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ABSTRACT
Background. Adaptation to a ketogenic diet (keto-induction) can cause unpleasant
symptoms, and this can reduce tolerability of the diet. Several methods have been
suggested as useful for encouraging entry into nutritional ketosis (NK) and reducing
symptoms of keto-induction. This paper reviews the scientific literature on the effects
of these methods on time-to-NK and on symptoms during the keto-induction phase.
Methods. PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food
Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic
databases were searched online. Various purported ketogenic supplements were
searched along with the terms ‘‘ketogenic diet’’, ‘‘ketogenic’’, ‘‘ketosis’’ and ketonaemia
(/ ketonemia). Additionally, author names and reference lists were used for further
search of the selected papers for related references.
Results. Evidence, from one mouse study, suggests that leucine doesn’t significantly
increase beta-hydroxybutyrate (BOHB) but the addition of leucine to a ketogenic diet
in humans, while increasing the protein-to-fat ratio of the diet, doesn’t reduce ketosis.
Animal studies indicate that the short chain fatty acids acetic acid and butyric acid,
increase ketone body concentrations. However, only one study has been performed in
humans. This demonstrated that butyric acid ismore ketogenic than either leucine or an
8-chainmonoglyceride.Medium-chain triglycerides (MCTs) increase BOHB in a linear,
dose-dependent manner, and promote both ketonaemia and ketogenesis. Exogenous
ketones promote ketonaemia but may inhibit ketogenesis.
Conclusions. There is a clear ketogenic effect of supplemental MCTs; however, it
is unclear whether they independently improve time to NK and reduce symptoms
of keto-induction. There is limited research on the potential for other supplements
to improve time to NK and reduce symptoms of keto-induction. Few studies have
specifically evaluated symptoms and adverse effects of a ketogenic diet during the
induction phase. Those that have typically were not designed to evaluate these variables
as primary outcomes, and thus, more research is required to elucidate the role that
supplementation might play in encouraging ketogenesis, improve time to NK, and
reduce symptoms associated with keto-induction.
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INTRODUCTION
Very-low-carbohydrate ketogenic diets (VLCKDs) are becoming increasingly popular
for mainstream and athletic use for a range of outcomes including weight-loss and
maintenance (Bueno et al., 2013), improved satiety and a reduction in hunger (Paoli
et al., 2015; McClernon et al., 2007; Johnstone et al., 2008). The diet also offers specific
benefits for health conditions ranging from neurological disorders, obesity, and diabetes
and other conditions on the spectrum of metabolic syndrome, and offers potential for
the adjunct treatment of various cancers (Lefevre & Aronson, 2000; Keene, 2006; Levy et
al., 2012; Henderson et al., 2006; Neal et al., 2008; Paoli et al., 2013; Sumithran & Proietto,
2008; Maalouf, Rho & Mattson, 2009; Castro et al., 2015; Varshneya et al., 2015; Kulak &
Polotsky, 2013). Ketogenic diets elicit a state of ketosis known as ‘nutritional ketosis’
(NK), a state of hyperketonaemia distinct from pathological ketosis such as diabetic
ketoacidosis (DKA) (Krebs, 1966). Ketosis refers to the production of ketone bodies,
derived from fats (and some amino acids) for use as an alternative fuel in times of fasting
or drastic carbohydrate restriction. A restriction of carbohydrate, either by fasting or
by restricting dietary carbohydrate, results in reduced insulin levels, thereby reducing
lipogenesis (the creation of fats) and fat accumulation. When glycogen reserves become
insufficient to supply the glucose necessary for normal β-oxidation of fat, via the provision
of oxaloacetate in the Krebs cycle, acetyl-CoA is then used instead in the biosynthesis
of ketone bodies via acetoacyl-CoA and β -hydroxy- β-methylglutaryl-CoA (Lehninger,
Cox & Nelson, 2008) to ensure provision of fuel to the Central Nervous System (CNS),
which usually relies on glucose. The process of ketogenesis further allows coenzymes
to be freed to ensure continued fatty-acid β-oxidation (Lehninger, Cox & Nelson, 2008).
To elicit this carbohydrate restriction, while also providing sufficient alternate fuel to
ensure sustainability of the diet, i.e., in comparison to fasting to achieve ketosis, VLCKDs
have been used to encourage ketosis. Early research on KDs focussed on children with
epilepsy and for this purpose, a VLCKD typically consists of a 3:1 to 4:1 ratio of lipid
to non-lipid. This treatment for epilepsy was pioneered at Johns Hopkins University
Hospital (Livingstone, 1972; Livingston, Pauli & Pruce, 1977), and is referred to as a ‘classic’
or ‘standard’ ketogenic diet.

