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Abstract

Lymphatic endothelial cells are most often thought of as structural cells that form the lymphatic 

vasculature, which transports fluid out of peripheral tissues and transports antigens and antigen 

presenting cells to lymph nodes. Recently, it has been shown that lymphatic endothelial cells also 

dynamically respond to and influence the immune response in several ways. Here, we describe 

how lymphatic endothelial cells induce peripheral T-cell tolerance and how this relates to 

tolerance induced by other types of antigen presenting cells. Furthermore, the ability of lymphatic 

endothelial cells to alter immune responses under steady-state or inflammatory conditions is 

explored, and the therapeutic potential of bypassing lymphatic endothelial cell-induced tolerance 

to enhance cancer immunotherapy is discussed.
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Antigen Presenting Cells and T-cell Tolerance Induction in the Thymus and 

Lymph Nodes

T-cell receptors (TCR) are stochastically generated in the thymus, which enables the 

immune system to recognize a tremendous diversity of foreign antigens. However, it also 

creates T-cells with the potential to recognize and attack host tissues expressing normal self-

antigens. To prevent autoimmunity, T-cells that recognize self-antigens are tolerized through 

intrinsic mechanisms such as deletion, anergy, and induction of a regulatory T-cell (Treg) 

phenotype, or through extrinsic suppression by already differentiated Treg [1]. Tolerance 

induction occurs in the thymus at the time of T-cell development, but also occurs in lymph 

nodes (LN) draining peripheral tissues. Deletion and Treg induction are thought to be the 

dominant mechanisms of tolerance in the thymus, while anergy, deletion and Treg induction 

all occur in LN [2]. In all cases, tolerance induction is driven by antigen presenting cells 

(APC) that present ubiquitously expressed and tissue-restricted antigens. While it was 

Copyright: © 2014 Rouhani SJ, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Corresponding author: Victor H. Engelhard, Carter Immunology Center, University of Virginia School of Medicine, Box 801386, 
Charlottesville VA 22908, USA, Tel: 434-924-2423; Fax: 434-924-1221; vhe@virginia.edu. 

NIH Public Access
Author Manuscript
J Clin Cell Immunol. Author manuscript; available in PMC 2015 January 07.

Published in final edited form as:
J Clin Cell Immunol. 2014 ; 5: . doi:10.4172/2155-9899.1000242.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



initially thought that dendritic cells (DC) were the primary tolerance-inducing APC, it has 

become clear recently that several other cell types can also serve this role. Among them are 

the lymphatic endothelial cells (LEC) that reside in LN.

Direct Expression of Peripheral Tissue Antigens by LEC and Other APC

All APC have the ability to present antigens derived from ubiquitously expressed proteins, 

but vary in their ability to present peripheral tissue antigens (PTA), which are defined as 

antigens from proteins normally expressed in fewer than 5 tissues [3]. A particular challenge 

has been to understand how tolerance to PTA would develop, since it is expected that these 

antigens will be largely absent from the thymus. DC are particularly efficient at acquiring 

and presenting antigens, including PTA, that are originally derived from other cells, both in 

the thymus [4] and LN [5–7]. This led to early models suggesting that tolerance to PTA 

occurred primarily in LN, and was based on DC acquisition of PTA derived from the tissues 

drained by individual LN [8]. However, it was subsequently shown that medullary thymic 

epithelial cells (mTEC) transcriptionally express PTA in the thymus [9,10]. More recently, 

several groups including our own, have shown that multiple subpopulations in LN also 

transcriptionally express PTA. PTA are expressed by extrathymic Aire expressing cells 

(eTAC) and several LN stromal cell (LNSC) subsets including LEC, blood endothelial cells 

(BEC), and fibroblastic reticular cells (FRC) [11–13]. Interestingly, each of these 

subpopulations presents distinct PTA, although the overall size and overlap of their PTA 

repertoires has not been determined. Nonetheless, this mechanism broadens the presentation 

of PTA to non-draining LN, and enables efficient system-wide peripheral tolerance 

induction.

