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Corticotropin-releasing hormone (CRH) is a critical neuropeptide modulating the
mammalian stress response. It is involved in many functional activities within various
brain regions, among which there is a subset of CRH neurons occupying a considerable
proportion of the cortical GABAergic interneurons. Here, we utilized rabies virus-based
monosynaptic retrograde tracing system to map the whole-brain afferent presynaptic
partners of the CRH neurons in the anterior cingulate cortex (ACC). We find that the ACC
CRH neurons integrate information from the cortex, thalamus, hippocampal formation,
amygdala, and also several other midbrain and hindbrain nuclei. Furthermore, our
results reveal that ACC CRH neurons receive direct inputs from two neuromodulatory
systems, the basal forebrain cholinergic neurons and raphe serotoninergic neurons.
These findings together expand our knowledge about the connectivity of the cortical
GABAergic neurons and also provide a basis for further investigation of the circuit
function of cortical CRH neurons.

Keywords: corticotropin-releasing hormone, the anterior cingulate cortex, whole-brain mapping, monosynaptic
inputs, rabies virus

INTRODUCTION

Corticotropin-releasing hormone (CRH) is an important widely expressed neuropeptide with
neuroendocrine and neurotransmitter properties, which is essential for brain function (Vale et al.,
1981; Young, 2007). Since its initial identification and characterization, CRH has been indicated
to play an important role in coordinating endocrine, autonomic, and behavioral responses to
stress (Bale and Vale, 2004; Henckens et al., 2016). Previous studies have shown that a group
of parvocellular neuroendocrine cells (PNCs) of the hypothalamic–pituitary–adrenal (HPA) axis
the HPA axis, through somatic cells production and released into capillaries entering pituitary
portal circulation, directly control pituitary corticotroph function, and downstream glucocorticoid
secretion by the adrenal glands, of which most widely studied is CRH (Wamsteeker Cusulin et al.,
2013). CRH has a major role in the regulation of the HPA axis, and it is the chief organizer
of the body’s response to stress (Wang et al., 2011, 2013; Yang et al., 2015; Fang et al., 2016;
Peng et al., 2017; Zhou and Fang, 2018). The anatomical distribution of CRH in the brain that
this peptide is not only a key regulator of neuroendocrine stress, but also regulates neuronal
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activity in a neuromodulated manner (Dedic et al., 2018a).
An increase of CRH expression is associated with several
neurological disorders, such as Alzheimer’s disease (AD), major
depression and anxiety disorders (Raadsheer et al., 1995).
According to previous studies, CRH shows the most widespread
expression in brain, but strongly expressed in several subcortical
nuclei, such as paraventricular hypothalamic nucleus (PVN),
amygdala, and the bed nucleus of the stria terminalis (BNST)
(Chen et al., 2015; Dedic et al., 2018b; Deussing and Chen,
2018). Also, there is a subset of CRH neurons occupying a
considerable proportion of the cortical GABAergic interneurons
(Kubota et al., 2011). GABAergic interneurons are crucial in
regulating the balance, flexibility, and functional architecture
of cortical circuits (Markram et al., 2004; Klausberger and
Somogyi, 2008). Their various intrinsic, synaptic, and dynamic
properties allow interneurons to generate a rich range of
inhibitory outputs (Jonas et al., 2004). Moreover, their different
connectivity patterns confirm differential recruitment through
appropriate inputs from specific brain regions (Somogyi et al.,
1998; Buzsaki et al., 2004). They are of very importance in distinct
forms of network oscillations that provide spatial-temporal
frameworks to dynamically organize functional neural ensembles
as well (Bartos et al., 2007; Klausberger and Somogyi, 2008;
Taniguchi et al., 2011). The anterior cingulate cortex (ACC)
is especially crucial for the performance of executive functions
and emotional processing (Gasquoine, 2013; Kim et al., 2014;
Meechan et al., 2015). There is evidence from electrophysiology
and lesion studies indicating that the ACC plays an essential
role in emotional self-control as well as focused problem-solving,
error recognition, and adaptive response to changing conditions,
which are central to intelligent behavior (Allman et al., 2001).
It consists of several subdivisions, each with distinct functions
that are provided by different input and output projections (Vogt
and Paxinos, 2014). However, there is no comprehensive and
systemic investigation of CRH neurons in the ACC. Therefore,
characterizing the whole brain afferent pathways of CRH neurons
in the ACC can expand the field of knowledge about molecular
functions and neural circuit mechanism of CRH neurons.

