
Translational Oncology 13 (2020) 100754

Contents lists available at ScienceDirect

Translational Oncology

j ourna l homepage: www.e lsev ie r .com/ locate / t ranon
Targeting P4HA1 with a Small Molecule Inhibitor in a Colorectal Cancer
PDX Model☆
Sumit Agarwal a, Michael Behring a, Hyung-Gyoon Kim a, Prachi Bajpai a, Balabhadrapatruni V.S.K. Chakravarthi a,
Nirzari Gupta b, Amr Elkholy a, Sameer Al Diffalha a, Sooryanarayana Varambally a,c,1, Upender Manne a,c,⁎,1

a Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
b Department of Chemistry, University of Alabama at Birmingham
c Comprehensive Cancer Center, University of Alabama at Birmingham
☆ Disclosure of potential conflicts of interest: No potential c
⁎ Address all correspondence to: UpenderManne, Ph.D., P

Translational Pathology, Department of Pathology, Wallace
University of Alabama at Birmingham, Birmingham, AL 352

E-mail address: upendermanne@uabmc.edu. (U. Manne)
1 Contributed equally for senior authorship.

http://dx.doi.org/10.1016/j.tranon.2020.100754
1936-5233/©2020 The Authors. Published by Elsevier
A B S T R A C T
A R T I C L E I N F O
Article history:
Received 31 January 2020
Received in revised form 28 February 2020
Accepted 29 February 2020
Available online xxxx
Deposition, remodeling, and signaling of the extracellular matrix facilitate tumor growth and metastasis. Here, we
demonstrated that an enzyme, collagen prolyl 4-hydroxylase, alpha polypeptide I (P4HA1), which is involved in col-
lagen synthesis and deposition, had elevated expression in colorectal cancers (CRCs) as compared to normal colonic
tissues. The expression of P4HA1 in CRCs was independent of patient's age, race/ethnicity, gender, pathologic stage
and grade, tumor location, and microsatellite instability (MSI) and p53 status. By modulating P4HA1 with shRNA,
there was a reduction in malignant phenotypes of CRCs, including cell proliferation, colony formation, invasion, mi-
gration, and tumor growth, in mice regardless of their p53 and MSI status. Immunoblot analysis of excised xenograft
tumors developed from cells with silenced PH4HA1 showed low levels of proliferating cell nuclear antigen. Further, in
CRC mouse models, silencing of P4HA1 in HT29 cells resulted in less metastasis to liver and bone. P4HA1 expression
was regulated by miR-124, and inhibition of cell growth was noted for CRC cells treated with miR-124. Furthermore,
low levels of the transcriptional repressor EZH2 reduced P4HA1 expression in CRC cells. Inhibition of P4HA1with the
small molecule inhibitor diethyl-pythiDC decreased AGO2 and MMP1, which are P4HA1 target molecules, and re-
duced the malignant phenotypes of CRC cells. Treatment of CRC patient-derived xenografts that exhibit high expres-
sion of P4HA1 with diethyl-pythiDC resulted in tumor regression. Thus, the present study shows that P4HA1
contributes to CRC progression andmetastasis and that targeting of P4HA1with diethyl-pythiDC could be an effective
therapeutic strategy for aggressive CRCs.
Introduction

Colorectal cancer (CRC), the third most common cancer worldwide, ac-
counts for 8% of cancer-related deaths [1]. Various environmental factors;
epigenetic alterations; and gene fusions, deletions, and amplifications are in-
volved in the initiation and progression of this complex and heterogeneous
disease [2,3]. Despite recent advances in diagnostic techniques and treatment
therapies, the overall survival of CRC patients remains relatively low. Hence,
there is a need to identify driving genes and uncover oncogenic pathways for
early detection, diagnosis, and treatment of patients with CRC.

The extracellular matrix (ECM) and its remodeling contribute to tumor
pathogenesis. The tumor microenvironment is characterized by imbalances
in ECM homeostasis by matrix metalloproteinases, leading to cancer
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progression and metastasis [4,5]. Changes in the tumor microenvironment
along with ECM disruption are also a feature of CRC progression. Most pro-
teins that are required for collagen synthesis are upregulated in CRCs and
colorectal livermetastases [6]. Fragments of degraded type I, III, and IV col-
lagen (C1M, C3M, and C4M) and type III collagen (Pro-C3) are elevated in
CRCs as compared to adenomas and normal colon [7].

The prolyl-4-hydroxylase enzymes prolyl 4-hydroxylase, alpha polypep-
tide I (P4HA1); P4HA2; and P4HB are necessary for collagen synthesis and
deposition; matrix metalloproteinases degrade collagen [8]. P4HA1 cata-
lyzes the formation of 4-hydroxyproline from proline residues, a process
that is essential for the proper folding of collagen polypeptide chains into
stable triple-helical molecules [9]. Knockdown of P4HA1 inhibits neovas-
cularization of gliomas [10].