The transcriptional regulation of PTA expression is best understood in mTEC in the thymus, 

where it is controlled by the autoimmune regulatory element (Aire) [10]. Using single cell 

PCR assays, it was demonstrated that Aire stochastically induces expression of a PTA in 1–

3% of total mTEC [14,15]. Limiting the number of PTA expressed in each cell is likely 

advantageous to ensure that each antigen is adequately represented on the limited number of 

MHC molecules on the cell surface, and avoid possible deleterious consequences for mTEC 

functionality from expressing a large number of functionally specialized proteins. Some 

PTA transcripts have different start sites in mTEC compared to peripheral tissues, and Aire-

regulated genes within a cell are clustered based on chromosomal position rather than by 

cell of origin [3,14,16]. These results suggest than Aire operates by opening up a region of 

the chromosome to additional transcriptional regulators, rather than inducing mTEC to 

differentiate towards and express PTA from an alternative cell lineage. Interestingly, while 

Aire also regulates PTA expression in eTAC, the PTA repertoires of mTEC and eTAC are 

distinct [11], suggesting that these additional transcriptional regulators may differ between 

the two cell types.

The transcriptional regulation of PTA in LNSC is not well understood. Aire is not expressed 

in LEC, FRC, or BEC [12,13], and expression of PTA in these subsets does not change in 

Aire−/− mice [12]. Aire is a member of the SAND family of transcription factors [17], and 

Yip et al. [18] demonstrated that Deaf1, another SAND family member, controls the 

expression of 600 genes in LNSC of pancreatic LN. Most of these genes were distinct from 
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genes regulated by Aire in eTAC. Deaf-1 regulated genes included pancreatic polypeptide 

(Ppy) and insulin 2 (Ins2), which are PTA normally expressed in pancreatic islets. Ppy and 

Ins2 are primarily expressed in LEC and FRC, respectively, and at much lower levels in 

CD31negpodoplaninneg cells [12,19]. However, Deaf1 is expressed in all LNSC subsets [13] 

suggesting that additional transcriptional regulators that differ among these subpopulations 

control the specificity of PTA expression. Deaf1 also controls PTA translation by regulating 

the transcription of the eukaryotic translation initiation factor Eif4g3 [19]. Further work is 

needed to determine the extent to which Deaf1 controls expression of PTA in non-pancreatic 

LN, and whether other members of the SAND family also play a role in controlling PTA 

expression in LEC and other LNSC. The overall PTA repertoire of LEC and other LNSC 

remains to be determined, as does the pattern of PTA expression in individual LECs. While 

PTA expression in mTEC provides a logical model for how PTA expression in LEC may 

operate, the master transcriptional regulator is different and future studies will illuminate 

what other similarities and differences exist.

Cross-presentation of Soluble and Tumor Derived Antigens Acquired by 

LEC

In addition to transcriptionally expressed PTA, LEC can also acquire and cross-present 

exogenously derived antigens. Lund et al. [20] demonstrated that LEC in tumor-draining LN 

can acquire antigens derived from VEGF-C overexpressing tumors, and present them via 

their MHC I molecules. Further work from the same group demonstrated that LEC engulf 

intradermally injected OVA, and present OVA antigen to T-cells in vitro [21]. Previous 

work has shown that soluble antigens travel to the LN through the lymphatics. While large 

antigens are taken up by macrophages in the subcapsular and medullary sinuses, antigens 

smaller than 70 kDa travel through FRC-lined conduits into the paracortex and B cell 

follicles where they are engulfed by DC and B cells [22–24]. LEC were found to engulf 

intradermally injected OVA as efficiently as DC [21], although LEC comprise only 0.5% of 

the total OVA+ cells in LN. The presentation of both tumor-derived and soluble antigens by 

LEC led to dysfunctional T-cell activation and increased apoptosis in vitro [20,21]. 