Ketogenic diets are now commonly applied, for a range of desired outcomes, and
with differing definitions of what constitutes a ketogenic diet. Both low-energy diets and
VLCKDs with fewer than 50 g of carbohydrate per day typically result in BOHB levels of
≥0.5 mmol L−1 (Gibson et al., 2015). This threshold has been used as a cut-off point for
entry into ketosis by Guerci and colleagues (Guerci et al., 2003), and is commonly applied
as a marker for entry into NK in the nutrition field, as compared to the typically higher
levels expected in the medical field to elicit beneficial effects for seizure control in epileptic
children (Gilbert, Pyzik & Freeman, 2000).

Time to ketosis
There is a paucity of research that identifies specific time points to the now-common
definition of NK, as defined by BOHB levels of ≥0.5 mmol L−1 (Gibson et al., 2015; Guerci
et al., 2003). In a study comparing fasted ketogenic protocols to a more gradual initiation
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of a ketogenic diet, Bergqvist and colleagues observed that participants fasting, achieved
mean levels of ≥0.5 mmol L−1 BOHB, on the day following initiation of the diet, whereas
those on a 1:1 ketogenic diet (by weight) achieved the same level two days after initiation of
the diet (Bergqvist et al., 2005). Other studies have measured either tangentially or directly,
the achievement of ‘ketosis’ but have not specifically identified the time at which a level
of ≥0.5 mmol L−1 was achieved. Berry–Kravis and colleagues observed a mean time to
ketosis (urinary >80 mg/dl) of 42 h (Berry-Kravis et al., 2001) Wirrell and colleagues have
demonstrated a mean time to ketosis of 33 and 58 h for any trace of urinary ketones or
‘good ketosis’ (of >0.8 mmol L−1) respectively (Wirrell et al., 2002). Wusthoff et al. (2010)
recorded two cases of adults with prolonged nonconvulsive status epilepticus in which
‘stable ketosis’ was achieved after eight and 10 days respectively, 3.6 and >1.6 mmol L−1,
but the definition for ketosis, in this study, was not mentioned and we cannot extrapolate
the time to NK as defined in clinical nutrition. Strzelczyk et al. (2013) suggested ketosis as
the presence of urinary ketones, some 3.5 days after initiation of a ketogenic diet, but at
that time participants had achieved serum BOHB of 3.6 mmol L −1. Hoorn and colleagues
observed no difference between fasted and non-fasted ketogenic protocols for time to
ketosis, without specifically describing their definitions for ketosis or the time to ketosis
itself (Kang et al., 2007; Chul Kang et al., 2005).

So, while the achievement of ketosis has been described in the medical literature, there
are inconsistencies in the measurement of, and definition for ketosis in these papers.

Adverse effects of keto-induction–the ‘keto-flu’
Adaptation to a VLCKD, or ‘keto-induction’, and the achievement of NK, when
transitioning froma standard, higher carbohydrate diet, can cause various unpleasant effects
(Hartman & Vining, 2007). Symptoms of keto-induction are predominantly constipation,
headache, halitosis, muscle cramps, diarrhoea, and general weakness and rash (Yancy Jr et
al., 2004; Kang et al., 2004). These occur because of increased urinary sodium, potassium
andwater loss in response to lowered insulin levels (Hamwi et al., 1967;De Fronzo, Goldberg
& Agus, 1976; DeFronzo, 1981; Tiwari, Riazi & Ecelbarger, 2007), greatest between days 1–4
of a fast or ketogenic diet (Hamwi et al., 1967), and transient reductions in glucose provision
to the brain, observed to occur on days 1–3, with blood glucose normalising after day four
(Harber et al., 2005). Constipation may result from reduced food volume or reduced fibre
intake, although this finding could be due to the groups that have been studied, which
have included children with disabilities, who commonly experience constipation due to
immobility (Kang et al., 2004).