The recent developed viral tracing system with modified rabies
virus, which can map the monosynaptic afferents to a genetically
defined neuronal subtype, has been applied to identify the whole-
brain presynaptic partners of a specific type of neurons within a
complex neural network (Wickersham et al., 2007; Ogawa et al.,
2014; Grealish et al., 2015; Hu et al., 2016). Here, we applied
such viral tracing system to illustrate the whole-brain afferent
inputs of the ACC CRH neurons and investigated what kind
of information it integrated from several important upstream
brain regions. We identified the presynaptic partners of ACC
CRH neurons from neocortex and thalamus. Also, we found
that hippocampal information, amygdala and olfactory areas sent
direct projections to the ACC CRH neurons. Interestingly, two
neuromodulatory systems, the basal forebrain cholinergic system
and raphe serotoninergic system, provide direct innervation
onto the ACC CRH neurons. Therefore, our results should
be valuable to guide further investigations of the functional
roles of the ACC CRH neurons, such as the normal and
neurological disease states.

MATERIALS AND METHODS

Ethical Approval
This study was carried out in accordance with the
recommendations of the guidelines issued by the Institutional
Animal Care and Use Committees (IACUC) at Wuhan Institute
of Physics and Mathematics, the Chinese Academy of Sciences,
China. The protocol was approved by IACUC at ShanghaiTech
University. Every effort was made to ensure the mice used were
treated humanely and any discomfort was kept to a minimum.

Animals
All mice were housed under a 12/12 day/night cycle at the
temperature of 22–25◦C, with ad libitum access to rodent
food and water freely available in environmentally controlled
conditions. The mice used in the study were adult (8–15 weeks)
CRH-ires-Cre knock-in mice (Stock No. 012704) (Jackson
Laboratory, Bar Harbor, ME) and C57BL/6 mice (N/A) (Shanghai
Model Organisms).

Viral Microinjection and Stereotactic
Surgery
All the viruses used in the trans-synaptic retrograde tracing
experiments included AAV-CAG-DIO-TVA-GFP (AAV2/9,
1.7 × 1013 genomic copies per ml), AAV-CAG-DIO-RG
(AAV2/9, 6.8 × 1012 genomic copies per ml), and EnvA-
pseudotyped, glycoprotein (RG)-deleted and DsRed-expressing
rabies virus (RV-EvnA-DsRed, RV) (5.0 × 108 genomic
copies per ml), which were packaged and provided by F.
Xu (Wuhan, China). Surgical procedures generally followed
previous studies (Liu et al., 2014; Hu et al., 2017). In brief,
mice were anesthetized under isoflurane, kept warm (37◦C)
with an electric heating pad (BrainKing Biotech, Beijing),
and placed in a stereotaxic apparatus to adjust the skulls of
experimental mice in parallel to the reference panel. Using a
microsyringe pump (Nanoject III #3-000-207, DRUMMOND),
150 nl∼300 nl of AAV-CAG-DIO-TVA-GFP and AAV-CAG-
DIO-RG were stereotaxically injected (20 nl/min) into the
bilateral ACC (+1.10 mm AP, ± 0.20 mm ML, −1.30 mm
DV, relative to Bregma) of CRH-ires-Cre mice and C57BL/6
mice, an additional 5 min being allowed for viral particles to
diffuse away from the injection site before the pump was slowly
withdrawn. After 2 weeks of helper viruses expression, 300 nl
of RV-EvnA-DsRed was injected into the same location of the
previous injection of CRH-ires-Cre mice. C57BL/6 mice were
directly perfused.

Histology and Image Analysis
One week after injection of the rabies virus, CRH-ires-Cre
mice were deeply anesthetized by intraperitoneal injection of an
overdose of pentobarbital and then intracardially perfused with
0.9% saline solution followed by 4% paraformaldehyde (PFA) in
PBS. After 2 h of post-fixation in 4% PFA, brain samples were
transferred to 30% sucrose (m/v) in 1 × PBS over one night.
Then brains prepared with the optimum cutting temperature
compound (O.C.T Compound) were sectioned coronally in
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FIGURE 1 | Monosynaptic inputs to the ACC CRH neurons using the rabies virus and CRH-ires-Cre knock-in mice. (A) The AAV helper virus and EnvA pseudotyped
glycoprotein (G)-deleted rabies virus. (B) Combination of the two virus system and CRH-ires-Cre mice allows for brain-wide labeling of monosynaptic inputs (red) to
CRH neurons in the ACC. (C) Timeline of virus injection for retrograde trans-synaptic tracing and the schematic of the anatomical localization of the ACC. (D–H)
Representative confocal images of the injection site. As the starter cells express both GFP and DsRed fluorescent proteins, they are shown in yellow in the image.
Panel (D) shows the diagram of the ACC section. Red box indicates the region shown in (E). Panels (F–H) show enlarged views of the white-boxed region in (E).
Scale bars: 100 µm in (E) and 50 µm in (F–H).