However, the in vivo consequences were not examined. In addition, while the induction of 

dysfunctional T-cells in the context of tumor outgrowth is intriguing and may illuminate 

another aspect of the immunosuppressive microenvironment in and around tumors, the 

results with OVA suggest that LEC might also limit responses to foreign antigens. Further 

work is needed to fully understand the impact of cross-presentation of acquired antigen by 

LEC on both immunity and tolerance.

Mechanisms of T-cell Tolerance Induction by LEC

The demonstration that LEC express PTA and function as tolerance-inducing APC in LN 

was the culmination of our work over several years to understand tolerance to PTA 

expressed in both melanocytes and melanomas, termed melanocyte differentiation antigens, 

which are targets in both autoimmune vitiligo and melanoma immunotherapy. Using a 

model system based on recognition of one such melanocyte differentiation antigen, 

tyrosinase, we showed that tyrosinase-specific CD8 T-cells do not undergo central tolerance 

in the thymus [25]. In addition, under steady state conditions, DC in LN do not present 
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tyrosinase. Instead, tolerance to tyrosinase is strictly due to direct expression of tyrosinase 

mRNA and display of tyrosinase antigen by MHC I molecules on LEC [12]. This antigen 

presentation leads to activation and initial proliferation of tyrosinase-specific CD8 T-cells, 

but these cells undergo apoptosis and deletion rather than accumulating [12,25,26].

While this process of abortive proliferation has been shown in many models of CD8 

deletional tolerance, the mechanisms involved in driving this outcome have been somewhat 

unclear. Some previous work had established that peripheral tolerance could be induced by 

antigen engagement in the absence of costimulation [27–31], while other studies pointed to 

the engagement of inhibitory molecules [32–36]. While investigating the mechanisms 

involved in LEC-induced deletion, we found that both of these processes were involved and 

interdependent [26]. LEC do not express any of the costimulatory molecules that normally 

drive immunogenic accumulation of activated T-cells, such as CD80, CD86, OX40L, 

4-1BBL, or CD70. However, they express multiple ligands that can activate inhibitory 

pathways, and express a particularly high level of PD-L1. Indeed, deletion of tyrosinase-

specific CD8 T-cells is strictly dependent on engagement of the PD-1/PD-L1 pathway [26]. 

However, it is antigen activation in the absence of costimulation that leads to rapid, high-

level upregulation of PD-1 on tyrosinase-specific CD8 T-cells, which is required for deletion 

to occur. This can be overcome by administration of exogenous anti-4-1BB costimulation. 

Importantly, tyrosinase-specific CD8 T-cells that are rescued from LEC-mediated deletion 

gain effector function and induce autoimmune vitiligo. Given that LEC express multiple 

PTA, these results suggest that impairment of LEC-induced tolerance could have a role in 

the induction of numerous autoimmune disorders. While there is considerable interest in 

PD-1/PD-L1 as a mechanism to suppress pathology in peripheral tissue and in the genesis of 

clonal exhaustion in tumors [37–39], these results establish a central role of this pathway in 

peripheral tolerance induction.

LEC that have acquired soluble OVA cross-present it to CD8 T cells in a TAP1-dependent 

manner, and in vitro, this leads to decreased OT-I IFNγ and IL-2 production and increased 

expression of Annexin V, PD-1, CD80, CTLA-4 [21]. Cross-presentation of tumor antigens 

by LEC from the tumor draining LN also leads to increased Annexin V staining on co-

cultured tumor-specific CD8 T-cells ex vivo [20]. This demonstrates that cross-presentation 

of soluble antigens by LEC in vitro leads to dysfunctional T-cell activation, similar to the 

phenotype seen when LEC directly present the PTA tyrosinase in vivo [26]. This suggests 

that under steady-state conditions, the constellation of inhibitory molecules expressed by 

LEC combined with their lack of costimulatory molecules predisposes LEC to induce 

dysfunctional T-cell activation, regardless of the source of the antigen. This raises important 

questions about whether the tolerance-inducing state of LEC can be modulated, such as 

during infection when the LEC may acquire foreign antigens draining through the 

lymphatics.