The P4HA1/HIF1 pathway is essential for stemness of breast cancer
cells, and inhibition of P4HA1 sensitizes triple-negative breast cancer
cells to chemotherapy [11]. miR-30e regulates and targets P4HA1, leading
to the inhibition of proliferation of hepatocellular carcinoma cells [12]. The
prolyl 4-hydroxylase family members, P4HA2 and P4HA3, are
overexpressed in melanomas and involved their progression [13]. For pan-
creatic cancer, the P4HA1-HIF1α loop has been demonstrated as a
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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regulator of glycolysis and oncogenic activity [14]. Expression of P4HA1
and P4HA2 induces collagen deposition and promotes invasion of breast
cancers, which leads to lymph node and lung metastases [8]. Our previous
study showed that P4HA1 overexpression is involved in progression of
prostate cancers via MMP1 [15]. P4HA1 is a prognostic marker for high-
grade gliomas [16] and oral squamous cell carcinomas [17]. The only
study involving P4HA1 and CRC using algorithm-basedmeta-analysis dem-
onstrates that secreted P4HA1 is a potential biomarker of early diagnosis of
CRC [18].

In the present study, we demonstrated an oncogenic role of P4HA1 in
progression and metastasis of CRCs. There was overexpression of P4HA1
in CRCs, as compared to normal colon, regardless of tumor stage; histologic
type; and patient race/ethnicity, gender, and age. Knockdownof P4HA1 de-
creased cell proliferation, invasion, and migration and inhibited tumor
growth as well as metastases. Further, miR-124 targeted and inhibited the
expression of P4HA1 in CRCs, and EZH2 regulated its expression. Inhibition
of P4HA1 with 6-(5-ethoxycarbonyl-thiazol-2-yl)-nicotinic acid ethyl ester
(diethyl-pythiDC) reduced the malignant phenotypes of CRC cells; tumor
growth in patient-derived xenografts (PDXs); and levels of the P4HA1
downstream targets, MMP1 and argonaute 2 (AGO2). The results indicate
that a P4HA1 inhibitor could be effective for therapy of CRCs.

Materials and Methods

Colorectal Tissue Specimens

Tumor specimens andmatched adjacent noncancerous tissue specimens
were collected from 105 patients during surgical procedures. These were
provided by the Tissue Biorepository of the Anatomic Pathology Division
of the University of Alabama at Birmingham (UAB). The study was con-
ducted with prior approval of the UAB Institutional Review Board. Frozen
tissues were used for RNA and protein isolation to evaluate P4HA1 expres-
sion using quantitative real-time PCR (qRT-PCR) (Supplementary Table S1)
and immunoblot analysis, respectively. Formalin-fixed, paraffin-embedded
archival tissue blocks containing CRCs or their corresponding normal/be-
nign tissues were used for localization of P4HA1 by immunohistochemical
(IHC) analyses.

Cell Lines and RNA Interference

CRC cell linesHCT116p53-wt,MSI andHCT116p53-null,MSI exhibitmicrosat-
ellite instability (MSI), and SW480p53-mut,MSS cells havingmicrosatellite sta-
bility (MSS) were grown in McCoy's medium (Corning Cellgro, Fisher
Scientific Co., Pittsburgh, PA) with 10% fetal bovine serum (FBS,
Invitrogen, ThermoFisher Scientific, Carlsbad, CA) in a 5% CO2 cell culture
incubator. As described earlier [15,19], lentiviruses against the P4HA1
gene were packaged in pGreenPuro shRNA expression lentivectors
(Systembio, Palo Alto, CA) by the University of Michigan Vector Core.
CRC cells were infected with lentiviruses expressing P4HA1 shRNA or
scramble controls, and stable cell lines were generated by selection with 1
μg/ml puromycin (Life Technologies, CA). P4HA1 shRNA sequences are
listed in Supplementary Table S2. Stable cells were used for RNA isolation,
immunoblot analyses, and cell-based assays.

IHC Analysis

IHC analysis was performed for CRC tissue sections as described earlier
[20–22]. Briefly, sections were deparaffinized, rehydrated, antigen-
retrieved, and blockedwith BLOXALL Endogenous Peroxidase and Alkaline
Phosphatase Blocking Solution (Cat. # SP-6000, Vector Laboratories, Bur-
lingame, CA) for 20 minutes to remove traces of endogenous peroxidase.
Subsequently, tissue sections were blocked with Normal Horse Serum
Blocking Solution (Cat. # S-2012, Vector laboratories, Burlingame, CA)
for 1 hour at room temperature and probedwith polyclonal anti-P4HA1 an-
tibody for 1 hour at room temperature. After washes with phosphate-
buffered saline (PBS) with Tween, tissue sections were incubated for
2

1 hour with ImmPRESS HRP Anti-Mouse IgG (Peroxidase) Polymer Detec-
tion Kit made in horses (Cat. # MP-7401, Vector Laboratories, Burlingame,
CA) as a secondary antibody. After incubation, sections were subjected to
washing with PBS with Tween and PBS. Further, ImmPACT DAB Peroxi-
dase (HRP) Substrate (Cat. # SK-4105, Vector Laboratories, Burlingame,
CA) was used for color development. Slides were counterstained with he-
matoxylin solution (Cat. # H-3404, Vector laboratories, Burlingame, CA),
dehydrated, and mounted with VectaMount permanent mounting medium
(Cat. # H-5000, Vector Laboratories, Burlingame, CA).