These symptoms are often referred to in the mainstream and grey literature as ‘keto-flu’
but are not well illustrated in the scientific literature. For example, a Google search returns
over 22,000 results for the term ‘‘keto-flu,’’ but the same term searched in MEDLINE
Complete, CINAHL Complete, Alt HealthWatch, Food Science Source, SPORT Discus
with Full Text, Psychology, and the EBSCO Behavioural Sciences Collection returns no
results. Several studies have described adverse effects during ketogenic diets but to our
knowledge, no studies have specifically described symptoms of keto-induction in the short
time between commencing a ketogenic diet and the achievement of NK.
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Adverse effects resulting from a VLCKD are likely to reduce compliance and tolerability
(Vining et al., 1998), and thus affect the efficacy of these diets as clinical interventions.

There have been several methods suggested to reduce symptoms of keto-induction and
to reduce the time taken to achieve NK, including the ketogenic amino acid leucine, short
chain fatty acids, medium chain fatty acids, and exogenous ketones.

The aim of this paper, therefore, is to elucidate the evidence for and against commonly
applied nutritional supplements, purported to be ketogenic, to inform clinical practice
in the growing field of ketogenic diets for common-use. This paper reviews the available
scientific literature relevant to improvements in time to ketosis and symptoms of keto-
induction, resulting from these nutritional supplements.

METHODS
PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source
and EBSCO Psychology and Behavioural Sciences Collection electronic databases were
searched online. Various purported ketogenic supplements, arising from a qualitative
appraisal of forums, social media, message boards, and Google searches for ketogenic
supplements, were searched along with the terms ‘‘ketogenic diet’’, ‘‘ketogenic’’, ‘‘ketosis’’
and ketonaemia (/ketonemia). Additionally, author names and reference lists were used for
further search of the selected papers for related references. There is a paucity of studies on
time to NK and mitigation of symptoms of keto-induction an as data related to the effects
of various supplements on time to induction of ketosis and on symptoms of keto-induction
are limited, and there is a lack of homogeneity between study objectives, outcomes, and
measures, a narrative review style was chosen.

RESULTS
Leucine
Leucine and lysine are solely ketogenic amino acids. Thus, they do not contribute to
gluconeogenesis. Higher leucine (and isoleucine) concentrations result from a ketogenic
diet and are related to reduced glutamate-to-GABA ratio and this might explain some of
the anti-seizure activity of a ketogenic diet in epilepsy (Roy et al., 2015). There appears to
be a high affinity of kidney cells for ketogenesis from leucine (Noda & Ichihara, 1976).

Progression of fasting increases the conversion of leucine to ketone bodies and peripheral
tissue is catabolised to provide leucine for ketogenesis (Kulaylat et al., 1988). Leucine
can also be degraded in rat astroglial cells to the ketone bodies, including BOHB, and
when released by these cells, used by neighbouring neurones as a fuel substrate (Bixel &
Hamprecht, 1995). Leucine also results in hepatic ketogenesis (Holecek et al., 2003). Studies
in mice have shown that while ingested L-leucine can reduce seizure activity similarly to
a KD, it does not independently increase blood levels of BOHB (Hartman et al., 2015).
Evangeliou and colleagues have demonstrated that the addition of 20 g per day of BCAAs,
including 9 g of leucine, in 17 children with intractable epilepsy, altering the ratio of lipid
to protein from 4:1 to around 2.5:, had no effect on ketosis, along with greater reductions
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in seizure activity. The authors postulated that this could be due to the ketogenic effect of
leucine, but may also result from a greater availability of BCAAs (Evangeliou et al., 2009).

Short chain fatty acids
Short-chain fatty acids (SCFAs) have carbon chains between two and five in length. These
fatty acids include acetic acid (C:2), propionic acid (C:3), butyric acid (C:4), and valeric
acid (C:5). Short chain fatty acids, especially butyric acid, are used extensively as a fuel
substrate by intestinal epithelial cells (Wong et al., 2006). It is generally accepted that chain
length affects the relative deposition of fatty acids into either lymph or the portal vein (Mu
& Høy, 2004). Those short-chain fatty acids that escape metabolism by epithelial cells are,
therefore, primarily absorbed via the hepatic portal vein and do not require ‘bundling’
with micelles and chylomicrons for absorption (Kuksis, 2000). The highest quantities of
short-chain fatty acids have been observed in portal blood, followed by hepatic, and far less
in peripheral blood (Cummings et al., 1987). Thus, they bypass the usual route of absorption
(for the more common long-chain fatty acids) into the lymphatics and deposition into the
bloodstream via the subclavian vein, and instead, are transported via the hepatic portal vein
to the liver where they can be converted into the ketone bodies (Bugaut, 1987; Bourassa et
al., 2016; Stilling et al., 2016).