T-cell tolerance can take many forms, including deletion, anergy, or Treg induction. The 

form of tolerance induced has been shown to depend on several factors, including TCR 

avidity, availability of costimulatory or inhibitory pathways, and the cytokine environment 

[40–45]. mTEC, DC, and eTAC have all been shown to induce multiple forms of tolerance 

[2,11,46,47], while to date LEC have only been shown to induce deletion in vivo [26]. A 
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question of some interest is whether LEC can also induce other forms of tolerance, based on 

the molecules they express or the particular microenvironmental niche in the LN that they 

occupy.

LEC Interactions with DC Leading to CD4 T-cell Tolerance Induction

LEC express intermediate levels of MHC II molecules, suggesting they might also play a 

role in CD4 T-cell tolerance. MHC II expression is under the control of the class II 

transactivator (CIITA). In mice, CIITA is regulated by three different promoters (pI, pIII, 

and pIV) which are differentially expressed in different cell types [48]. It was recently 

demonstrated that LEC only express pIV mRNA [49], suggesting that endogenous 

expression of MHC II on LEC is controlled by CIITA driven off of this promoter. 

Surprisingly, LEC from pIV−/− mice still express approximately half the level of MHC II as 

LEC from wild-type mice, suggesting that some of the MHC II on the cell surface is not 

endogenously synthesized by LEC. Instead, these investigators found that LEC acquire 

MHC II from DC in vitro and in vivo. This is highly selective, as MHC II is not acquired 

from macrophages or B cells, and LEC do not acquire costimulatory molecules from DC. 

The mechanism of transfer was found to involve cell contact and/or exosomes. Interestingly, 

CD4 T-cells specific for antigens displayed by the MHC II molecules on these LEC did not 

proliferate in vitro, but showed an increase in Annexin V staining, suggesting an unusual 

form of deletional tolerance. Furthermore, when these T-cells were subsequently 

restimulated with αCD3/αCD28 for an additional 3 days, they showed a reduced 

proliferative response. However, it is not clear whether the decrease in proliferation is due to 

the increased level of T-cell death observed in the first 3 days of co-culture, or if LEC 

additionally suppress T-cell proliferation through an antigen-dependent mechanism. The 

induction of tolerance induced by peptide:MHC II complexes acquired by LEC remains to 

be established in vivo, as does the importance of this modality relative to presentation of 

these same complexes by DC in the same LN.

While some of the MHC II expressed on LEC is acquired from DC [49], LEC also express 

endogenous MHC II [49, unpublished data]. To test whether LEC directly present PTA on 

their own MHC II molecules and induce CD4 T-cell tolerance, we developed model systems 

in which the model antigens β-galactosidase (β-gal) and influenza hemagglutinin (HA) were 

conditionally expressed under the control of the Prox-1 [50] and Lyve-1 [51] promoters 

(unpublished). An advantage of these models is that both CD8 and CD4 T-cell receptor 

transgenic mice are available, enabling us to comparatively evaluate the ability of LEC to 

induce tolerance to epitopes from the same protein presented by either MHC I or MHC II 

molecules. We found that although LEC directly present β-gal and HA epitopes on MHC I 

to CD8 T-cells, they do not present either antigen on MHC II to CD4 T-cells in vivo or in 

vitro. Our data suggest that the lack of direct presentation of MHC II epitopes by LEC is due 

to a defect in the MHC II processing and presentation pathway. However, we also found that 

these antigens were transferred to DC in vivo, and subsequent presentation by DC resulted in 

the induction of CD4 T-cell anergy. Interestingly, this division of labor between LEC and 

DC is analogous to what occurs in the thymus, where some PTA expressed in mTEC are not 

directly presented on MHC II, but are instead transferred to DC for the induction of 

tolerance [52,53]. However, other PTA are directly presented by mTEC on MHC II [52–55]. 
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It is not understood what determines whether or not mTEC will directly present a particular 

antigen on MHC II. However, mTEC constitutively undergo high levels of autophagy 

[56,57], suggesting that the efficiency with which antigen can access the autophagy pathway 

may be a contributing factor [58]. The level of autophagy occurring in LEC at the steady-

state has not been examined. Given the ability of LEC to acquire and present tumor-derived 

and soluble antigens on MHC I [20,21], an important direction for future work is to 

determine whether these antigens can also be directly loaded onto MHC II in LEC. 