Immunoblot Analysis

Antibodies used are listed in Table S4. All antibodies were employed at
dilutions optimized in our laboratory. As described earlier [23,24], protein
samples were separated on NuPAGE 4-12% Bis-Tris Midi Protein Gels, 20-
well (Invitrogen, ThermoFisher Scientific, Carlsbad, CA), and transferred
onto Immobilon-P PVDF membranes (EMD Millipore, Billerica, MA). The
membranes were incubated for 1 hour in blocking buffer (Tris-buffered sa-
line, 0.1%Tween, 5%nonfat drymilk), followed by incubation overnight at
4°Cwith the primary antibody. After three washeswith Tris-buffered saline
and 0.1% Tween, the blots were incubated with horseradish peroxidase–
conjugated secondary antibody, and Luminata Crescendo chemilumines-
cence Western blotting substrate (EMD Millipore, Billerica, MA) was used
as per the manufacturer's protocol for capturing signals. Signals were ac-
quired with an Amersham Imager 600RGB (GE Healthcare Life Sciences,
Pittsburgh, PA).

Cell Proliferation Assay

To assess cellular proliferation, stable P4HA1 knockdown or scramble-
control CRC cells (1× 104) were seeded in triplicate wells of 24-well plates
as described [25]. After trypsinization, cell numbers were counted with a
Z2 Coulter particle counter (Beckman Coulter, Brea, CA) at 2, 4, and 6 days.

Colony Formation Assay

For assay of colony formation, P4HA1-deficient or control NT shRNA-
modulated CRC cells (1 × 103) were seeded in six-well plates as described
previously [26]. After 10 days, cells were fixed with glutaraldehyde and
stained with crystal violet. Images of representative fields were captured
with an Amersham Imager 600RGB (GE Healthcare Life Sciences,
Pittsburgh, PA).

Invasion Assay

To assess the involvement of P4HA1 in the malignant properties of CRC
cells, cell invasion was evaluated using Corning BioCoat Matrigel invasion
chambers (Cat. # 354480, Corning, NY), as described previously [27,28].
CRC cells (5 × 104 in 500 μl) with stable P4HA1 knockdown or treated
with a scramble control were layered with serum-free medium on 8-μm
pore inserts of Transwell membranes in triplicate; the lower chambers
contained 10% FBS as a chemoattractant. After 48 hours, invaded cells
were fixed and stained, and images were acquired with a phase-contrast
microscope.

Wound-Healing Assay

Cell motility was assessed by awound-healing assay, as described previ-
ously [29]. CRC cells transfected with P4HA1 shRNA or a control shRNA
were seeded in triplicate on 35-mm Petri dishes. After overnight incuba-
tion, cells were serum-starved for 12 hours, and artificial wounds were cre-
ated on the monolayers of confluent cells with the tip of a 200-μl pipet. At 0
and 24 hours, photographs were taken with an inverted phase-contrast mi-
croscope and a 4× objective.
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3D Spheroid Model

Tests were performed to determine the spheroid-forming capacity of
cancer cells using Cultrex 3D spheroid BME cell invasion assays (Cat. #
3500-096-K, Trevigen, Gaithersburg, MD), as described previously [30].
Briefly, 5000 cells were seeded in 96-well plates in triplicate with spheroid
Formation ECM extract for 72 hours of incubation. An invasion matrix was
added to the wells, and, after 1 hour, media supplemented with FBS were
added. After 4 days, images were taken with a 4× objective.

Colorectal Cancer Xenografts

To evaluate the role of P4HA1 in tumor growth, xenografts were pre-
pared by subcutaneously implanting CRC cells transfected with P4HA1
shRNA or control shRNA into the right dorsal flanks of 6-week-old NOD/
SCID/IL2γ receptor-null (NSG) mice (n = 7 for each group), as described
previously [22,31]. The animals were observed for tumor growth, pain,
and activity following all regulatory standards in accordance with the
guidelines of the University of Alabama at Birmingham Institutional Ani-
mal Care and Use Committee. Tumor length and width were measured
with Vernier calipers, and tumor volumes were estimated by the following
equation: (0.52) × (length) × (width2). At 5 weeks after implantation of
CRC cells, the mice were sacrificed, and tumors were excised. The tumors
were photographed and weighed.

Bioluminescence Imaging of Tumor Metastasis

For metastasis experiments, HT29p53-mut/LUC cells (1 × 106)
transfected with control NT shRNA or P4HA1 shRNA were injected into
the lateral tail veins of 6-week-old NSG mice. Bioluminescent quantifica-
tion was performed every 7 days for 4 weeks using IVIS Lumina III (Perkin
Elmer,Waltham,MA) after intraperitoneal inoculation of 100 μl of luciferin
solution (25mg/ml). At completion of the experiment, organs were imaged
for ex vivo luminescence.

Patient Samples and Establishment of Patient-Derived Colorectal Xenografts

Tumors and corresponding matched normal specimens were obtained
from CRC patients undergoing surgery for the primary disease at UAB. Pa-
tients provided informed written consent, and samples were procured with
approval of the UAB Institutional Review Board. Specimens were obtained
within 4 hours of surgery and immediately transferred to media supple-
mented with 10% FBS. Normal colon specimens were divided into two
parts: one was fixed in 10% neutral-buffered formalin, and the other was
snap-frozen in liquid nitrogen. Tumor specimens were divided into frag-
ments of approximately 3 × 3 mm2 for subcutaneous implantation into
6- to 7-week-old NSG mice; the remainder was either fixed in 10%
neutral-buffered formalin or snap-frozen in liquid nitrogen. Following im-
plantation of the fragments, miceweremonitored for tumor growth. For ex-
pansion of the model, xenografted tumors were implanted into mice for
several passages; one of the passages was used for treatment with diethyl-
pythiDC. When tumor sizes reached 200 mm3, the mice (n = 2) were
injected intraperitoneally with diethyl-pythiDC at 100 mg/kg once per
week for 6 weeks. Control mice (n = 2) were dosed with the vehicle.
Tumor sizes were measured with calipers.