Acetic acid
Acetic acid is a two-carbon SCFA. It comprises approximately 4–20% of vinegar. Vinegar
has been demonstrated to improve postprandial insulin sensitivity in healthy and diabetic
people and improve glycaemic responses to meals (Johnston, Kim & Buller, 2004; Liljeberg
& Björck, 1998; Brighenti et al., 1995). Urinary excretion of acetone (a ketone body) is
increased in phloridzinised dogs and fasting rats after feeding with acetic acid (MacKay et
al., 1940). Acetone is the spontaneous breakdown product of the ketone bodies acetoacetate
and BOHB. Thus, it is likely that acetic acid is ketogenic, and has additional benefits for
overall metabolic health, however, no research has been performed on acetic acid and its
specific effects on the induction of ketosis or mitigation of keto-induction symptoms in
humans. Interestingly, vinegar is commonly prescribed as a ‘free food’ in ketogenic diet
trials (Rother, 2007; Perez-Guisado & Munoz-Serrano, 2011; Nebeling & Lerner, 1995), and
may provide an under-recognized stimulus for ketogenesis.

Butyric acid
Butyric acid (BTA) is a four-carbon, short-chain fatty acid found in the milk of ruminants
and present in small amounts in many dairy foods. Most BTA in humans is produced by
microbial intestinal fermentation of dietary fibre and resistant starch. Most of the butyric
acid produced by this fermentation of starches is absorbed and used directly by colonocytes,
with most of the remainder absorbed into the hepatic portal vein, and transported to the
liver where it can be converted to ketone bodies (Bourassa et al., 2016; Stilling et al., 2016).
A small amount is absorbed directly from the large colon and enters systemic circulation,
to be used directly by peripheral tissue (Bourassa et al., 2016). Butyrate exerts effects
directly on the colonic mucosa, including inhibition of inflammation and carcinogenesis,
decreasing oxidative stress, and promotion of satiety (Hamer et al., 2008; Fung et al., 2012).
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Thus, it serves an important role in preserving the health of the colon, microbiota, and
may have other beneficial roles for general and systemic health. Animal studies on the
ketogenic potential of butyrate are mixed. For example, silage butyrate content has been
shown to provide no significant effect on subclinical ketosis in dairy cows (Samiei et al.,
2015), however, sub-clinical ketosis is higher in those receiving silage higher in butyrate
content (Vicente et al., 2014).

In a recent study in humans, the effect of L-leucine, octanoyl-monoacylglycerol (O-
MAG), a monoglyceride consisting of an 8-carbon fatty acid, L-carnitine, and butyric acid
on acetoacetate and BOHBwere studied. Both 2 g and 4 g of butyric acid were demonstrated
to bemore ketogenic than either 5 g of leucine, or 5 or 10 g ofO-MAG(St-Pierre et al., 2017).

Medium chain triglycerides
In medium chain triglycerides (MCTs) two-to-three of the fatty acid chains attached to the
glycerol backbone are medium in length. These medium-chain fatty acids (MCFAs) are
comprised of a 6–12 carbon chain. TheMCTs are: caproic (C6), caprylic (C8), capric (C10)
and lauric acid (C12) (Marten, Pfeuffer & Schrezenmeir, 2006). Similar to the short-chain
fatty acids and unlike long-chain triglycerides (LCTs), MCTs do not require the actions of
bile, nor micellar-chylomicron mediated absorption into the lymphatics and instead are
diffused directly into the hepatic portal vein and preferentially converted into bio-available
ketone bodies in the liver. Huttenlocher and colleagues first demonstrated that diets
containing fewer calories from lipids than a ‘classic’ ketogenic diet—around 60%–75% of
calories—can induce NK if they include a high proportion of medium chain triglycerides
(MCTs) (Huttenlocher, Wilbourn & Signore, 1971). A VLCKD with 60% of energy derived
from MCTs, a three-fold greater intake of carbohydrate (18% vs. 6%) and a ∼50% (7%
vs. 10%) increase in protein compared to a standard ketogenic diet induces NK with no
appreciable difference in BOHB levels (Huttenlocher, 1976).

