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Abstract

Background: Pulse oximetry is widely used in the clinical setting. The purpose of this validation study was to
investigate the level of agreement between oxygen saturations measured by pulse oximeter (SpO2) and arterial
blood gas (SaO2) in a range of oximeters in clinical use in Australia and New Zealand.

Methods: Paired SpO2 and SaO2 measurements were collected from 400 patients in one Australian and two New
Zealand hospitals. The ages of the patients ranged from 18 to 95 years. Bias and limits of agreement were estimated.
Sensitivity and specificity for detecting hypoxaemia, defined as SaO2 < 90%, were also estimated.

Results: The majority of participants were recruited from the Outpatient, Ward or High Dependency Unit setting. Bias,
oximeter-measured minus arterial blood gas-measured oxygen saturation, was − 1.2%, with limits of agreement − 4.4
to 2.0%. SpO2 was at least 4% lower than SaO2 for 10 (2.5%) of the participants and SpO2 was at least 4% higher than
the SaO2 in 3 (0.8%) of the participants. None of the participants with a SpO2≥ 92% were hypoxaemic, defined as
SaO2 < 90%. There were no clinically significant differences in oximetry accuracy in relation to clinical characteristics or
oximeter brand.

Conclusions: In the majority of the participants, pulse oximetry was an accurate method to assess SaO2 and had good
performance in detecting hypoxaemia. However, in a small proportion of participants, differences between SaO2 and
SpO2 could have clinical relevance in terms of patient monitoring and management. A SpO2≥ 92% indicates that
hypoxaemia, defined as a SaO2 < 90%, is not present.

Trial registration: Australian and New Zealand Clinical Trials Registry (ACTRN12614001257651). Date of registration:
2/12/2014.
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Background
Pulse oximeter measured oxygen saturation is a non-
invasive approximation of arterial oxygen saturation
(SpO2), which is considered the fifth vital sign in clinical
assessment [1–3]. In clinical practice monitoring of
SpO2 values is required to titrate oxygen therapy to
avoid the risks of hypoxaemia and hyperoxaemia [1, 2].
Assessment of agreement between the gold standard ar-

terial blood gas (ABG) measurement of oxygen saturation
(SaO2) and SpO2 is essential for the interpretation and use
of pulse oximetry values. It is also essential for the devel-
opment of safe and practical recommendations for SpO2

targets for the titration of oxygen therapy. Overestimation
of actual SaO2 may mean clinically relevant hypoxaemia is
not detected or treated. Conversely, underestimation of
actual SaO2 may result in unnecessary oxygen therapy
with the associated risks of hyperoxaemia.
The United States regulatory body, the Food and Drug

Administration (FDA) centre, requires the accuracy of
pulse oximeters to be tested against SaO2, in healthy
adults in laboratory settings [4]. In clinical practice a num-
ber of factors influence oximeter accuracy including the
degree of hypoxaemia, hypercapnia, glycosylated haemo-
globin (HbA1c), skin pigmentation, movement artefacts,
peripheral perfusion and use of nail polish or acrylic nails
[3, 5–12]. Clinical studies report that SpO2 can both over
and underestimate SaO2, and the values may have wide
limits of agreement [5–32]. However, oximeter accuracy
may also differ by oximeter model [7, 8, 12, 18, 19]. Manu-
facturers are continuously evolving sensor technology and
software algorithms [3]. This means previous studies may
not be directly relevant to current clinical practice because
of the population groups and oximeter models used.
In our recent study investigating the accuracy of oxi-

meters used in Australian and New Zealand Intensive
Care Units (ICUs), we demonstrated a mean bias for
SaO2 minus SpO2 of only 0.15%, with limits of agree-
ment plus or minus 4.4% [18]. In this study we aim to
investigate the agreement between SaO2 and SpO2 mea-
surements by oximeters currently in use in Australian
and New Zealand hospitals outside the critical care set-
ting, either on the ward or in the Emergency (ED), High
dependency Unit (HDU) or outpatient departments. Sec-
ondary objectives were to evaluate the diagnostic per-
formance of SpO2 to detect hypoxaemia, and investigate
factors affecting oximeter accuracy.

