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Abstract: Glioblastoma (GBM) remains one of the most aggressive cancers, partially due to its ability
to migrate into the surrounding brain. The sphingolipid balance, or the balance between ceramides
and sphingosine-1-phosphate, contributes to the ability of GBM cells to migrate or invade. Of the
ceramidases which hydrolyze ceramides, acid ceramidase (ASAH1) is highly expressed in GBM
samples compared to non-tumor brain. ASAH1 expression also correlates with genes associated
with migration and focal adhesion. To understand the role of ASAH1 in GBM migration, we utilized
shRNA knockdown and observed decreased migration that did not depend upon changes in growth.
Next, we inhibited ASAH1 using carmofur, a clinically utilized small molecule inhibitor. Inhibition of
ASAH1 by carmofur blocks in vitro migration of U251 (GBM cell line) and GBM cells derived from
patient-derived xenografts (PDXs). RNA-sequencing suggested roles for carmofur in MAPK and
AKT signaling. We found that carmofur treatment decreases phosphorylation of AKT, but not of
MAPK. The decrease in AKT phosphorylation was confirmed by shRNA knockdown of ASAH1. Our
findings substantiate ASAH1 inhibition using carmofur as a potential clinically relevant treatment to
advance GBM therapeutics, particularly due to its impact on migration.

Keywords: glioblastoma; acid ceramidase; migration; ceramides; AKT

1. Introduction

Dysregulated sphingolipid metabolism is a common feature of glioblastoma (GBM),
the most common primary malignant brain tumor with a median survival of only
14–16 months [1,2]. Despite maximal safe surgical resection, radiotherapy, or chemotherapy
with temozolomide (TMZ), GBM almost always recurs, contributing to the dismal prog-
nosis [3]. Recent work demonstrated that after radiotherapy, GBM patients have elevated
levels of acid ceramidase (ASAH1) protein. The ASAH1 belongs to a family of ceramidases
that are involved in sphingolipid metabolism [4]. Specifically, they hydrolyze pro-apoptotic
ceramides to sphingosine, which can be phosphorylated by sphingosine kinases to produce
sphingosine-1-phosphate (S1P). S1P plays a critical role in cell evasion of apoptosis [5].
Contributing to the highly invasive characteristics of GBM, S1P has been shown to increase
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migration of GBM cell lines when added to migration assays in culture [6]. Importantly,
TCGA heatmap analysis suggests that ASAH1 is the only ceramidase that is expressed
highly in the GBM tumor, as compared to non-tumor brain [7].

Inhibitors of acid ceramidase have shown promise in vitro by inducing apopto-
sis and increasing ceramides [8,9]. Some ASAH1 inhibitors, including ARN14988, N-
oleoylethanolamine, and carmofur, have been shown to decrease the growth of GBM cell
lines and cells isolated from GBM patient-derived xenografts (PDX) [8]. These studies
emphasize the role of ASAH1 on GBM cell survival, yet, none of the ASAH1 inhibitors have
reached clinical trials for GBM. Since the blood-brain barrier would likely limit success of
many of the currently established inhibitors of ASAH1, we chose to focus on carmofur as
it is known to cross the blood–brain barrier and has been used clinically in Japan to treat
colorectal cancer since the 1980s [9–12]. Carmofur, a derivative of 5-fluorouracil (5-FU),
covalently binds to the active site of ASAH1 to inhibit its function [13]. In contrast to 5-FU,
which did not alter ASAH1 activity or levels of ceramides, in vitro studies in adenocarci-
noma cell lines showed that carmofur increased ceramides, specifically C14:0, C16:0, and
C18:0 [9]. The C18:0 ceramide, produced by ceramide synthase 1, is the most abundant
ceramide in the brain and is decreased in GBM patient samples compared to non-tumor
brain [1,14]. C18:0 leads to the dephosphorylation of many oncogenic proteins such as
AKT and ERK by activating protein phosphatase-1 (PP1A) and protein phosphatase-2A
(PP2A) [15]. In GBM, ASAH1 expression is associated with CD133+ GBM cells, a population
of stem-like GBM cells which are highly invasive [8,16] and particularly sensitive to AKT
inhibition leading to decreased growth and migration [17].