Regardless, the work performed to date indicates multiple mechanisms by which LECs and 

DC can cooperate to induce CD4 T-cell tolerance in LN (Figure 1). While DC share pre-

formed peptide:MHC II complexes with LEC, the large variety of PTA transcribed by LEC 

serves as a reservoir and repertoire of antigens that may be acquired by DC for tolerance 

induction.

LEC Localized in Peripheral Tissue and LN Subregions Differ in Their 

Ability to Induce Tolerance

LEC form lymphatic vessels in peripheral tissues in addition to lymphatic sinuses in the LN, 

raising the question of whether tissue lymphatics share the tolerogenic properties of LEC in 

the LN (LN-LEC). We found that LEC that form vessels in the diaphragm (D-LEC) and 

colon (C-LEC) express substantially less tyrosinase mRNA than LN-LEC, and do not induce 

proliferation of tyrosinase-specific CD8 T-cells in vitro [59]. Additionally, 6 out of 7 other 

PTA tested were more highly expressed in LN-LEC compared to D-LEC or C-LEC. 

Furthermore, D-LEC and CLEC express substantially less PD-L1 than LN-LEC. 

Collectively, these results suggest that tolerance induction is a specialized property of LN-

LEC not shared by those in tissue lymphatics.

Within the LN, LEC are found in the subcapsular sinus, the cortical sinus, and the medullary 

sinus. The afferent lymphatics drain into the subcapsular sinus, which forms a thin structure 

at the outer edge of the LN [60]. DC enter the LN parenchyma through the floor of the 

subcapsular sinus, while T-cells in the afferent lymph pass through the subcapsular sinus to 

the medullary sinus, where they enter the LN [61]. To exit the LN, lymphocytes first enter 

blunt-ended cortical sinuses, which are interspersed throughout the T and B cell zone [62]. 

Lymphatic fluid in the cortical sinuses flows towards the medullary sinus, and lymphocytes 

ultimately leave the LN through the medullary sinus in the efferent lymph [62–66]. We 

showed that LEC in these different sinuses can be distinguished by differential expression of 

PD-L1, ICAM-1, MAdCAM-1, and LTβR: subcapsular sinus LEC are PD-

L1hiICAM-1hiMAdCAM-1+LTβRlo, medullary sinus LEC are PD-

L1hiICAM-1hiMAdCAM-1negLTβR+, and cortical sinus LEC are PD-

L1intICAM-1intMAdCAM-1negLTβR+ [59]. In addition to expressing high levels of PD-L1, 

medullary LEC are the only subset that expressed a sufficient level of tyrosinase to activate 

tyrosinase-specific CD8 T-cells. Since the medullary sinus is an exit from the LN, this 

suggests a model in which LEC function as gatekeepers, engaging and inducing deletion of 

activated self-reactive CD8 T-cells as they attempt to leave. This model is also intriguing 

because LEC express the highest level of PD-L1 of any LNSC. A question that remains 

unaddressed is whether LEC may exert a more generalized quality control role, inducing the 
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deletion of suboptimally activated T-cells, regardless of whether or not the LEC display the 

cognate antigen for T-cell recognition.