Methods
This multicentre prospective non-experimental observa-
tional study compared simultaneous SpO2 and SaO2

measurements in inpatients and outpatients at West-
mead Hospital in Australia, and Wellington and Christ-
church Hospitals in New Zealand. It was prospectively
registered on the Australian and New Zealand Clinical
Trials Registry (ACTRN12614001257651). Ethical ap-
proval was obtained from the Northern B Ethics Com-
mittee in New Zealand (14/NTB/115) and the Western
Sydney Local Health District Human Research Ethics
Committee in Australia (LNR/14/WMEAD/387).
Patients aged 16 years or older who were to have an

ABG measurement as part of routine clinical care were re-
cruited. Full written informed consent was provided in
New Zealand by participants, or next of kin if participants
were unable to (for example, if they were too unwell). Par-
ticipants were not recruited if they had a diagnosis of
sickle cell anaemia, methaemoglobinemia, carbon monox-
ide (CO) poisoning, or were previously recruited to the
study and had paired SpO2 and SaO2 values successfully
recorded. They could also be excluded for any other con-
dition which, at the investigator’s discretion, was believed
may present a safety risk or impact upon the feasibility of
the study or the interpretation of the study results.
Participants were identified in hospital wards and out-

patient clinics. Demographic data were recorded. Skin
colour was assessed using the Fitzpatrick scale [33].
SpO2 was measured during a clinically indicated ABG.

The oximeter probe was put in place for at least 10 s
prior to the ABG, or longer if indicated by manufac-
turer’s instructions. SpO2 was measured from an earlobe
or finger probe, depending on departmental policies and
what the staff member responsible for performing oxim-
etry would usually use to monitor that patient. If a finger
probe was used it was placed on the index finger on the
contra-lateral side to ABG sampling. Where possible,
nail polish was removed before measurement.
The SpO2 value recorded was the value on the oximeter

when blood was first observed to enter the ABG collection
vial. If the participant was receiving supplementary oxygen
at the time of the ABG, this was also recorded. Measure-
ments paired with ABG samples subsequently identified
to be venous or unusable, e.g. sample too small for ana-
lysis, were excluded. The models of oximeter and ABG
analyser were recorded. Data recorded from the ABG
were SaO2, partial pressure of oxygen (PaO2), partial pres-
sure of carbon dioxide (PaCO2), Carboxyhaemoglobin
(CoHb), Methaemoglobin (MetHb) and HbA1c, if mea-
sured as part of clinical practice. Investigators were asked
to record whether they had any concerns with oximeter
accuracy, such as nail polish that was not removed, poor
oximeter signal, or patient movement. Participants in
which there was a reported concern with oximeter accur-
acy were not excluded from analyses.
Bland Altman plots and estimation of bias and limits

of agreement were used to describe the agreement be-
tween SpO2 and SaO2 measurement, using SaO2 as the
reference standard.
The diagnostic performance of SpO2 < 90% to detect

hypoxaemia, defined as a SaO2 < 90% and defined as a
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PaO2 < 60mmHg, was evaluated using contingency ta-
bles, with sensitivities and specificities estimated by an
exact binomial method for proportions. A post hoc ana-
lysis of the ability for SaO2 < 90% to detect a PaO2 < 60
mmHg was performed using the same methods.
Associations with mean bias were illustrated by a scat-

ter plot with a scatter plot smoother and a Spearman
rank-correlation coefficient for SaO2, and ANOVA for
categorical variables in Table 1. The mean difference be-
tween categories was assessed with an F-test. Where a
categorical variable only had one observation it was not
used in the ANOVA. If important predictors of bias
were identified, it was planned to use Bland Altman
methods determine whether there was also an effect on
limits of agreement.
To estimate the difference between SpO2 and SaO2

due to different oximetry devices, estimation of variance
components and associated intra-class correlation coeffi-
cients for the effect of oximeters as well as best linear
unbiased predictors of the effect of individual oximeters
were assessed by mixed linear models and estimation by
restricted maximum likelihood.
SAS version 9.4 was used.
The planned sample size of 400 was based on three