Shifting the balance from S1P to ceramides via ASAH1 inhibition could serve as a
mechanism to overcome GBM cell migration. Though an ability of ASAH1 inhibition in
blocking invasion of melanoma cells has been demonstrated [18], the effects on GBM cell
migration of genetic targeting or pharmacologic inhibition of ASAH1 with carmofur have
not been determined. Here, we established a novel role for carmofur in the inhibition of
GBM cell migration and identified loss of AKT phosphorylation as a mechanism for this
phenotype.

2. Materials and Methods
2.1. Cell Lines

The patient-derived xenografts (PDXs) D456 and JX22 were gifts from Dr. Darrel Bigner
(Duke University) and Dr. Jann Sarkaria (Mayo Clinic; https://www.mayo.edu/research/
labs/translational-neuro-oncology/mayo-clinic-brain-tumor-patient-derived-xenograft-national-
resource/pdx-characteristics/pdx-phenotype) (accessed on 25 February 2021), respectively.
GBM PDX were propagated as subcutaneous xenografts in Balbc nu/nu mice initiated
from minced PDX tissue or cells, in accordance with the guidelines established by UAB
Institutional Animal Care and Use Committee. Once xenografts were approximately 10 mm
in diameter, xenografts were dissociated as we and others have previously described us-
ing a Papain Dissociation System (Worthington Biochemical Corporation, Lakewood, NJ,
USA) [16,17,19]. Isolated cells were maintained in culture for a maximum of 10 passages to
preserve their molecular features [20,21]. The U251 cell line was obtained from Dr. Corinne
Griguer (University of Iowa, previously at UAB).

2.2. Culture of Cell Lines and Patient-Derived Xenografts

All cells isolated from GBM PDX and cell lines were cultured in the absence of serum,
under conditions which more faithfully recapitulate the molecular and cellular heterogene-
ity of GBM patients [22,23]. Media consist of DMEM/F12 (Life Technologies, Carlsbad, CA,
USA, cat# 21041-025) supplemented with Gem21 Neuroplex without vitamin A (Gemini Bio-
products, West Sacramento, CA, USA, cat# 400-161), 100 U/mL penicillin and 100 µg/mL
streptomycin (Gibco, Waltham, MA, USA, cat# 15-140-122), 1% sodium pyruvate (Gibco,
Waltham, MA, USA, cat# 11360070), and 10 ng/mL of epidermal growth factor and fibrob-
last growth factor (Gemini Bioproducts, West Sacramento, CA, USA, cat# 300-110P and
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300-112P). Where indicated for short-term experiments requiring monolayer of cells or in
which phosphorylation was stimulated, FBS media consisted of DMEM/F12 with 10% FBS
(Peak Serum, Wellington, CO, USA, cat# PS-FB2), 100 U/mL penicillin and 100 µg/mL,
and 1% sodium pyruvate. Propagation of CSC293T cells for generation of lentivirus was
conducted as we described [24].

2.3. Accession and Analysis of Publicly Available Datasets

The Cancer Genome Atlas (TCGA) and Gravandeel datasets were accessed using the
GlioVis portal (http://gliovis.bioinfo.cnio.es) (accessed on 25 February 2021) [8]. Histology
graphs were compared using either independent t-test or one-way ANOVA followed
by Dunnett’s multiple comparisons test, where applicable. Survival was analyzed using
Kaplan–Meier survival curves followed by log-rank test. Optimal cutoff was used in GlioVis
to determine high and low expression of the relevant genes unless otherwise stated. Gene
correlations >0.3 and <−0.3 to ASAH1 were also downloaded from GlioVis and uploaded
to WebGestalt (http://www.webgestalt.org) (accessed on 12 August 2021) [25] for gene
set enrichment analysis (GSEA) compared to WikiPathway Cancer with a minimum of
10 genes per pathway and weighted set cover to reduce redundancy of pathways.