The specific microenvironmental influences that control the phenotypic distinctions between 

LEC in the periphery and in different LN sinuses remain to be fully understood. Within the 

LN, we have shown that high level expression of PD-L1 on medullary LEC and 

MAdCAM-1 on subcapsular sinus LEC is dependent on LTβR signaling and B-cells, but not 

DC, and that these two signals are independent of one another [59]. Interestingly, the 

presence of T-cells showed the opposite effect. Tyrosinase expression was not affected by 

any of these manipulations. We also found that, while a medullary region is present by 

postnatal day 7, LEC from these neonatal mice do not present tyrosinase and the expression 

of PD-L1 on LEC is substantially lower than that in adult mice. Combined, these results 

indicate that the tolerogenic phenotype of LN-LEC develops after the neonatal period in a 

way that is influenced by, but not entirely dependent on, the effects of lymphocytes and 

LTβR signaling. Previous work has shown that thymic tolerance is most critical during the 

perinatal period [67] and that naïve neonatal T-cells directly access peripheral tissues and 

are tolerized there, instead of in draining LN [68]. This suggests that the relative importance 

of each tolerogenic site and the associated tolerogenic APC shifts from neonatal to adult 

animals [69]: during the initial waves of neonatal T-cell development the majority of 

tolerance occurs in the thymus, and T-cells specific for PTA not expressed in the thymus can 

be tolerized directly in the peripheral tissues. Later in life, as thymic output decreases and 

the peripheral tissues become inaccessible to naïve T-cells, peripheral tolerance by LNSC, 

eTAC, and DC in LN becomes relatively more important to ensure continual tolerance of 

circulating T-cells.

Homeostatic Functions of LEC in Immunity

In addition to tolerizing self-reactive T-cells, LEC also influence several other aspects of the 

immune response. LN and tissue LEC are important sources of IL-7 [70–73], which is an 

homeostatic survival cytokine for naïve and memory T-cells. IL-7 secretion by LEC is 

enhanced during lymphopenia, LN remodeling, and revascularization after transplant, and 

this assists in re-establishing normal LN architecture and cellularity after an infection or 

other perturbation [71,72]. IL-7 promotes survival and differentiation of memory CD8 T-

cells [74,75], suggesting that increased IL-7 production during LN remodeling in the 

resolution phase of an infection could potentially play a role in enhancing T-cell memory. 

Additionally, both LN-based and tissue-based LECs express IL-7R and respond to IL-7 in 

an autocrine fashion, which is required for normal lymphangiogenesis and efficient 

lymphatic drainage [73]. IL-7R−/− animals have thin and highly branched lymph vessels, 

suggesting IL-7 might stabilize larger lymphatic vessels. IL-7 also induces VEGF-D 

secretion in cancer cells, suggesting IL-7 may enhance canonical lymphangiogenesis 

through the VEGF pathway [76,77]. Through these mechanisms, LEC help control the size 

of the T-cell compartment.

LEC also control T-cell egress from the LN. Lymphocytes express a receptor for 

sphingosine-1-phosphate (S1P), a lipid that is present at a relatively high concentration in 

plasma, but is generally at a low concentration in LN. However, LEC synthesize S1P, 
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providing a high local concentration in their vicinity [51]. Expression of the S1P receptor, 

S1PR1, on lymphocytes is endocytically downregulated by prolonged exposure to S1P in 

plasma and by the activation marker CD69 [78,79], but is re-expressed upon entry into LN. 

Signaling through S1PR1 as lymphocytes encounter LEC allows them to overcome CCR7-

mediated retention signals and leave the LN [63,65]. S1P is upregulated when tenascin C, a 

marker of inflammation induced by a variety of pathogen or damage associated molecular 

patterns, binds to α9-integrin on LN cortical and medullary sinus LEC, and blockade of α9-

integrin inhibits lymphocyte egress [80]. Reciprocal regulation of CD69 and S1P1 prevents 

activated T-cells from leaving the LN during an immune response, and may also serve a 

similar function during self-tolerance. Tyrosinase specific T-cells tolerized by LEC undergo 

several rounds of proliferation before expressing the high-level of PD-1 that mediates 

deletion. Therefore, retention in the LN may encourage the Tcells to remain in proximity 

with PD-L1+ LEC. Alternatively, self-reactive T-cells may leave their initial activating LN, 

and encounter PD-L1 on LEC in a downstream LN to complete the tolerogenic process. 