Dietary MCTs are also known to promote both ketonaemia and ketogenesis in animals
(Bach et al., 1977; Yeh & Zee, 1976) and humans with and without health conditions
(St-Onge et al., 2003; Yajnik et al., 1997). MCTs promote ketonaemia and ketogenesis
(useful to reduce the risk of night-time hypoglycaemic coma) in those with carnitine
palmitoyltransferase deficiency, a rare genetic condition which inhibits the ability to
produce ketone bodies from long-chain fatty acids (Bonnefont et al., 1989; Bougnères et
al., 1981). MCTs also increase BOHB when calorically dose-matched to either LCTs or
carbohydrate in single feeding and non-ketogenic diet studies (Decombaz et al., 1983;
Seaton et al., 1986; Yost & Eckel, 1989; Krotkiewski, 2001). When fed intravenously, MCTs
increase ketogenesis when compared to both structurally similar fats (Mingrone et al.,
1993) and LCTs (Jiang et al., 1993; Lai & Chen, 2000). However, ketogenesis is reduced by
the simultaneous application of glucose (Kolb & Sailer, 1984). It has been demonstrated
by Sandstrom and colleagues that in a hypercaloric diet, there are increased BOHB levels
observed with the application of MCTs that aren’t seen in a hypocaloric state (Sandström
et al., 1995).

MCTs increase BOHB in a linear and dose-dependent fashion. For example, when eleven
pre-term infants were fed formulas with either 25% or 50% of fat calories coming from
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MCTs for at least 96 h (30 kcal/ml, around 50% calories from fat in total, 10% protein,
40% carbohydrate) the 50% MCT formula resulted in a mean plasma level of BOHB of
0.14 ± 0.03 mmol/L/, a nearly three-fold increase over the lower MCT formula (0.06 ±
0.01) (Wu et al., 1986).

While there is a paucity of research on the effect ofMCTs on the time taken to achieveNK,
MCTs are demonstrably ketogenic and thus, allow induction of NK with lower proportions
of fat in the diet, than that used in ‘classic’ 3 or 4:1 lipid to non-lipid (or ‘ketogenic ratio’)
protocols. When ‘classic’ ketogenic diets with a greater than 3:1 ratio of lipid to non-lipid
are compared to MCT ketogenic diets with 60% of calories fromMCT, NK can be achieved
with a lower lipid intake. Huttenlocher first observed higher BOHB levels in children with
epilepsy aged 2–9 years, at up to one month on an MCT ketogenic diet, and marginally
lower after this time, when compared to a classic ketogenic diet, although these differences
were not significant (Huttenlocher, 1976). In a study of 55 children with severe epilepsy,
Schwartz and colleagues found modified ketogenic diets, MCT ketogenic diets, and classic
ketogenic diets to all be ‘ketogenic’ (inducing NK) with peak ketone body concentrations
of approximately 1 mmol/L, 1.5 mmol/L and 4 mmol/L respectively, after three weeks on
the differing ketogenic protocols (Schwartz, Boyes & Aynsley-Green, 1989). Nine children
were subsequently trialled on a second diet and profiled three weeks later. Cumulative
results over 24 h of metabolic testing demonstrate that expression of ketone bodies rises
(in order) from a normal diet (little change) to a modified MCT diet, an MCT ketogenic
diet, and the greatest rise in ketone bodies over 24 h resulting from a classic (4:1) ketogenic
diet. In a 12-month study, a classic ketogenic diet resulted in higher levels of BOHB (and
acetoacetate) over all time periods (three, six, and 12 months) but this was only statistically
significant at three and six months (p< 0.001) (Neal et al., 2009).

After ingestion of MCT at a dosage of 30 g MCT/m (Paoli et al., 2015) body surface
area by nine children (in a study of seizure control), BOHB levels rose progressively
after administration from a mean of 0.2 ± 0.1 mmol/L after an overnight fast to 1.05
± 0.3 mmol/L at 180 min. Participants reached NK on average at 30–60 min with most
participants in NK by the 90thminute, but there was significant variation in BOHB between
individuals (Ross et al., 1985). With a lower dosage of 7.5 g of MCT taken three times per
day after an acclimation period of 5 g MCT taken three times per day for one week, plasma
BOHB was higher, yet not inducing NK (Courchesne-Loyer et al., 2013).