2.4. Generation of Knockdown Cell Lines

Knockdown cells were generated by lentiviral infection using a non-targeting control
for the PLKO.1 vector (Millipore Sigma, St. Louis, MO, USA, cat# SHC001) or Precision
LentiORF positive control (Horizon Discovery, Cambridge, UK, cat# OHS5832) as a fluo-
rescent positive control for infection and two different ASAH1-directed shRNA constructs
(Millipore Sigma, St. Louis, MO, USA, cat# TRCN0000235585 and TRCN0000219048). Con-
structs were transfected into CSC293T cells using Fugene HD (Promega, Madison, WI,
USA, cat# PRE2312). After 48, 72, and 96 h, virus was collected for infection. Viral RNA
was isolated using NucleoSpin RNA (Takara Bio, San Jose, CA, USA, cat# 740956.50) and
titered using the Lenti-X™ qRT-PCR Titration Kit (Takara Bio, San Jose, CA, USA, cat#
OHS6085). To infect GBM cells, a multiplicity of infection of 10 was used. For migration
assays, infected GBM cells were growth factor-deprived 24 h after infection. GBM cells
were collected and plated for experiments 48 h after infection. For each infection, RNA was
collected at the time of plating for the experiment to confirm knockdown.

2.5. RNA Isolation and Quantitative Real-Time PCR

RNA was isolated using the Qiagen RNA isolation kit (Germantown, MD, USA, cat#
74106) according to the manufacturer’s protocol. cDNA was generated from RNA using the
iScript cDNA synthesis reaction (BioRad, Hercules, CA, USA, cat# 170-8891). SsoAdvanced
Universal SYBR Green Supermix (BioRad, Hercules, CA, USA, cat# 172-5274) was used
for RT-qPCR. Additional controls included “no template” and “no reverse transcriptase”
groups for each primer tested. Delta CT values were determined with normalization to
β-actin values. Human ASAH1 primer (qHsaCID0014767) was purchased from BioRad
(Hercules, CA, USA) and is known to be intron-spanning based on their validation. Primers
for human β-ACTIN were bought from IDT (Coralville, IA, USA) with sequences as follows:
β-ACTIN FWD: AGA AAA TCT GGC ACC ACA CC; β-ACTIN REV: AGA GGC GTA CAG
GGA TAG CA.

2.6. Cell Growth Assays

Cells were plated at a density of 1000–5000 cells per well of a 96-well plate and
allowed to recover overnight. ASAH1 inhibitors, carmofur (Selleckchem, Houston, TX,
USA, cat# S1289), B13 (Cayman Chemical, Ann Arbor, MI, USA, cat# 10006305), or N-
oleoylethanolamide (Cayman Chemical, Ann Arbor, MI, USA, cat# 90265) were added
at concentrations between 5 µM and 100 µM as indicated in figure legends. After the
indicated times, Cell Titer Glo Assay was completed as directed by the manufacturer
(Promega, Madison, WI, USA).

http://gliovis.bioinfo.cnio.es
http://www.webgestalt.org
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2.7. Scratch Assays

Cells were plated at a density of 100,000 cells per well of a 24-well plate in FBS media
to allow cells to adhere. After cells proliferated to form a confluent monolayer, they
were serum-starved overnight in the presence of vehicle (DMSO), carmofur, or B13 at the
indicated concentrations. The following day, a scratch was made in the shape of an ‘X’
using a P1000 pipet tip with fresh FBS media and vehicle, B13, or carmofur. The scratch
was imaged in the same location at the indicated times. At the conclusion of the scratch
assay, cells were fixed in 10% formalin and stained with 0.5% crystal violet. Image centers
of 24 h 20×images were quantified using particle analysis in ImageJ and normalized to 0 h
images before normalizing to vehicle for quantification.