Regardless, production of IL-7 and S1P are two additional ways that LEC regulate the 

immune response, by controlling the homeostasis of naïve and memory lymphocytes as well 

as their ability to exit the LN.

LEC Restrain T-cell Proliferation in Response to Inflammation

Inflammation has a myriad of effects on lymphatics and the immune response. TLR ligation 

induces macrophages to secrete VEGF-C/D, which binds to VEGFR-3, triggering 

proliferation of tissue LEC and lymphangiogenesis [81,82]. IFNγ, TNFα, and TLR ligands 

increase expression of chemokines and adhesion molecules on LEC, thereby enhancing cell 

recruitment and migration towards the LN [83,84]. These processes have been extensively 

reviewed elsewhere [84–87]. Inflammation has the potential to adversely affect tolerance, as 

inflammatory cytokines such as IFNγ and TNFα can mature DC, leading to the upregulation 

of costimulatory molecules and the potential for immunogenic presentation of self-antigens 

acquired in the periphery. LEC help dampen cytokine-induced DC maturation, as TNFα 

stimulated LEC decrease the expression of the costimulatory molecule CD86 on immature 

or TNFα stimulated DC and decrease the ability of the DC to stimulate T-cell proliferation 

[88]. Although the exact mechanism is uncertain, it requires adhesion of the DC to the LEC 

through ICAM-1/Mac-1 interactions. TNFα stimulated LEC do not affect DC matured with 

LPS, suggesting that this mechanism only occurs in the absence of pathogen associated 

molecular patterns, thus potentially contributing to the resolution of inflammation after 

clearance of infection. LN LEC and FRC also respond to the pro-inflammatory cytokines 

IFNγ and TNFα by secreting nitric oxide (NO), which limits the proliferation but not 

effector activity of already activated T-cells [89,90]. Additionally, IFNγ-stimulated cultured 

human LN-LEC produce indoleamine 2,3 dioxygenase and suppress CD4 T-cell 

proliferation [91]. Both of these may curtail excessive T-cell expansion to prevent disruption 

of LN architecture. Interestingly, NO production by FRC also reduced proliferation of self-

reactive OT-I CD8 T-cells in vivo [90]. Although the effects on deletion were not 

investigated, this mechanism may also ensure that the proliferating self-reactive T-cells do 

not expand too rapidly and potentially overwhelm the tolerogenic capacity of the LNSC. 

However, self-reactive CD8 T-cells generally do not produce IFNγ or TNFα after 
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tolerogenic activation [92] (unpublished data), so the relevance of this mechanism may also 

vary depending on the characteristics and activation state of the T-cells.

TLR ligation also alters the ability of LEC and FRC to induce tolerance. Primary murine 

LEC and FRC express TLR3, and treatment with the TLR3 ligand Poly(I:C) upregulates 

PD-L1 on LEC and FRC but does not change expression of CD80 or CD86 [13]. Poly(I:C) 

downregulates the PTA OVA in FRC of iFABP-OVA mice, leading to reduced OVA 

specific CD8 T-cell proliferation in vitro; however, the functional consequences in vivo were 

not evaluated. Interestingly, other PTA were either down or up-regulated by TLR3 signaling 

in both LEC and FRC. PTA downregulation may be an attempt to maintain the ignorance of 

self-reactive T-cells until after inflammatory conditions have passed, while the upregulation 

of PD-L1 may help enforce tolerance of any self-reactive T-cells that get activated. The 

significance of PTA upregulation remains unclear. Additionally, although Poly(I:C) does not 

upregulate costimulatory molecules on LEC, future work is needed to determine if other 

inflammatory circumstances can lead to immunogenic activation of T-cells recognizing PTA 

or endocytosed antigens presented by LEC. Combined, these studies suggest that LN-LEC 

respond to inflammation by dampening T-cell proliferation, which likely helps ensure 

continued T-cell tolerance and protects LNSC from damage during an overly vigorous 

immune response.

LEC-induced tolerance: a new target for cancer immunotherapy?