Statistical Analysis

For paired samples, differences in IHC scores between tumor and nor-
mal tissue were evaluated using a paired Wilcoxon signed-rank test. A sec-
ondary analysis of effect modification for paired tumor normal IHC scores
was accomplished using the same test for the following covariates: stage,
gender, race, age, MSI status, and any p53 somatic mutation. For experi-
ments with cell lines, Student's t test was used to perform comparisons of
mean values. A P value of less than .05 was considered statistically
significant.
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Results

P4HA1 Gene Overexpression in CRCs

Datasets available from Kaiser et al. (2007) [32] (Figure 1A), TCGA
2012 [33] (Figure 1B), and Skrzypczak et al. (2010) (Supplementary
Figure S1A) showed P4HA1 overexpression in colon adenocarcinomas as
compared to normal colon tissues. Kaiser et al. (2007) (Supplementary
Figure S1B) and TCGA (2012) (Supplementary Figure S1C) showed overex-
pression in mucinous adenocarcinoma. P4HA1 expression in TCGA RNA-
seq dataset accessed using the UALCAN online data portal [34] (http://
ualcan.path.uab.edu/) showed P4HA1 upregulation in CRCs (n = 286) as
compared to normal cancer tissues (n = 41) (Figure 1C). Quantitative
PCR, performed to confirm the differential expression of P4HA1 in CRC tis-
sues (n = 105) as compared to matched noncancerous tissues (n = 105),
showed overexpression of P4HA1 in CRCs (Figure 1D). As determined
with UALCAN, P4HA1 expression in various stages of CRC (Figure 1E)
and patient's race (Figure 1F) was upregulated. These data were validated
by qPCR analysis of paired samples of different stages [Stage 1 (n = 18),
Stage 2 (n = 29), Stage 3 (n = 41), and Stage 4 (n = 17)] (Figure 1G)
and patient's race [Caucasian (n = 75) vs African-American (n = 22)]
(Figure 1H). For all stages, there was overexpression of P4HA1 (P <
.001) as compared to the matched normal colon tissues. As established
with UALCAN, there was upregulated expression of P4HA1 across tumor
histotypes (Supplementary Figure S2A) and patient's gender (Supplemen-
tary Figure S2B) and age (Supplementary Figure S2C). Further, qPCR anal-
ysis showed that overexpression of P4HA1 was independent of tumor
histotype [adenocarcinoma (n = 88); mucinous adenocarcinoma (n =
17)] (Supplementary Figure S2D), gender [male (n = 53) vs female (n =
52)] (Supplementary Figure S2E), and age [21-40 years (n = 4), 41-
60 years (n = 29), 61-80 years (n = 55), and 81-100 years (n = 17)]
(Supplementary Figure S2F). These data showed P4HA1 RNA overexpres-
sion in CRCs as compared to normal colon. In sum, P4HA1 RNA expression
was independent of tumor stage and histotype as well as patient's race, age,
and gender.

P4HA1 Protein Upregulation in CRC

After confirming RNA overexpression in CRC, we investigated for
P4HA1 protein expression in CRC tissues and corresponding noncancerous
tissues using immunoblot analysis and found overexpression of P4HA1 in
CRC tissues (Figure 2A). Further, we performed immunohistochemical
analysis to investigate for localization of P4HA1 in tissue specimen contain-
ing CRC as well as normal colon and found overexpression of P4HA1 in cy-
toplasm as compared to normal colon (Figure 2B). Furthermore, covariates
of gender, age, stage, race, MSI, and p53 somatic mutation status were
found to have no effect upon this increase in tumor IHC as compared to nor-
mal (Supplementary Table S1). Tumor samples had consistently higher IHC
scores than their paired normal (Wilcoxon paired P value < .001)
(Figure 2C), regardless of tumor stage (Figure 2D), patient's race
(Supplementary Figure 3A), gender (Supplementary Figure 3B), and age
(Supplementary Figure 3C). These findings suggest that P4HA1 is a reliable
marker of tumor tissue in the real world with CRC of various stages andmo-
lecular characteristics. These data also showed P4HA1 protein overexpres-
sion in CRC suggesting that P4HA1 could be involved in the progression
of CRC.

CRC Growth Inhibition After P4HA1 Knockdown Is Independent of p53 and
Microsatellite Status

To elucidate the function of P4HA1 in regulating the malignant pheno-
types of CRC cells, cells were stably transfected with either of two P4HA1
shRNAs. Immunoblot analysis confirmed the knockdown of P4HA1 in
HCT116p53-wt,MSI, HCT116p53-null,MSI and for SW480p53-mut,MSS (p53 mu-
tated) cells (Figure 3A). After 6 days of treatment, there was lower cell
growth (P < .01) as compared to cells transfected with control shRNA

http://ualcan.path.uab.edu/
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(Figure 3B). Colony formation assays, which determine the capacity of can-
cer cells to grow and accumulate into groups, were also performed. The
colony-forming capacity of the CRC cells was lower for cells transfected
with P4HA1 shRNA compared to cells transfected with a control shRNA
(Figure 3C).