50 µm thickness on a freezing microtome (Leica CM1900). One
out of every three sections was counterstained with nucleus
dye DAPI (Molecular Probes, Eugene, OR, United States) and
these sections were imaged for all subsequent analyses with an
Olympus VS120 microscope. For the quantifications of starter
cells and afferent input cells, we divided the boundaries of
the subregions, according to the Allen Institute’s reference atlas
(Lein et al., 2007). Further data analyses were carried out
using Olympus analysis software, ImageJ software and GraphPad
Prism7. All values were presented as the Mean ± SEM. To
characterize the rabies-labeled cells in different regions, some
of the remaining sections were selected for immunostained
with various antibodies, including the primary goat anti-
choline acetyltransferase (ChAT) antibody (1:200, Abcam,

United Kingdom), primary mouse anti-tyrosine hydroxylase
(TH) antibody (1:1000, Abcam, United Kingdom), primary
rabbit anti-tryptophan hydroxylase 2 (Tph2) antibody (1:1000,
Abcam, United Kingdom), Alexa Fluor 488 donkey anti-rabbit
second antibody (1:1000, Abcam, United Kingdom), Alexa
Fluor 488 goat anti-mouse second antibody (1:1000, Abcam,
United Kingdom) and Alexa Fluor 488 donkey anti-goat second
antibody (1:1000, Abcam, United Kingdom). Briefly, the sections
were first blocked with 3% BSA in PBS-0.3% Triton X-100 for
30 min and incubated with the primary antibodies for 48 h at
4◦C. After washing, the sections were incubated with second
antibodies for 2 h at room temperature. Brain sections were
imaged with 20× and 60× objectives on a confocal microscope
(Nikon Ti-E+A1 R SI).
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FIGURE 2 | Whole-brain distributions of monosynaptic inputs to the ACC CRH neurons. Representative coronal sections showing labeling of monosynaptic inputs to
the ACC CRH neurons. For some sections, only the unilateral side is shown. Scale bar, 1 mm. Bottom-left: illustration of the anatomical localization of the sections
shown above.
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RESULTS

Strategies for Tracing Monosynaptic
Inputs to the ACC CRH Neurons
CRH-ires-Cre mice, a genetically engineered mouse line, were
used to target CRH neurons specifically. We utilized rabies-based
viral strategy to map the whole-brain monosynaptic inputs to the
ACC CRH neurons (Wall et al., 2010; Figure 1A). The rabies
virus was pseudotyped with an avian virus envelope protein
(EnvA), so they could not infect mammalian cells without a
cognate receptor (e.g., TVA) (Watabe-Uchida et al., 2012). In
addition, RG gene, which was required for transsynaptic spread,
had been genetically replaced by fluorescent protein DsRed.

In Day 1, the mixture of two helper viruses (equal
amount of AAV2/9-DIO-TVA-GFP and AAV2/9-DIO-RG) was
stereotaxically micro-injected into the bilateral ACC of CRH-
ires-Cre mice (Figures 1B,C). The helper viruses were Cre
dependent, so TVA-GFP and RG proteins were only expressed
in CRH neurons where the Cre recombinase existed. In order
to verify the specificity of the helper virus, we also injected the
same amount of virus into the ACC of C57BL/6 mice. After
2 weeks, C57BL/6 mice were perfused and the brains were
sectioned at 50 µm. As for CRH-ires-Cre mice, the rabies virus,
Rabies SAD1G-DsRed was injected into the same area. Rabies
virus only infected CRH cells expressing the TVA receptor and
then retrograde spread to the upstream cells with the help of
RG. The mice were sacrificed seven days after the last injection;
then the whole brains were sectioned at 50 µm for further
anatomic analysis. Starter cells were both GFP+ (from the TVA-
GFP fusion) and DsRed+ (from rabies virus) (Supplementary
Figure S1), whereas their presynaptic partners were only DsRed+
(Figures 1D–H). 2010 ± 200 (Mean ± SEM) GFP+ cells were
counted in CRH-ires-Cre mice, whereas no GFP+ cell in C57BL/6
mice (Supplementary Figure S2). In summary, the joint use
of CRH-ires-Cre line and rabies virus validated our strategy of
monosynaptic retrograde tracing of the ACC CRH neurons.

Overview of the Whole-Brain Inputs to
the ACC CRH Neurons
To generate the overall distribution of the rabies-labeled
presynaptic partners of the ACC CRH neurons, we imaged serial
whole-brain coronal sections (Figure 2). Then we identified each
input area manually based on the Allen Institute’s reference atlas
and found the ACC CRH neurons integrate monosynaptic inputs
from widespread brain regions, ranging from the cerebral cortex
to the hindbrain (Bregma+3.2 mm∼ −5.4 mm).