considerations. Firstly, for the analysis of variables that
predict the size of the bias we sought to have between
20 and 40 participants for each degree of freedom in the
ANOVA. Based on the six variables, some of which have
multiple levels, this required between 200 and 400 par-
ticipants. Secondly the estimates of paired SD for the
SpO2 to SaO2 difference from patients in a range of clin-
ical settings were 0.55% [6], 2.1% [17], and 2.2% [16].
There is 80% power, with a type I error rate of 5%, to
detect a SpO2 to SaO2 difference of 2% for any of the
variables that might predict bias, if there were two equal
sized groups of 21 participants. For estimation of vari-
ance of components for the different pulse oximeters by
Best Unbiased Linear Predictors between 20 and 25
Table 1 Categorical factors assessed for influence on oximeter
accuracy

Location of measurement (ED, HDU, ward, or outpatient department)

Position of the oximeter probe (finger or ear)

Recognised condition associated with chronic respiratory failure (chronic
obstructive pulmonary disease, obesity hypoventilation syndrome,
bronchiectasis, cystic fibrosis, neuromuscular disease and chest wall
deformities such as severe kyphoscoliosis)

Current tobacco smoking status (current versus ex or non-smoker)

Skin pigmentation (based on modified Fitzpatrick scale with patient skin
colour classified as either: Light (Type I to Type II), Medium (Type III to
Type IV) or Dark (Type V to Type VI))

Diabetes Mellitus

ED emergency department, HDU high dependency unit
participants per oximeter brand were required and it
was estimated that between 10 and 20 oximeter brands
would be used.

Results
Participants
Four-hundred patients were recruited; 253 from Christ-
church, 103 from Wellington and 44 from Westmead
Hospital (Fig. 1). Participant characteristics and details
of the pulse oximeters and ABG analysers are presented
in Table 2.

Agreement between SpO2 and SaO2

The bias for SpO2 minus SaO2 was − 1.2%, with limits of
agreement − 4.4 to 2.0%. The Bland Altman plot is
shown in Fig. 2. In 10/400 (2.5%) participants the SpO2

was at least 4% lower than SaO2. In one of these partici-
pants the investigator reported concern with oximeter
accuracy. In 3/400 (0.8%) participants the SpO2 was at
least 4% higher than the SaO2. In one of these partici-
pants the investigator reported concern with oximeter
accuracy. Characteristics of these participants are in the
Online Additional file 1: Table S2).

Detection of hypoxaemia
Sensitivity and specificity for the ability of SpO2 < 90% or <
92% to detect SaO2 < 90%, the ability for SpO2 < 90% to
detect PaO2 < 60mmHg, and the ability for SaO2 < 90% to
detect PaO2 < 60mmHg, are shown in Table 3. The ROC
curve for SpO2 to detect SaO2 < 90% is shown in Fig. 3.
SpO2 < 92% had 100% sensitivity and 84.4% specificity for
detecting SaO2 < 90%, and 95.1% sensitivity and 90.0%
specificity for detecting PaO2 < 60mmHg. See the Online
Additional File for tabulated values and ROC curve
(Additional file 1: Tables S3 and S4, Additional file 1:
Figure S1). Participants tended to sit to the left of the pre-
dicted oxygen haemoglobin dissociation curve (Online
Additional file 1: Figure S2) [34]. In 13/400 (3%) of partici-
pants the PaO2 was > 100mmHg. Twelve of these partici-
pants had a SpO2 > 96%. One had an oximetry value of
96%; their PaO2 was 142mmHg and SaO2 was 99%.

Factors potentially influencing oximeter accuracy
There was no statistical evidence of an association be-
tween SaO2 and bias between SpO2 and SaO2; Spearman
coefficient 0.003, P = 0.94. Of the other factors from
Table 1, only a diagnosis of diabetes was identified as a
predictor of bias (P = 0.05). In diabetics it was − 0.8 (95%
limits of agreement − 4.4 to 2.8), in non-diabetics it was
− 1.2 (− 4.4 to 2.0). Detailed results are presented in the
Online Additional File (Additional file 1: Figure S3 and
Table S5).
There were at least 14 different oximeter models used.