Studies performed to date suggest that LEC can enhance tumor growth by either increasing 

tumor metastasis to the LN through the formation of tumor draining lymphatics [93], or by 

inducing tolerance of tumor-reactive T-cells [12,20,26,94,95]. This suggests that inhibiting 

LEC-induced tolerance may provide a method of boosting anti-tumor immunotherapy. 

Indeed, while tyrosinase is overexpressed in melanoma and is a target of melanoma 

immunotherapy, LEC-mediated self-tolerance to tyrosinase limits active immunotherapy 

[95–97]. PD-1 inhibitory antibodies represent one approach to mitigating these effects, and 

incidentally already show great promise as a monotherapy independently of cancer vaccines 

in clinical trials [39,98]. These antibodies are currently being tested for their ability to 

revitalize exhausted effector T-cells and prevent tumor immune evasion [98]. However, our 

work has established that PD-1 blockade also inhibits LEC-induced tolerance, and this 

suggests that anti-PD-1 blockade may particularly complement efforts to specifically target 

tyrosinase using cancer vaccines or T-cell adoptive therapy. This combination therapy may 

provide a synergistic benefit by inhibiting tolerance and simultaneously preventing T-cell 

exhaustion. Increasing our understanding of the role of LEC in T-cell tolerance may provide 

new opportunities to enhance cancer immunotherapies.

Technical Challenges and Opportunities in LEC Research

Studying the role of LEC in tolerance and immunity presents a number of challenges due to 

the rarity and fragility of this cell type. LEC represent about 0.2% of the cells in the LN, and 

on average less than 50,000 LEC are isolated from the major LN per mouse [13,59]. The 

small numbers of LECs makes many biochemical techniques impractical on ex vivo samples. 

As a result, several groups have optimized protocols to expand LNSC and LEC in culture 
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[99,100]. However, the phenotype of LEC changes rapidly in culture, as the surrounding 

microenvironment contributes to the maintenance of LEC differentiation in vivo [59,101–

103]. Notably, we have found that mRNA levels of the PTA tyrosinase and Mart1 diminish 

more than 50-fold, and expression of PD-L1 and HVEM is lost after 5 days in culture 

(unpublished). Additionally, the geography of the LN and the localization of LEC at the LN 

entrances and exits may affect how LEC interact with other cells, and the physiological roles 

of LEC in the LN. This information is lost in vitro. As a result, it is important to confirm the 

physiological relevance of all in vitro observations with an in vivo system. Fortunately, a 

number of mouse models have recently become available to facilitate in vivo research. LEC 

are a radioresistant cell, so bone marrow chimeras can be used to localize genetic knockouts 

to either the hematopoietic or radioresistant compartments. Several groups have also 

developed mice expressing Cre-recombinase in LEC, under either the control of the Lyve-1 

[51], Prox1 [50,104], or podoplanin [105] promoters. These mice can be used to specifically 

delete floxed genes in LEC. Additionally, reporter mice expressing tdTomato [106], 

mOrange2 [107], or GFP [108] under the control of the Prox1 promoter allows for intravital 

two-photon imaging and lymphatic tracing. These tools will provide new opportunities to 

identify, track, and manipulate LEC in vivo.
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Figure 1. 
Roles of LEC in CD4 and CD8 T-cell tolerance. LEC transcriptionally express a variety of 

PTA, which are directly presented to CD8 T-cells, leading to CD8 T-cell proliferation and 

death through the combined effects of PD-1/PD-L1 signaling and a lack of costimulation. 

LEC do not directly present PTA on MHC II, but instead transfer the PTA to DC, which 

induce CD4 T-cell anergy. LEC can acquire peptide/MHC II complexes generated by DC, 

which are then presented by the LEC, leading to CD4 T-cell apoptosis. Finally, LEC can 

cross-present soluble antigens from the lymph, leading to dysfunctional CD8 activation and 

increased apoptosis. It is unknown whether soluble antigens can be presented by LEC on 

MHC II to CD4 T-cells.
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