In order to quantify each upstream brain area, all the
inputs were divided into 31 regions of interest belonging
to 11 large brain regions. Then we counted the number of
input neurons in each area and computed their proportions
of total inputs (Figure 3A). The results showed that most of
the afferents to the ACC CRH neurons originated from the
cortex. Among different cortical subregions, the majority of the
projections (83.75% ± 1.56%, Mean ± SEM) were received from
somatomotor (MO), retrosplenial (RSP) and orbital cortex (ORB)
(Figures 2, 3A) and the ACC afferents in the secondary motor

cortex (MOs) were more than that in the primary motor cortex
(Mop) (Supplementary Figure S4A). The thalamus was the
second largest inputs source (34.42% ± 2.30%, Mean ± SEM),
in which over a third of inputs (38.45% ± 1.90%, Mean ± SEM)
come from the anteromedial nucleus (AM) (Figures 2, 3A).
Additionally, hippocampal formation and amygdala accounted
for minor direct projections (10.97% ± 1.44%, Mean ± SEM)
to the ACC CRH neurons (Figures 2, 3A). There were also a
few other areas in midbrain and hindbrain that yielded weak
innervations (1.39%± 0.24%, Mean± SEM) (Figures 2, 3A). We
further calculated the cell densities of input neurons in each area
(Figure 3B) and the ratios of rabies-labeled neurons to starter
neurons in the ACC (Figure 3C). For some brain regions with
high cell density, such as the ORB, RSP, AM, and the mediodorsal
nucleus of the thalamus (MD), we showed their high-resolution
pictures in the Supplementary Figure S3.

The ACC CRH Neurons Receive
Extensive Cortical Inputs
We found significant monosynaptic inputs from cortical areas
(Figures 2, 3A). In the neocortex, rabies-labeled neurons were
widely distributed across cortical areas, including the frontal pole
(FRP), ORB, agranular insular cortex (AI), MO, somatosensory
cortex (SS), RSP, visual cortex (VIS), and posterior parietal
association (PTLp) (Figures 2, 6).

Overall, the MO, RSP, and ORB comprised a significant
portion of the cortical projection to the ACC which were
about 8.50% ± 1.79%, 6.79% ± 0.51%, and 4.94% ± 0.81%
(Mean ± SEM), respectively (Figure 3A). Among them, the
RSP was implicated in a wide range of cognitive functions
including navigation, episodic memory, and imagining future
events in human fMRI studies (Spreng et al., 2009; Vann et al.,
2009). Furthermore, the VIS, SS, and PTLp occupied a medium
proportion that were about 1.51% ± 0.26%, 1.06% ± 0.57%, and
0.96% ± 0.30% (Mean ± SEM) (Figure 3A). We also found
that input neurons in the FRP and AI accounted for only about
0.31%± 0.12% and 0.13%± 0.04% (Mean± SEM) of the rabies-
labeled neurons (Figure 3A). Notably, the major input neurons
in cortical areas were found in deep layer 2/3 or layer 5, such as
in the MO, SS, PTLp, and VIS (Supplementary Figure S4). These
results suggested that the ACC CRH neurons received projections
primary from the motor cortex and sensory cortex, which may
provide insights for the further investigation of the ACC CRH
neurons in somatic movement and cognition processing.

The ACC CRH Neurons Receive Strong
Thalamic Inputs
The thalamus has complex functions, generally viewed as a
relay station to transfer and integrate sensory signals, including
motor signals to the cortical areas, and the modulation of sleep,
alertness, learning, and decision-making (Mitchell, 2015; Feng
et al., 2017; Hwang et al., 2017). The thalamus is globally
connected with different cortical areas, yet the cell types of
connections between each thalamus nucleus and distributed
cortical regions remain elusive.
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FIGURE 3 | Statistical analysis of the monosynaptic inputs to the ACC CRH neurons. (A) The proportion of input neurons in each brain region. The values are
normalized by the total number of input neurons. (B) Cell density of input neurons in each brain region. (C) Ratio of rabies-labeled neurons in each brain region to
starter neurons in the ACC. Mean ± SEM (n = 5 CRH-ires-Cre mice).

Our results demonstrated that the thalamus was the second
largest inputs source (34.42% ± 2.30%, Mean ± SEM) of
the ACC CRH neurons, showing pervasive and widespread
monosynaptic input neurons (Figures 2, 3). Among different
sub-nuclei of the thalamus, more than a third of projections
(38.45% ± 1.90%, Mean ± SEM) were received from the AM
(Figure 3A). The anterior thalamic nuclei have been shown
to support multiple and complementary forms of learning and
social defeat-associated contextual fear memory (Rangel et al.,
2018). Our results may provide the new perspectives for the
functional role of the ACC CRH neurons in learning and memory
process. Also, the mediodorsal nucleus (MD), lateral posterior
nucleus (LP), ventral medial nucleus (VM) and ventral anterior-
lateral complex (VAL) of thalamus contributed almost equally
and made moderate direct projections to the ACC CRH neurons
(Figures 2, 3A). Furthermore, many regions of the thalamus were
sparsely labeled, including the parafascicular nucleus (PF), the
nucleus of reuniens (RE) and the lateral dorsal nucleus of the
thalamus (LD) (Figure 2). Our results revealed that thalamus
sent broad projections to CRH neurons in the ACC, indicating
that the cortical CRH neurons should be considered in the
future exploration of the thalamic functions in the processing of
learning, memory, and cognition.