The most common oximeter models used were the



Screened
n=441

Excluded
n=41

Christchurch:
Declined, 17
Blood gas not arterial or unsuccessful, 5
Pulse oximeter unable to be used, 1

Wellington:
Blood gas not arterial or unsuccessful, 15
Declined, 1
Repeat participant, 1

Westmead:
Blood gas not arterial or unsuccessful, 1

Analysed
n=400

Fig. 1 Flow of participants through the study
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Nonin Avant 9700 in 103 participants (26%), Massimo
Rainbow Radical 7 in 92 participants (23%) and the
Nonin Avant 4000 in 76 participants (19%) (See
Additional file 1: Table S1 for all models). The difference
in the estimation of variance components was 0.16 for
oximeter brand and 2.48 for residual, resulting in an
intra-class correlation coefficient of 0.94. This can be
interpreted as approximately 6% of variation in the rela-
tionship between SpO2 versus SaO2 being due to oxim-
eter brand. Detailed results by oximeter are shown in
the Online Additional file 1: Table S6).
Concern with oximeter accuracy was reported by in-

vestigators in 16 patients, nine of which had nail polish,
acrylic nail or double nail. Other causes for concern are
presented in the Online Additional file 1: Table S1).

Discussion
The bias and limits of agreement between SpO2 and
SaO2 suggest that pulse oximetry is an accurate method
to assess SaO2 in most adult patients in the clinical set-
ting. However, in a small number of participants poten-
tially clinically important differences between SpO2 and
SaO2 could affect patient assessment and management.
A practical guide that can be derived from these data is
that a SpO2 ≥ 92% effectively rules out presence of hyp-
oxaemia, indicated by a SaO2 < 90%. There were no clin-
ically significant differences in oximeter accuracy based
on absolute level of SaO2, hospital location, numerous
clinical characteristics or oximeter brand.
The magnitude of bias and associated limits of agree-

ment from the range of oximeters in this study suggested
that overall they perform at a similar level or better than
oximeters used in many of the clinical studies performed
in the last 10 years [5, 6, 8, 10–12, 18–26, 28, 30, 31]. This
is in keeping with constant oximeter sensor technology
and software improvements by manufacturers over time
[3]. Specifically, the bias and limits of agreement for SaO2

minus SpO2 were similar to the values recently obtained
in critically unwell patients in the ICU setting (0.15%,
limits of agreement plus or minus 4.4%) [18].
The negative bias of − 1.2%, albeit small, meant that

the oximeters tended to underestimate SaO2. Such
underestimation has the potential to result in a conser-
vative estimate of risk of hypoxaemia and may lead to
more liberal oxygen therapy than required. SpO2 under-
estimated SaO2 by at least 4% in around 3% of partici-
pants, and overestimated it by at least 4% in less than
1% of participants. These findings mean that while the
oximeters performed well overall, there were still poten-
tially clinically relevant differences in SpO2 and SaO2 in
a small proportion of the participants. In the majority of
the participants with SpO2 and SaO2 values differing by
at least 4% the investigators did not state they had any
concerns with oximeter accuracy. This highlights the po-
tential difficulty in identifying when an oximetry value is
incorrect and emphasises the importance of guideline
recommendations to consider oximetry values in clinical
context [3].
The TSANZ [2] and BTS [1] guidelines for acute oxy-

gen therapy both recommend use of pulse oximetry as a
vital sign and tool to titrate oxygen therapy to a target
oxygen saturation range. The TSANZ recommend oxy-
gen is delivered to a SpO2 target range of 92 to 96% in
patients not at risk of hypercapnic respiratory failure [2].
This range was developed to reduce the risks of both
hyperoxaemia and hypoxaemia, while recognising



Table 2 Participant characteristics (N = 400)*

General characteristics N (%)*

Age, years

Mean (SD) 64.2 (15.2)

Min to max 18.7 to 95.1

Male gender 212 (53)

Smoking status (n = 399)

Current 43 (10.8)

Ex 203 (50.9)

Never 153 (38.5)

Fitzpatrick Score

I 44 (11)

II 198 (49.5)

III 127 (31.8)

IV 30 (7.5)

V 1 (0.3)

VI 0 (0)

Conditions associated with chronic respiratory failure

None: 229 (57.3)