Exogenous ketones
Exogenous ketone supplements provide BOHB directly to the body without requiring
ketogenesis and without concurrent elevations in free fatty acids (Veech, 2014). They
are considered to be a safe and effective way to increase ketone body concentrations
(Hashim & Van Itallie, 2014). Ketone supplements demonstrate promise as potential
adjunct treatments for brain injury (White & Venkatesh, 2011), cancer (Poff et al., 2015;
Poff et al., 2014), Angelman syndrome (Ciarlone et al., 2016), for reducing inflammation by
suppressing activation of the NLRP3 inflammasome (Youm et al., 2015), and Alzheimer’s
disease (Kashiwaya et al., 2013). Ketone supplements might also improve fueling during
exercise, reduce lactate production, and improve performance due to glucose sparing
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(Okuda et al., 1991), and have positive effects on anxiety (Kashiwaya et al., 2013), and
mental performance and memory (Kashiwaya et al., 2013).

Exogenous ketone supplements are available as either salts or esters of BOHB.
Supplements containing ketone salts (KS) are some combination of sodium-,
magnesium-, calcium or potassium-BOHB, and are available commercially from several
companies under patent (D’Agostino, Arnold & Kesl, 2015). Ketone esters (KEs) at the time
of writing, are only available for research, primarily as 1,3-butanediol monoester of BOHB
(Hashim & Van Itallie, 2014) and thus, the animal and human research has mostly focused
on the use of ketone esters. Both ketone esters and salts elevate BOHB to levels consistent
with NK (Holdsworth, Cox & Clarke, 2016), with ketone esters having greater effects on
ketonaemia with ketone salts providing significantly higher reporting of gastrointestinal
symptoms (Stubbs et al., 2016). Ketone salts might provide a greater potential for long-term
side effects if the inorganic ion load delivered is excessive for the individual (Stubbs et al.,
2016). Conversely, R-1,3-butanediol from ketone monoesters is readily metabolized in the
liver to AcAc (Clarke et al., 2012). Clarke et al. (2012) detected no R-1,3-butanediol in the
plasma of participants taking a ketone monoester supplement, except at the highest dosage
of 714 mg/kg body weight, at which dose plasma R-1,3-butanediol was detectable at a level
of ≤ 1.0 mmol/L and was undetectable 4 h later.

At a dosage of 395 mg/kg bodyweight, KE increased BOHB in healthy volunteers from
0.2 mmol/L (±0.02) at baseline to 3.3 mmol/L (±0.2) one hour later (Stubbs et al., 2015a),
and from 0.16 mmol/L (±0.02) at baseline to 3.16 mmol/L (±0.14) (Stubbs et al., 2015b)
The same dose has been used to determine the effect on ketonaemia of KE taken with or
without a meal. BOHB concentration (one-hour post-KE) was lower in those having taken
a meal, but both groups achieved levels of ketonaemia consistent with NK; 2.1 mmol/L
(±0.2) and 3.1 mmol/L (±0.1) respectively (Stubbs et al., 2015c). In a study using higher
dosages (0.573 g/kg BW) in healthy male athletes performing an hour of bicycle exercise
at 75% of maximal exercise intensity BOHB levels rose from 0.1 to 3.4 mmol/L (p< 0.01)
following ketone drinks (Cox et al., 2015).

While it is clear that exogenous ketones increase serum BOHB, they are not ketogenic,
and may, in fact, inhibit endogenous ketone production (Balasse & Neef, 1975). In other
words, they promote ketonaemia but do not encourage the creation of ketone bodies in
the liver. So, it is more accurate to say that exogenous ketones mimic the effects, many of
which are positive, of NK, rather than inducing it.

CONCLUSIONS
It’s unclear at this time whether an elevation in ketones over and above NK would mitigate
the effects of keto-induction. It has, for example, been observed that mood is improved
within the first two weeks of a diet irrespective of macronutrient composition (Rosen et
al., 1985), and only one study, to our knowledge, has demonstrated a correlation between
ketone levels and memory performance (Krikorian et al., 2012).

Except for MCTs, there is limited research on the ketogenic potential of nutritional
supplements, especially in human subjects. While the ketogenic amino acid leucine may
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not independently encourage ketogenesis to levels consistent with NK, more research is
required, and the effect on time to NK and symptoms of keto-induction, particularly in a
classic KD, are at this stage unknown.

Similarly, there is a paucity of research on the short-chain fatty acids and their effects on
ketogenesis. Theirmode of absorption andmetabolism, like that ofMCTs, but perhaps even
more rapid, hints at a potential role for encouraging ketogenesis, and thus, the potential
for improving time to NK and reducing symptoms of keto-induction.