The ACC CRH Neurons Receive Inputs
From the Basal Forebrain
Previous studies have demonstrated that the basal
forebrain is a complex nucleus which provides GABAergic,
glutamatergic neurons and cholinergic inputs to cortical areas

(Gritti et al., 1997; Hur and Zaborszky, 2005; Zaborszky et al.,
2015). Functionally, it has suggested that the projections from the
basal forebrain to the cortex played an important role for cortical
states and was also implicated in attention, sensory processing
and learning (Buzsaki et al., 1988; Everitt and Robbins, 1997;
Duque et al., 2000; Fuller et al., 2011; Pinto et al., 2013).
Consistent with these studies, our retrograde tracing results
indicated that the basal forebrain provided significant inputs to
the ACC CRH neurons (Figures 2, 3). Moreover, the cholinergic
neurons have been associated with plasticity and selective
attention (Wenk, 1997; Rasmusson, 2000). The dysfunction of
the cholinergic neurons in the basal forebrain has also been
related to neurological disorders such as Alzheimer’s disease
(AD) and schizophrenia (Cuello et al., 2010; Marra et al., 2012;
Burke et al., 2013). To further understand the nature of the basal
forebrain projections to the ACC, we performed neurochemical
characterization of rabies-labeled input neurons to explore
the potential difference of cell types in diagonal band nucleus
(NDB) as it comprised a major portion of the basal forebrain
inputs to the ACC (Figure 3A). Immunochemical staining
against ChAT allowed for the identification of cholinergic NDB-
projecting cells (Figures 4A–O). Interestingly, we found that
30.79% ± 4.08% (Mean ± SEM) of the rabies-labeled NDB cells
were cholinergic (Figures 4P,Q), which suggested that the ACC
CRH neurons may contribute to some vital brain functions of
the cholinergic circuit. The basal forebrain contains cholinergic,
GABAergic, glutamatergic and peptidergic neurons (Amaral
and Kurz, 1985; Freund and Antal, 1988; Gulyás et al., 1990).
Maybe the ChAT negative neurons labeled by rabies virus were
other cell types.
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FIGURE 4 | Immunochemical characterization and quantification of rabies-labeled neurons in NDB presynaptic to the ACC CRH neurons. (A–O) Immunostaining of
choline acetyltransferase (ChAT) in brain slices with rabies-labeled diagonal band nucleus (NDB) neurons. Panels (A,F,K) show three diagrams of anterior-posterior
NDB sections. Red boxes indicate the regions shown in (B,G,L). Panels (C–E) show enlarged views of the white-boxed regions in (B). Panels (H–J) show enlarged
views of the white-boxed regions in (G). Panels (M–O) show enlarged views of the white-boxed regions in (L). The rabies-labeled cells and ChAT+ cells are shown in
red and green, respectively. Scale bars: 100 µm in (B,G,L) and 50 µm in (C,D,E,H,I,J,M–O). (P,Q) Pie chart (P) and bar chart (Q) analyses illustrating the
proportions of RV+ChAT+ neurons in RV+ neurons or ChAT+ neurons. Mean ± SEM (n = 5 CRH-ires-Cre mice).

The ACC CRH Neurons Receive Inputs
From the Midbrain and Hindbrain
There were a few areas in the midbrain and hindbrain that
provided weak but important innervations. The dopamine (DA)
neurons originated from either the ventral tegmental area (VTA)
or substantia nigra pars compacta (SNc) have been proposed to
have complex and multifaceted functions, including modulating
appetitive, reward-related behaviors (Holly and Miczek, 2016;
Zhang et al., 2017). There are many brain areas conveying
information to DA neurons, and DA neurons, in turn, send
projections to the prefrontal cortex, thalamus, hippocampus,
amygdala and striatum, demonstrating the “feedback” nature
of this circuit (Avery and Krichmar, 2017). However, many
questions remain to date regarding cortical inputs to the
dopaminergic system.