Hypercapnia** on ABG 16

At least one: 171 (42.8)

Hypercapnia** on ABG 57

Individual conditions associated with chronic respiratory failure

Chronic obstructive pulmonary disease 113 (28.3)

Obesity hypoventilation syndrome 30 (7.5)

Bronchiectasis 19 (4.8)

Cystic fibrosis 1 (0.3)

Neuromuscular disease 24 (6)

Chest wall deformity 11 (2.8)

Peripheral vascular disease 11 (2.8)

Diabetes 80 (20)

Oxygen administration 25 (6.3)

New Zealand Ethnicity

NZ European 280 (70.0)

Māori 26 (6.5)

Samoan 13 (3.3)

Chinese 1 (0.3)

Indian 4 (1.0)

Cook Island Māori 1 (0.3)

Tongan 3 (0.8)

Other 28 (7.0)

Australian Ethnicity

Caucasian 34 (8.5)

Middle Eastern 6 (1.5)

Other 5 (1.3)
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Table 2 Participant characteristics (N = 400)* (Continued)

Hospital location

Outpatient 341 (85.3)

Ward 40 (10)

HDU 18 (4.5)

ED 1 (0.3)

ABG and oximetry data Mean (SD), min-max* Median (IQR)

SpO2, % 93.5 (3.8), 72 to 100 94 (92 to 96)

Participants with SpO2<90% (N, (%)) 49 (12.3)

Concern with SpO2 data accuracy recorded by investigator (N, (%))*** 16 (4.0)

SaO2, % 94.7 (3.8), 72.1 to 100 95.7 (93.2 to 97.1)

Participants with SaO2<90% (N, (%)) 35 (8.8)

PaO2, mmHg 74.8 (21.3), 37.9 to 396 73 (64.7 to 83)

Participants with PaO2<60 mmHg (N, (%)) 61 (15.3)

PaCO2, mmHg 40.3 (7.2), 25.4 to 87.2 39 (35.8 to 43.4)

Hb, g/L 136.7 (18.8), 67 to 192 137 (126.5 to 149)

CoHb, %

All participants (N = 358) 2.1 (1.2), 0 to 7 1.8 (1.4 to 2.3)

Current smokers (N = 40) 3.9 (1.7), 0.9 to 6.7 4.0 (2.4 to 5.4)

Ex smokers (N = 183) 1.9 (0.9), 0.0 to 7.0 1.7 (1.4 to 2.2)

Never smokers (N = 135) 1.9 (0.7), 0.0 to 4.2 1.7 (1.3 to 2.3)

ABG: Arterial blood gas, CoHb: Carboxyhaemoglobin, COPD: Chronic Obstructive Pulmonary Disease, ED: Emergency Department, Hb: Haemoglobin, HDU: High
Dependency Unit, ILD: Interstitial lung disease, NZ: New Zealand, NMD: Neuromuscular disease, OSA/OHS: Obstructive sleep apnoea and/or obesity
hypoventilation syndrome, PaCO2: Partial pressure of arterial carbon dioxide, PaO2: Arterial partial pressure of oxygen, SaO2: Oxygen saturation measured by
arterial blood gas sample, SpO2: Oxygen saturation measured by standard pulse oximeter
*Unless otherwise stated
**PaCO2 > 45 mmHg
***For example nail polish, acrylic nail, nail pathology, low perfusion or variability noted on monitor
Further details available in Online Additional File, including oximeter models and ABG analysers used (Additional file 1: Table S1)

Fig. 2 Bland Altman Plot for SpO2 versus SaO2

SaO2: Oxygen saturation measured by arterial blood gas sample,
SpO2: Oxygen saturation measured by standard pulse oximeter. The
solid reference line is the mean bias and the dashed reference lines
are the limits of agreement around this mean bias.
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potential oximeter accuracy limitations [35]. The lower
limit of 92% is supported by a SpO2 saturation of ≥92%
indicating that hypoxaemia (SaO2 < 90%) is not present.
The recommended upper SpO2 limit of 96%, aimed at
avoiding hyperoxaemia, is supported by the finding that
12 of the 13 participants with a PaO2 of greater than
100 mmHg had a SpO2 value over 96%.
A SpO2 < 90% had a specificity of only 70.5% in identi-