There is a considerable amount of research demonstrating that MCTs promote both
primary ketonaemia resulting from the conversion of medium chain fatty acids liberated
from MCTs into bio-available ketone bodies, and longer-term ketogenesis by facilitating
keto-adaptation. Expression of the ketone body BOHB is increased in a linear, dose-
dependent manner in response to oral loads of MCT but it is unclear whether MCTs
independently improve time to NK. Modified MCT ketogenic diets do not significantly
hasten the induction of NK over a classic ketogenic diet with a minimum of three parts
lipid to one part non-lipid, but they do allow NK to occur in diets containing greater
amounts of non-lipid macronutrients.

There has, however, been little research performed on the application of MCTs to
classic ketogenic diets and whether, if applied, they would; (a) improve time to NK, (b)
result in significantly higher levels of BOHB, and (c) significantly reduce symptoms of
keto-induction. It is also unknown if, in the context of a ketogenic diet, MCTs provide
additional benefits, for example for physical and mental performance and mood.

Exogenous ketones are unlikely to be ketogenic per se, and may inhibit ketogenesis,
however, the rapid and substantial elevation of BOHB offers potential to mitigate effects
of keto-induction, and thus, could play a role in improving adherence to a ketogenic diet.
Newport et al. have reported improvements in mood and cognitive performance resulting
from ketone ester treatment over 20-months in an Alzheimer’s Disease case. In this case,
cognitive performance tracked plasma BOHB concentrations. In a direct, dose-matched
comparison, Kesl and colleagues evaluated the effects of ketone esters, salts, MCTs, and
MCT + KS on blood BOHB in Sprague-Dawley rats at a dose of 5 g/kg. At 0, 30, and
60 min and 4, 8, and 12 hrs post administration (by intragastric gavage) KS + MCT
and MCT supplementation rapidly elevated and sustained significant BOHB elevation
compared to control for the duration of the 4-week study. Ketone salts did not significantly
elevate BOHB at any time point tested compared to controls. Ketone ester supplements
significantly elevated BOHB levels for the duration of the 4-week study. This further
demonstrates, albeit, in non-human subjects, the superiority of KE to KS for elevating
BOHB, and the utility of MCT for the same purpose, but is likely to limited in applicability
to health and performance as we have seen demonstrable increases in BOHB, consistent
with NK levels with supplementation of KS in humans (Holdsworth, Cox & Clarke, 2016;
Stubbs et al., 2016). Research performed on exogenous ketone supplements is, at this time,
highly preliminary, and has been predominantly performed using animal subjects. Further
clinical research is required to translate the potential benefits seen in these studies, to
human models of disease and disorder.
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This review was limited by a dearth of studies demonstrating the effect of
supplementation on the time taken to achieve ketosis as defined by the lingua franca
of NK, ≥0.5 mmol L −1 and on symptoms of keto-induction during this time.

While studies have described symptoms arising from a ketogenic diet, few studies have
specifically evaluated symptoms and adverse effects of a ketogenic diet during the induction
phase, and the studies that have been performed typically have not been designed to evaluate
these as primary outcomes, and thus, our conclusions are extrapolated from a variety of
sources. There is also little consensus on whether greater levels of BOHB (over and above
NK threshold) are, in fact, associated with fewer symptoms of ‘keto-flu’, nor for that matter
with improved outcomes but as previously noted, Newport and colleagues have observed
a linear correlation between mood and cognition, and BOHB levels (Newport et al., 2015).
Adverse effects associated with the induction of NK might cause increased drop-out rates
and preclude some of the positive effects for those that would otherwise benefit from a
VLCKD. For example, Yancy and colleagues noted an 8% overall dropout rate due to
difficulties adhering to an LCHF diet, with a further 5% withdrawing from their study
due to adverse effects (Yancy Jr et al., 2004). High attrition rates due to tolerability and
gastrointestinal side effects have also been noted in childhood epilepsy research utilising
VLCKDs (Levy et al., 2012; Chul Kang et al., 2005).

Preliminary research suggests that increased BOHB levels and a faster time-to-NK
might improve the acceptability of the KD and improve compliance rates, but more
research is required to understand the role that supplementation could play in encouraging
ketogenesis, improving time to NK, reducing symptoms associated with keto-induction,
and the effect this might have on improving adherence to, and outcomes from a VLCKD.
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