Further, we accomplished Transwell invasion assays, which assess the
capacity of tumor cells to overcomebarriers of the ECMand spread into sur-
rounding tissue. We used Boyden chambers with 8-μm filters coated with
an artificial ECM and added CRC cells transfected with P4HA1 shRNA or
5

control shRNA to the chambers without FBS; FBS was added in the lower
portion as a chemoattractant. After 48 hours, fixed and stained cells
transfected with control shRNA that passed through the filters and invaded
across the ECM showed high invasive potential as compared to cells
transfected with an P4HA1 shRNA (Figure 3D).

Wound-healing assays demonstrate the migration capacity of cancer
cells and show their capacity for healing of wounds. This assay showed
that the closing rates for artificially created wounds in confluent cell popu-
lations were lower for P4HA1-deficient cells as compared to cells
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transfected with control shRNA (Supplementary Figure 3). These results
suggest that P4HA1 is involved in the malignant properties of CRCs.

To investigate the role of P4HA1 in tumor growth,we establishedCRCxe-
nografts in NSG mice. For this purpose, we subcutaneously implanted, into
the right dorsal flanks of mice, 1 million HCT116p53-wt or SW480p53-mut

cells transfected with a control shRNA or a P4HA1 shRNA. Consistent with
the results obtained from cell culture assays, knockdown of P4HA1 sup-
pressed the growth of HCT116p53-wt,MSI, and SW480p53-mut,MSS CRC xeno-
grafts (Figure 3E). With P4HA1 knockdown, there were lower volumes and
weights of HCT116p53-wt and SW480p53-mut tumors as compared to cells
transfected with control shRNA (Figure 3F). In lysates of HCT116p53-wt,MSI

xenograft tumors, protein levels of P4HA1 and PCNA were lower for
those with P4HA1 knockdown than in those from cells transfected with
control shRNA (Figure 3G). These data showed the role of P4HA1 in CRC
progression and tumor growth and CRC growth inhibition after P4HA1
knockdown is independent of p53 and MSI status.

miR-124 Targets and Downregulates P4HA1 Expression in CRCs

Previous studies of our laboratory using the microRNA prediction web
tools TargetScan, miRanda, and miRSearch V3.0 identified miR-124 as po-
tentially targeting P4HA1 [15]. Figure 4A shows the binding sites of miR-
124 to 3′-UTR of P4HA1. By co-transfecting HEK-293 cells with miR-124
and pMir-REPORT-P4HA1 3′-UTR plasmids, we showed, by employing a
3′-UTR assay, that miR-124 regulates P4HA1 [15]. These co-transfections
reduced luciferase reporter activity compared to transfection with a
control-miR. In addition, lower luciferase activity was evident when the
pMir-REPORT-P4HA1 3′-UTR plasmid had a mutated miR-124 target site,
indicating that miR-124 regulates and binds to P4HA1 [15].

In the present study, we performed transfections to determine whether
miR-124 targets and suppresses the expression of P4HA1 in HCT116p53-wt,

MSI CRC cells. Immunoblot analyses demonstrated that forced expression of
miR-124 decreased the expression of P4HA1 relative to a nontargeting con-
trol miRNA (Figure 4B). To assess the functional significance of miR-124 in
CRCs, we overexpressed it in HCT116 cells and found less cell proliferation
(Figure 4C), colony formation (Figure 4D), and migration (Figure 4E).
These results suggest the role of miR-124 in targeting the expression of
P4HA1 in CRC cells.

EZH2 Regulates P4HA1 Expression in CRCs

A previous study from our laboratory showed that, in prostate cancers,
the transcriptional repressor EZH2 regulates the expression of P4HA1 [15].
For the present study, we hypothesized that, in CRCs, EZH2 also regulates
P4HA1. Knockdown of EZH2 in HCT116p53-wt,MSI, SW480p53-mut,MSS, and
HT29p53-mut,MSS cells lowered their P4HA1 levels (Figure 4F). Expression
of H3K27me3, a mark of EZH2-mediated trimethylation of histone H3 on
lysine 27, is lower when CRC cells are exposed to EZH2 shRNA
(Figure 4F). Overexpression of EZH2 in CRL1807 SV40-transformed colon
cells increased the expression of P4HA1 as compared to controls, but the
SET domain mutant EZH2 (EZH2ΔSET) repressed P4HA1 expression
(Figure 4G). This suggests that EZH2 regulates the function of P4HA1 in
CRC cells and its regulation is independent of the p53 and microsatellite
status.