To further provide the new perspectives for the function of
the dopaminergic system, we examined the cell type of rabies-
labeled neurons in the VTA by immunostaining experiments
(Figures 5A–F). The TH, a marker of DA neurons was used
to identify DA neurons in the VTA. After immunostaining, the
densest TH positive staining was observed in the middle and
anterior portion of the VTA, including parabrachial pigmented
area (PBP) and parafasciculus retroflexus area (PFR) (Figure 5B).
We observed that none of the rabies-labeled cells are TH positive
(Figures 5C–E), which may imply not the CRH neurons in the
ACC, but other types, involve in the VTA dopaminergic circuitry.
Although DA neurons in the VTA are widely studied, GABAergic
and glutamatergic neurons are also abundant (Faget et al., 2016).
So in this trans-synaptic retrograde tracing experiment, the TH
negative neurons maybe GABAergic or glutamatergic.
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FIGURE 5 | Neurochemical characterization of rabies-labeled, ACC-projecting neurons in midbrain and hindbrain. (A–E) Immunostaining of tyrosine hydroxylase (TH)
in brain slices with rabies-labeled ventral tegmental area (VTA) neurons. Panel (A) shows the diagram of VTA section. Red box indicates the region shown in (B).
Panels (C–E) show enlarged views of the white-boxed regions in (B). The rabies-labeled cells and TH+ cells are shown in red and green, respectively. None of the
rabies-labeled cells are TH positive (arrow). (F–J) Immunostaining of tryptophan hydroxylase 2 (Tph2) in brain slices with rabies-labeled median raphe nucleus (MR)
neurons. Red box indicates the region shown in (G). Panels (H–J) show an enlarged view of the white-boxed regions in (G). The rabies virus-labeled cells and Tph2+

cells are shown in red and green, respectively. A fraction of rabies-labeled cells are Tph2 positive (arrowheads). (K–O) Immunostaining of Tph2 in brain slices with
rabies-labeled dorsal raphe nucleus (DR) neurons. Panel (K) shows the diagram of DR section. Red box indicates the region shown in (L). Panels (M–O) show
enlarged views of the white-boxed regions in (L). The rabies virus-labeled cells and Tph2+ cells are shown in red and green, respectively. A significant part of
rabies-labeled cells are Tph2 positive (arrowheads). Scale bars: 100 µm in (B,G,L) and 50 µm in (C,D,E,H,I,J,M–O). (P,Q) Pie chart (P) and bar chart (Q) analyses
illustrating the proportions of RV+Tph2+ neurons in RV+ neurons or Tph2+ neurons in MR and DR. Mean ± SEM (n = 5 CRH-ires-Cre mice).
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FIGURE 6 | Summarized whole brain monosynaptic inputs to the ACC CRH neurons. (A) Schematic of the cortical and thalamic inputs. (B) Schematic of the
olfactory areas and forebrain subcortical inputs. (C) Schematic of the hippocampal inputs. (D) Schematic of inputs from the midbrain and hindbrain. Brain regions of
the same color belong to the same brain structure shown below. The thickness of each line indicates the proportion of input neurons in each area as defined at the
bottom right.
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Serotonin (5-hydroxytryptamine, 5-HT), another
neuromodulator, has been proposed to have an essential
impact on brain functions. Several studies have revealed 5-
HT’s involvement in predicting punishment or harm aversion,
impulsivity, stress and anxiety, and a wide variety of functions
including emotion, sleep, reward, attention, and memory (Millan,
2003; Winstanley et al., 2003; Cools et al., 2008; Crockett et al.,
2008, 2015; Jasinska et al., 2012; Nakamura, 2013; Seyedabadi
et al., 2014; Quentin et al., 2018). The raphe nuclei, including the
median raphe (MR) and dorsal raphe (DR), produce the major
serotonergic populations in the central nervous system (CNS).
Previous investigations have proposed that the principal targets
of the raphe nucleus are “limbic cortices” including the ACC.
Also, there was evidence demonstrating that the raphe nucleus
received input back from “limbic cortices” (Vertes and Linley,
2008; Pollak Dorocic et al., 2014). Interestingly, the MR and
DR serotonergic projections are two distinct systems differing
in their morphology and physiology (Hensler, 2006). Previous
studies revealed that there are few or partially overlapping in the
final projections in the cortex of these two sets of serotonergic
nuclei (Hensler, 2006; Vertes and Linley, 2008).

To further identify the disparity between the monosynaptic
inputs to the ACC CRH neurons in the MR and DR, we
carried out the immunostaining experiments (Figures 5F–O)
and made some statistical analysis (Figures 5P,Q) afterward.
Tph2 immunostaining was performed to identify 5-HT neurons
in the raphe nucleus. Our results revealed, among rabies-
labeled neurons, the proportion of 5-HT neurons in the MR
(21.49% ± 6.05%, Mean ± SEM) was significantly lower than
the DR (72.61% ± 2.24%, Mean ± SEM) (Figure 5Q). Besides
5-HT neurons, GABAergic neurons in the DR also project to
the forebrain (Bang and Commons, 2012). These RV+TPH2−
cells we labeled may be GABAergic neurons. This difference may
be quite important for understanding how these two distinct
serotonergic systems modulate the limbic system in normal brain
and psychiatric disorders. This may give us a more rigorous cue of
the circuitry of 5-HT neurons in the brain and help to understand
how serotonergic and CRH system interconnected in normal and
disease conditions.