fying a PaO2 < 60 mmHg, while for SaO2 < 90% it was
only 54.1%. These values are in keeping with the major-
ity of participants being positioned to the left of the pre-
dicted oxygen haemoglobin dissociation curve. In
keeping with recommendations by the TSANZ Oximetry
Guidelines [3], these findings highlight the limitations of
estimating PaO2 from saturation values, and vice versa.
Patients with sickle cell anaemia, methaemoglobine-

mia, or CO poisoning were excluded from the study and
nail polish was removed where possible as these factors
are well established to impact on oximeter results [3].
SaO2, oximeter model and the numerous clinical vari-
ables were not found to significantly impact on oximeter



Table 3 Diagnostic performance of SpO2 and SaO2

Ability for SpO2 <90% to detect SaO2 <90%

SaO2 <90% Sensitivity: 88.6%

SpO2 <90% Yes No Specificity: 95.1%

Yes 31 18

No 4 347

Total 35 365

Ability for SpO2 <92% to detect SaO2 <90%

SaO2 <90% Sensitivity: 100%

SpO2 <92% Yes No Specificity: 84.4%

Yes 35 57

No 0 308

Total 35 365

Ability for SpO2 <90% to detect PaO2 <60 mmHg

PaO2 <60mmHg Sensitivity: 70.5%

SpO2 <90% Yes No Specificity: 98.2%

Yes 43 6

No 18 333

Total 61 339

Ability for SaO2 <90% to detect PaO2 <60mmHg

PaO2 <60mmHg Sensitivity: 54.1%

SaO2 <90% Yes No Specificity: 99.4%

Yes 33 2

No 28 337

Total 61 339

PaO2: Partial pressure of oxygen, SaO2: Oxygen saturation measured by arterial
blood gas sample, SpO2: Oxygen saturation measured by standard pulse oximeter

Fig. 3 ROC curve for SpO2 to predict SaO2 < 90%. The c-statistic for
the logistic regression, representing the area under the ROC curve,
was 0.986. SaO2: Oxygen saturation measured by arterial blood gas
sample, SpO2: Oxygen saturation measured by standard pulse oximeter
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accuracy. However, it was not possible to evaluate the
effect of earlobe oximetry, Fitzpatrick scale V or VI, or
ED location on accuracy due to there being only one
participant in each of these categories.
This study had the advantage of a multicentre design

and use of a range of oximeters routinely available to
clinical staff in a variety of hospital settings. A wide
range of adult patients were included, both in terms of
presenting diagnosis and illness severity. While there
were a range of SaO2 values between 72 and 100%, the
results cannot be applied to patients with a SaO2 of
under 70%, at which oximeter inaccuracy is well recog-
nised [3]. Results may not be applicable to paediatric pa-
tients or adult patients in theatre, ICU or ED, especially
as a variety of factors specific to these patients have been
previously identified as affecting oximeter accuracy
[11, 15, 17, 25, 27, 28, 30, 31]. Having only one par-
ticipant with a Fitzpatrick score of V, and none with
VI, meant study findings may not be applicable to patients
with higher skin pigmentation. This is especially
important as oximeter accuracy has been demonstrated to
decrease as pigmentation increases, particularly at lower
SaO2 levels and in oximeters of the same brand as some
of those used in our study (Massimo Radical and Nonin
9700) [7].
Single oximeter and ABG measurement pairing from

each participant were used, which has the advantage of
removing potential bias from repeated measures in the
same participant. However, this did mean we could not
specifically assess the accuracy of SpO2 to detect
changes in SaO2 over time.

Conclusions
Overall, the oximeters in this study had good accur-
acy in determining individual SaO2 values and detect-
ing hypoxaemia in a range of clinical settings. The
use of a SpO2 of 92% as the lower boundary for the
titration of oxygen therapy was supported by 100%
sensitivity for SpO2 < 92% in identifying hypoxaemia
(SaO2 < 90%). In a small number of participants dis-
crepancies between SpO2 and SaO2 could have impli-
cations for patient assessment and management. This
highlights the importance interpreting SpO2 within
clinical context.
Supplementary information
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