P4HA1 Is Involved in CRC Metastasis

To establish, with mice, the contribution of P4HA1 to metastasis, we
performed tail-vein injections of luciferase-expressing HT29p53-mut,MSS

cells with or without P4HA1 knockdown, and luminescence wasmonitored
weekly. The knockdown efficiency of P4HA1 in HT29p53-mut,MSS cells was
confirmed byWestern blot analysis (Figure 5A). The results showed similar
bioluminescent signals for lungs of both groups, but signals were enhanced
in livers in control animals (Figure 5B). Lungs and liver are the primary
metastatic sites of CRC tumors, while bone marrow metastasis reflects a
widespread disease [35]. In addition, at 28 days after lateral tail-vein
7

injections of HT29p53-mut,MSS CRC cells transfected with control shRNA,
more colonies were evident in bones of mice as compared to those injected
with P4HA1-knockdown cells. Ex vivomeasurements of luminescence con-
firmed less luminescence in hind-limb bones and liver of those bearing
P4HA1-knockdown cells (Figure 5C). Further, the contents of marrow
were flushed from bones and placed in puromycin selection media for
growing only cancer cells. The cells were grown for 4 days; only cells
transfected with NT shRNA grew (Figure 5D). Hematoxylin and eosin
(H&E) staining of bone sections of mice showed that mice with P4HA1
knockdown cells had less dissemination of CRC cells to bone (Figure 5E).
Further, we assessed the interaction of CRC cells with bone marrow using
cytokeratin 8/18 as a marker of cancer cells and alkaline phosphatase as
a marker of bone marrow cells. There was strong staining of cytokeratin
8/18 in cells transfected with NT shRNAwith limited alkaline phosphatase
staining (bone marrow) as compared to HT29p53-mut,MSS CRC cells with
P4HA1 knockdown (Figure 5F). These results indicate that, in this model,
P4HA1 promotes CRC metastasis and knockdown of P4HA1 reduces dis-
semination of tumor cells to distant organs.
P4HA1 Correlates with P4HA2 and P4HB

Collagen prolyl-hydroxylases have alpha (P4HA1, P4HA2 and P4HA3)
and beta (P4HB) subunits. Gene coexpression analysis of data acquired
from UALCAN [34] showed a correlation of P4HA1 with P4HA2 (correla-
tion coefficient value, CC = 0.53) and P4HB (CC = 0.55) (Supplementary
Figure 5A). We found lower levels of P4HA2 and P4HB in CRC cells with
P4HA1 knockdown (Supplementary Figure 5B). Exposure of cancer cells
to diethyl-pythiDC decreased P4HA2 and P4HB levels (Supplementary
Figure 5C), indicating that, in CRCs, P4HA1 correlates with isoforms of
prolyl-4-hydroxylases.
Diethyl-pythiDC, a Small Molecule Inhibitor of P4HA1, Inhibits CRC Growth

Diethyl-pythiDC, a biheteroaryl compound, inhibits collagen
biosynthesis in breast cancer cells [36]. In the present study, CRC cells,
HCT116p53-wt,MSI, and SW480p53-mut,MSS were treated with various concen-
trations of diethyl-pythiDC. In prostate cancers, MMP1 is a downstream tar-
get of P4HA1 [15]. After treatment of the three types of cells with diethyl-
pythiDC, there was lower expression of MMP1 (Figure 6A). P4HA1 reduces
the stability of AGO2, a molecule involved in tumorigenesis, in a miRNA-
dependent manner [37,38]. Treatment of CRC cells with diethyl-pythiDC
decreased levels of AGO2 (Figure 6A). Also, it reduced the malignant phe-
notypes of CRC cells, including cell proliferation (Figure 6B), colony forma-
tion (Figure 6C), invasion (Figure 6D), and spheroid-forming capacity
(Figure 6E). The pythiDC treatment decreased the spheroid-forming capac-
ity of HCT116p53-wt,MSI and SW480p53-mut,MSS cells, and the change is statis-
tically significant; HCT116p53-wt,MSI (Student’s t test, P = .0002) and
SW480p53-mut,MSS (Student’s t test, P = .001) (data not shown).
Diethyl-pythiDC Reduces Tumor Growth in a PDX Model of CRC

To evaluate the antitumor efficiency of diethyl-pythiDC in PDXmodels,
the inhibitor was administered to mice bearing PDXs derived from a CRC
patient. CRC tissues from the patient and the xenograft tissuewere analyzed
by H&E staining, which showed that CRC PDX tissues exhibited a similar
histologic phenotype to that of patient tissue fromwhich they were derived
(data not shown). This PDX model of CRC was selected for treatment with
diethyl-pythiDC, as it had high P4HA1 expression. Diethyl-pythiDC
(100 mg/kg) inhibited tumor growth in comparison to controls (Figure 7,
A and B). Further, treatment of PDXs with diethyl-pythiDC decreased the
P4HA1 downstream target, MMP1 (Figure 7C). These results show that
diethyl-pythiDC reduces growth in a CRC PDX model through the P4HA1
downstream targets, MMP1 and AGO2.