DISCUSSION

The ACC has been linked to some of the most pivotal
behaviors, such as decision-making, conflict monitoring and
pain processing (Kolling et al., 2016; Xiao and Zhang, 2018).
In order to understand the circuit mechanism associated with
these behaviors more accurately, it is necessary to investigate
the whole-brain inputs to the specific cell-type neurons in the
ACC. In the present study, our viral tracing results efficiently
mapped a comprehensive list of monosynaptic inputs to the
ACC CRH neurons. We demonstrated the ACC CRH neurons
receive major direct inputs from cortical regions and thalamus
nucleus. Furthermore, we showed that the cholinergic system and
serotoninergic system in the basal forebrain and raphe nuclei,
respectively, provide neuromodulatory inputs to the ACC CRH
neurons. Though our results were almost identical to those

afferents of ACC neurons labeled by traditional reverse tracer
FG, in a few brain areas labeled by FG, there were no RV+ cells
in our results, such as the substantia nigra, pars compacta (SNc)
(Fillinger et al., 2017).

Monosynaptic Reverse Tracing by
Rabies Virus With Cre Recombinase
Transgenic Mice
Compared with conventional retrograde tracing techniques,
rabies virus system allows for mapping of monosynaptic inputs
to defined neuronal subtypes by combining Cre-loxp system. In
this study, we used CRH-ires-Cre mice to target CRH neurons
specifically. Through the joint use of CRH-ires-Cre line and
rabies virus system, we exclusively distinguished the CRH cell-
specific inputs from the general inputs to ACC. As previous
studies showed, this method with the combination of these
two systems was efficient in labeling the monosynaptic inputs
of the cell-type specific neurons (Watabe-Uchida et al., 2012;
Pollak Dorocic et al., 2014; Weissbourd et al., 2014). During the
data analysis, we found that some patterns of labeling produced
by the rabies virus are not in accordance with known brain
connectivity, but the rabies-labeled brain areas projecting to ACC
CRH neurons in all mice in our experiments were consistent, for
example, the labeling of the olfactory tubercle. In addition, the
monosynaptic tracing of CRH neurons revealed a comprehensive
atlas of the presynaptic partners of the ACC CRH neurons with a
high resolution. We mapped average 12,214 neurons per animal
and showed the ACC CRH neurons receive direct inputs from
raphe nuclei even though there were just a minimal number of
rabies-labeled inputs (0.15% roughly). Moreover, the number of
starter cells is available, which makes it possible to carry out
the statistical analysis and generate a quantitative and precise
map of whole-brain monosynaptic inputs to the ACC CRH
neurons. On the other hand, there are still a few drawbacks
that may influence the statistical results because of the limitation
of rabies retrograde tracing. For example, some CRH neurons
expressing TVA-GFP but not express RG due to two separate
helper virus. Consequently, the number of starter cells may be
overestimated, then the ratios of rabies-labeled neurons in each
brain region to starter neurons may be underestimated. Apart
from that, there are a few TVA-GFP positive but RV negative
neurons in the ACC, suggesting that this system has certain
limitations on the transduction efficiency of the rabies virus.
The characteristics of RV-based monosynaptic retrograde tracing
strategy make it more suitable for exploring the long-range brain
neuronal connectivity by mapping the monosynaptic inputs onto
defined cell types in a specific region, facilitating related more
in-depth research in the future.

Implications for the Role of the ACC CRH
Neurons in Pain Processing
Pain is a distressing sensory and emotional experience often
associated with intense or damaging stimuli alert the individual to
withdraw from harmful damage (Bushnell et al., 2013; Bliss et al.,
2016). Anatomical and physiological studies have revealed that
the ACC and other cortical areas, including the somatosensory
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cortex, prefrontal cortex and the insular cortex, are activated by
various painful stimuli (Talbot et al., 1991; Schnitzler and Ploner,
2000; Xiao and Zhang, 2018). Previous studies showed that CRH
had an important function on the modulation of pain resulted
from bone cancer or inflammatory nociceptive stimuli and acted
on important brain structures in pain regulatory (Lariviere and
Melzack, 2000; Lariviere et al., 2011; Fan et al., 2015). Under pain
processing, neurons in the thalamus play important effects in
relaying the ascending information to the ACC, somatosensory
cortex, prefrontal cortex, insular cortex and amygdala (Apkarian
et al., 2005; Zhuo, 2014; Bliss et al., 2016). Then, the ACC, as
a critical brain area involved in pain processing, projecting to
periaqueductal gray, prefrontal cortex, and insular cortex. As
well, neurons in the deep layers in the ACC innervate directly
or indirectly to the spinal dorsal horn. All of these connections
make up a spinal dorsal horn–thalamus–cortex–spinal dorsal
horn loop in pain processing (Fuchs et al., 2014; Bliss et al., 2016).
Our results showed that CRH neurons in the ACC receive a
great number of projections from the somatosensory cortex and
thalamus. Besides, amygdala, which has been linked to emotion,
also provides moderate inputs to CRH neurons in the ACC. These
connections may point out the ACC CRH neurons take part in
the signal transmission and emotion storage in pain processing.

