were located and the photo-
etched grid coordinate containing the cell of interest was recorded using brightfield
illumination at ×20 for future reference. The same cell was then relocated and
fluorescent live cell imaging was then acquired at ×100. During imaging, rapamycin
was added and once sufficient labeling had been achieved, cells were immediately
fixed in 3% glutaraldehyde, 0.5% paraformaldehyde in 0.05M phosphate buffer pH
7.4 for 1 h. Following fixation, cells were washed several times in 0.05 M phosphate
buffer, post-fixed in 1% osmium tetroxide (Agar) for 1 h, washed in distilled water
and then dehydrated through an ascending series of ethanol prior to infiltration
with epoxy resin (TAAB) and polymerization at 60 °C. This gave sufficient contrast
without the need for post-staining. Coverslips attached to the polymerized resin
block were removed by briefly plunging into liquid nitrogen. The cell of interest
was then located by correlating grid coordinates imprinted on the resin block with
previously acquired brightfield images. The resin around the cell of interest was
then trimmed away using a glass knife. Serial, ultrathin sections of 70 nm were then
taken using a diamond knife on an EM UC7 (Leica Microsystems) and collected on
uncoated hexagonal 100 mesh grids (EM resolutions). Electron micrographs were
recorded using a JEOL 1400 TEM operating at 100 kV using iTEM software.

Image analysis. To measure FerriTagging kinetics in live cell imaging experiments,
particle detection was carried out on binarized image stacks. Particles were used as
a mask to collect mean pixel densities from both channels. The ratio of
background-subtracted intensities was taken for each particle and the median value
(set to 0) used for averaging across multiple cells. As a control, the FerriTag
channel was randomized and analyzed in the same way, giving no response.
Transferrin uptake was analyzed from micrographs by applying a threshold and
using Analyze Particles in FIJI32.

To assess the particle densities, locations of particles in images were manually
recorded by an analyst blind to the experimental conditions. In parallel, the images
were segmented into extracellular, cytoplasmic, membrane-proximal regions (50 nm
zone on the intracellular side of the plasma or vesicular membrane). The membrane-
proximal region was further subdivided into areas with a coat and areas where no coat
could be detected. A custom-written procedure parsed the list of coordinates of
particle locations, classified them according to region and then calculated the volumes
of each region in the images using section thickness as a scalar. In addition, according
to the methods of Mayhew and Lucocq (summarized in13), we tested if the relative
labeling intensity (RLI) was different to the expected rate of the intersecting points of
an 8 × 6 grid overlaid onto the image. The outer lines of the grid coincide with the
image perimeter, so 6 × 4= 24 points are tested for their coincidence with the
cytoplasmic or the membrane-proximal region. These expected frequencies are scaled
to the total number of observed particles for each experiment and tested using
Pearson’s Chi-squared test with Yates’ continuity correction.

Manual detection and measurement of membrane proximity was also used for
the CD8-GFP-FKBP dataset. The computer simulations underlying the
determination of “labeling resolution” are described in Supplementary Note 3. The
signal-to-noise calculations are described in Supplementary Note 4.

For mapping of HIP1R FerriTagging, electron micrographs in TIFF format were
imported into IMOD and the plasma membrane and location of electron dense
particles was manually segmented. The coordinates corresponding to contours and
objects were fed into IgorPro 7.01 using the output from model2point.
Custom-written procedures processed these data. First, the coordinates were scaled
from pixels to real-world values, and the closest distance (proximity) to the plasma
membrane was recorded. Next, the beginning and end of the pit were defined
manually in a graphical user interface. The contour length of the pit was
determined and the contour length between the start of the pit and the point of
closest approach for each FerriTag particle was calculated. The ratio of these two
lengths allowed us to plot out a spatially normalized view of the labeling locations.
Particles that were closest to the membrane outside of the pit were plotted
separately.

Code availability. All code used in the manuscript is available (https://github.com/
quantixed/FerriTag). Details of the files used and their respective hashes are given
in Supplementary Methods.

Data availability. All relevant data are available from the authors.
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