Untreated Non-T-pre-miR Pre-miR-124

Untreated Non-T-pre-miR Pre-miR-124

rh
0

rh
42

Nu
m

be
r o

f c
el

ls

0

2

8

6

4

10
X105 611T

C
H

tw
35p

*

*P<0.01
Untreated 

Non-T-pre-miR 
Pre-miR-124

0 2 4 6 Days

-actin

P4HA1

Non
-T-

pre
-m

iR 

Untr
ea

ted
 

Pre-
miR-12

4

A B

C D

E

P4HA1
814 nt

3’UTR (1000 nt)

3’-CCGUAAG----U--G-CACGGAAU-5’
5’-GGCAUUC----A--C-GUGCCUUA-3’P4HA1

mir-124

-actin

EZH2

H3k27me3

EZH2 s
h1

EZH2 s
h2

NT sh
RNA

P4HA1

-actin

EZH2

H3k27me3

EZH2 s
h1

EZH2 s
h2

NT sh
RNA

P4HA1

-actin

EZH2

H3k27me3

EZH2 s
h1

EZH2 s
h2

NT sh
RNA

P4HA1

-actin

EZH2

Ade
no

-E
ZH2 

Con
tro

l A
de

no

P4HA1

CRL1807

Ade
no

-E
ZH2-d

el 
SET 

GF

HCT116
p53-wt,MSI

HCT116
p53-wt,MSI

HCT116
p53-wt,MSI

HCT116
p53-wt,MSI

SW480
p53-mut,MSS

HT29
p53-mut,MSS

Figure 4. miR-124 and EZH2 regulate P4HA1 in CRCs. (A) Predicted binding site of miR-124 in the 3′UTR of P4HA1. (B) Immunoblot analysis showing P4HA1
expression after transfecting HCT116p53-wt,MSI cells with miR-124 or NT-miR. Overexpression of miR124 was accomplished, and cell proliferation (C), colony formation
(D), and migration (E) assays were performed. (F) P4HA1 expression was analyzed by Western blotting in the shRNA-mediated knockdown of EZH2 in HCT116p53-wt,MSI,
SW480p53-mut,MSS, and HT29p53-mut,MSS cells. Decreased repressive marks of H3K27me3 show the efficiency of EZH2 shRNA. (G) CRL1807 SV40 transformed
colon cells infected with lacZ adenovirus or EZH2 or EZH2-deleted SET mutant adenovirus for 48 hours, followed by measurement of P4HA1 expression using
immunoblot analysis.

S. Agarwal et al. Translational Oncology 13 (2020) 100754

8



1hs1AH4PANRhsTN

yad
0

yad
7

yad
41

yad
1 2

A

yad
82

NT
 s

hR
NA

P4
HA

1 
sh

1

Hind limb boneLiverLung

B

NT shRNA P4HA1 sh1

Br
ig

ht
fie

ld
G

FP

C

NT
 s

hR
NA

P4
HA

1 
sh

1

X02X4

D

B
BM

BM

B

B
B

BM

BM

BM
B

81+
8nit ar eKKe

ra
tin

8
+1

8
PLA,A

LP
I PAD,D

AP
I

E

NT shRNA P4HA1 sh1

-actin

P4HA1

P4H
A1 s

h1

NT sh
RNA

F

HT29
p53-mut,MSS

HT29
p53-mut,MSS

HT29
p53-mut,MSS

HT29
p53-mut,MSS

(caption on next page)

S. Agarwal et al. Translational Oncology 13 (2020) 100754

9



←Figure 5. P4HA1 knockdowndecreases CRC tumor growth andmetastasis in a xenograftmodel. (A) Knockdown efficiency of P4HA1 in HT29p53-mut,MSS. (B) Bioluminescence
detection of metastasis in NSGmice at indicated time points after lateral tail-vein injection of HT29p53-mut,MSS expressing LUC cells with orwithout P4HA1 knockdown. (C) At
the completion of experiment, luciferin was injected to mice followed by organ excision. Ex vivo luminescence was performed for hind-limb bone, liver, and lungs.
(D) Representative figures to show cultures of bone marrow isolated from bones of animals and cultured in puromycin-selection media; 1000 μm. (E) H&E to show the
disseminated tumor cells in bones. (F) Immunofluorescence staining of bone with ALP as a marker of osteoclast lineage (red), keratin 8 + 18 as a marker of cancer cells
(yellow), and DAPI for nuclear stain (blue); scale bar, 20 μm.
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p53 mutations are common (more than 50%), we assessed whether abnor-
mal expression of P4HA1 is associated with p53 in CRC cell lines. Microsat-
ellite (MS) instability is a molecular feature that determines the
aggressiveness of CRC progression. Based on the MS status, CRCs are cate-
gorized into two molecular subtypes: those with MSI and those that are mi-
crosatellite stable (MSS). MSI-CRCs have a dysfunction of the mismatch
repair genes and are less aggressive; MSS-CRCs, accounting for 85% of spo-
radic CRCs, have active mismatch repair genes and are more aggressive.
Thus, for this study, we utilized CRC cell lineswith different p53 andmicro-
satellite status. HCT116p53-wt and HCT116p53-null cells exhibit MSI, and
SW480p53-mut cells exhibit MSS. Inhibition of P4HA1 by an shRNA de-
creased migration and invasion of CRC cells and xenograft tumor growth
in a manner that was not dependent on the p53 and microsatellite status
of the cells. In addition, inhibition by diethyl-pythiDC decreased tumor
growth in a CRC PDX model. Further, knockdown of P4HA1 decreased
CRC metastasis in mice, particularly tumor cell dissemination to liver and
bone. Thus, these findings provide evidence for an oncogenic role of
P4HA1 in CRC progression regardless of p53 and MS status.