Implications for the Role of the ACC CRH
Neurons in Emotion
The function of emotion has been described as to decouple
stimulus and response, thus modulating cognition to allow for
a suitable adaptation to the environment (Scherer, 1994; Brosch
et al., 2013). Emotion has a critical contribution to perceiving
the world, the enhancement of memory and decision-making
(Brosch et al., 2013; Desmedt et al., 2015). Because of its
complexity, there are a set of neural mechanisms that modulate
many brain regions simultaneously in emotional behavior and
neuromodulatory systems play a crucial part in the experience
and expression of emotion (Fellous, 1999; LeDoux, 2000).
Neuromodulatory systems, including the cholinergic system,
serotonergic system, noradrenergic and dopaminergic system,
are suggested to be important for many crucial behaviors, such
as rewards, aversion, risks, cooperation, and novelty (Krichmar,
2008). The cholinergic system has been linked with various
functions including attention, learning and memory, sleep,
cognition, and emotion (Hasselmo, 2006; Platt and Riedel, 2011;
Picciotto et al., 2012; Ballinger et al., 2016; Mu and Huang,
2019). Besides, several studies have revealed 5-HT’s involved in
many brain functions, such as emotion, reward, attention, and
memory (Cools et al., 2008; Nakamura, 2013; Seyedabadi et al.,
2014; Li et al., 2016; Quentin et al., 2018). The interactions
between these systems and the other regions, like the ACC,
frontal cortex, hippocampus, sensory and striatum, provide a
foundation for higher cognitive functions, including emotion
(Avery and Krichmar, 2017). Also, previous studies proposed
that the ventral hippocampus (anterior in primates) relates
to emotion (Fanselow and Dong, 2010; Grigoryan and Segal,
2016). Our retrograde tracing revealed that the ACC CRH
neurons receive projections from (1) the cholinergic neurons

in the basal forebrain (about 31% rabies-labeled neurons in
the NDB); (2) the serotonergic neurons in the raphe nucleus
(about 73% rabies-labeled neurons in the DR and 21% in
the MR); (3) neurons in the ventral hippocampus (mainly in
the CA1). These results give us more indications about the
functions of the ACC CRH neurons with neuromodulatory
systems and hippocampus in emotion processing, illustrating
such connection is a critical component for developing a
circuit-level understanding of emotion, even other higher
cognitive functions.
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FIGURE S1 | Overview of the distribution of starter cells in the ACC. Schematic
representation of starter cells (yellow) on coronal sections from anterior to
posterior ACC.

FIGURE S2 | Control experiment demonstrating specificity of retrograde
trans-synaptic tracing approach. (A) Timeline of virus injection into the ACC of
C57BL/6 mice for retrograde trans-synaptic tracing. (B) The diagram of the ACC
(injection site). Red box indicates the regions in (C). (C) Representative confocal
images of GFP+ neurons in C57BL/6 mice and CRH-ires-Cre mice. No evidence
of TVA-GFP fluorescence positive cells was observed in C57BL/6 mice.
Scale bars, 100 µm.

FIGURE S3 | Distribution of input neurons in the ORB, RSP, AM and MD. The
rabies virus-labeled cells are shown in red. Scale bar, 100 µm. AId, agranular
insular arear, dorsal part; AON, anterior olfactory nucleus; MOB, main olfactory
bulb; SUBd, subiculum, dorsal part; CM, central medial nucleus of the thalamus;
IAD, interanterodorsal nucleus of the thalamus; AV, anteroventral nucleus of
thalamus; PVT, paraventricular nucleus of the thalamus; MH, medial habenula; LH,
lateral habenula; sm, stria medullaris; AD, anterodorsal nucleus; IMD,
Intermediodorsal nucleus of the thalamus.

FIGURE S4 | Layer specificity of diverse cortical inputs. Representative confocal
images of input neurons in the MO, SS, PTLp, and VIS. Scale bar, 100 µm.
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