Invasive and motile cancer cells enter the circulatory system and infil-
trate distant organs. The infiltrated cancer cells are called disseminated
tumor cells [40]. Bone marrow harbors CRC disseminated tumor cells,
which are a predictor of metastasis not only to bone but also to the liver
and lungs [41]. The current study, which investigated, with an experimen-
tal mouse model, the functional role of P4HA1 in CRC metastasis, showed
that knockdown of P4HA1 in CRC cells decreased the dissemination of
these cells to the liver and bone, indicating a role for P4HA1 in CRC dissem-
ination, metastasis, and colonization of tumor cells in distant organs.

Furthermore, we treated CRC cells with the small molecule inhibitor of
P4HA1, diethyl-pythiDC [36], which decreased the malignant phenotypes
of CRC cells. This inhibition of P4HA1 was consistent with a previous find-
ing, which showed inhibition of proliferation and spheroid formation ca-
pacity of melanoma cells treated with diethyl-pythiDC [13].

PDX models mimic human cancers and effectively predict tumor re-
sponses in humans [42]. NSG mice, the favored hosts, allow high-
engraftment rates of PDX CRC tissues as they, to avoid xenograft rejection,
lack T, B, and functional NK cells as well as both alleles of the IL2 receptor
common gamma chain [43]. The present study evaluated the effect of
diethyl-pythiDC on a PDX model, established in NSG mice that expressed
high levels of P4HA1. Diethyl-pythiDC treatment of mice decreased growth
of CRC PDXs and expression of the MMP1 protein, a downstream target of
P4HA1. These findings show that diethyl-pythiDC inhibits growth of CRCs
and that, through MMP1, P4HA1 is involved in tumor progression.

As reported for prostate cancer, the transcriptional regulator EZH2,
which methylates lysine 27 of histone H3 (H3K27me3) to promote tran-
scriptional silencing, regulates P4HA1 activity [15]. For prostate cancer
under hypoxia, HIF1α upregulates EZH2 expression, and EZH2 regulates
P4HA1 expression by repressing miR-124 [15]. In the present study, silenc-
ing of EZH2 in CRC cells by shRNA knockdown decreased expression of the
P4HA1 protein. Also, for CRC cells, overexpression of EZH2 by adenovirus
infection increased expression of the P4HA1 protein, showing that it regu-
lates P4HA1 expression.

MiRNAs, small noncoding nucleotides, can function either as oncogenes
or tumor suppressors. miR-124 acts as a tumor suppressor and is epigenet-
ically silenced in gastric cancer [44], breast cancer [45], and nasopharyn-
geal carcinoma [46]. A previous study from our laboratory shows that, in
prostate cancer cells, miR-124 regulates and targets P4HA1 [46]. The cur-
rent study with CRC cells showed that miR-124 targets P4HA1 and de-
creases malignant phenotypes. Other miRNAs that regulate the function
of P4HA1 are miR-122 in ovarian cancer cells [47] and miR-30e in hepa-
toma cells [12].

Our prior study showed that, in prostate cancers, MMP1 is a down-
stream target of P4HA1 [15]. MMP1 is involved in CRC progression and
tumor growth [48–50]. In the present study, P4HA1 knockdown in CRC
cells decreased the protein levels of MMP1. Additionally, CRC cells treated
with diethyl-pythiDC showed lower levels of MMP1, suggesting that CRC
progresses through P4HA1 via MMP1.
12
Hydroxylation of collagen proteins by collagen prolyl-4-hydroxylases is
essential for their functional folding and stability. P4HA1 interacts with
AGO2, a regulator of miRNA function and maturity, and regulates its func-
tion by hydroxylating it at proline 700, which leads to angiogenesis [37]. A
mutation at proline 700 or a dysfunction of P4HA1 reduces the stability of
AGO2 [38]. AGO2 is involved in tumorigenesis and is overexpressed in var-
ious carcinomas [37]. As observed in the present study, CRC cells treated
with diethyl-pythiDC had low levels of AGO2, suggesting that P4HA1 is in-
volved in CRC progression through modulation of AGO2.

P4HA2 is involved in the progression of breast cancer [51,52] and oral
squamous cell carcinoma [53]; P4HB functions in hepatocellular carcinoma
[54], diffuse gliomas [55], and gioblastoma multiforme [56]. As shown in
the present study, there was, for CRCs, a correlation between levels of
P4HA1 with P4HA2 and P4HB; when P4HA1 was depleted, P4HA2 and
P4HB protein levels were decreased. Treatment of CRC cells with diethyl-
pythiDC decreased the levels of P4HA2 and P4HB. These findings suggest
that P4HA1 interacts with its other isoforms in the progression of CRCs.

In sum, this is thefirst report showing that overexpression of P4HA1 has
a role in growth and metastasis of CRCs, particularly in dissemination of
CRC cells. In animal models, inhibition of P4HA1 decreased metastases to
liver and bone. Expression of P4HA1 was dependent on miR-124, and in
CRCs, its overexpression was independent of tumor stage and patient
race/ethnicity, age, or gender and p53 and MSI status. Treatment of CRC
cells with an inhibitor of P4HA1, diethyl-pythiDC, decreased proliferation,
invasion, and migration of cells and tumor growth in a PDX model. The
present results also elucidated roles of EZH2 and miRNA-124 in regulating
the expression of P4HA1 and the oncogenic function of P4HA1 through the
expression of MMP1 and AGO2. They also indicate that P4HA1 represents
as a therapeutic target and lay a foundation for clinical testing of diethyl-
pythiDC for treatment of CRC.
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