2.8. Boyden Chamber Assays

Cells were growth factor-deprived overnight in the presence of carmofur, as indicated
in figure legends. Cells were then counted and seeded at a density of 50,000 cells per
250 µL in the upper chamber of the Boyden chamber (Corning, Corning, NY, USA cat#
353097) with 8 µm pores. At time of plating, fresh carmofur was added with the cells
in the upper chamber. The lower chamber contained the media with chemoattractant:
10% FBS media or DMEM/F12 supplemented with Gem21 Neuroplex without vitamin A,
1% penicillin/streptomycin, 1% sodium pyruvate, 20 ng/mL of epidermal growth factor
and fibroblast growth factor (2× EFG/FGF), and 2% FBS. After 4–8 h, cells that migrated
through to the underside of the membrane were fixed in 10% formalin, stained with 0.5%
crystal violet, and quantified using the cell count function of the Pico Imagepress (Molecular
Devices, San Jose, CA, USA) or Particle analysis in ImageJ.

2.9. RNA-Sequencing Analysis

RNA from cell pellets was extracted using Norgen Total RNA following the man-
ufacturer’s protocol (Thorold, ON, USA, cat# 37500, 25710). RNA quality was verified
with the Agilent BioAnalyzer RNA Nano 600 kit (Santa Clara, CA, USA, cat# 5067-1512)
with the RIN range between 9–10. RNA-sequencing libraries were made using Lexogen
QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina kit (Vienna, Austria, cat#
015.24) with 250 ng of RNA input. They were pooled and sequenced on an Illumina
NextSeq 500 instrument with 75 bp single end reads. Read counts averaged 11.2 million
reads and average Q30% was 94.28. Lexogen’s BlueBee integrated QuantSeq data analyses
pipeline was used for trimming, mapping, and alignment, and DESeq2 implemented in
R was used for determination of differential expression [26]. All differentially expressed
genes with a base mean > 5, log2 fold change of < −0.5 or > 0.5, and p value < 0.2 (un-
adjusted) were analyzed using WebGestalt (http://www.webgestalt.org) (accessed on
4 December 2021) [25] for gene set enrichment analysis and Qiagen Ingenuity Pathway
Analysis (https://digitalinsights.qiagen.com/IPA) (accessed on 18 February 2022) [27].
Data for RNA-sequencing analysis can be found on the Gene Expression Omnibus with the
accession number GSE179087.

2.10. Lysate Preparation and Immunoblot Analysis

For phosphorylation analysis, cells were plated at a density of 1 × 106 cells per 100 mm
plate in FBS media. The following day, cells were serum-starved in the presence of 5 µM
carmofur for 16 h. After serum starvation, cells were pre-treated with a final concentration
of 10% FBS for 15 min followed by carmofur treatment for 45 min. For ASAH1 KD
phosphorylation analysis, cells were transduced 48 h prior to being serum-starved followed
by a 1 h stimulation with 10% FBS. Then, cells were washed with PBS (ThermoFisher
Scientific, Waltham, MA, USA, cat# 10010049) and lysed directly with RIPA Lysis and
Extraction Buffer (ThermoFisher, Waltham, MA, USA, cat# 89901) plus Halt protease and
phosphatase inhibitors (Invitrogen, Waltham, MA, USA, cat# 78440). Lysate was passaged
through a 28G needle and spun down at 15,000 rpm for 15 min before quantification using
the BCA protein assay (Fisher Scientific, Waltham, MA, USA, cat# 23227). Samples were

http://www.webgestalt.org
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prepared in Pierce Lane Marker Reducing 5× Sample Buffer (ThermoFisher, Waltham, MA,
USA, cat# 39000) with 60 µg of protein. Gel electrophoresis used Novex Wedge Well 4–20%
Tris-Glycine gels (Invitrogen, Waltham, MA, USA, cat# xp04200Box) followed by transfer
to PVDF membranes (Fisher Scientific, Waltham, MA, USA, cat# SLHV033RS). Blocking
was achieved using protein-free T20 (TBS) blocking buffer (Thermo Scientific, Waltham,
MA, USA, cat#37571) for 1 h at room temperature. Primary antibodies were incubated
overnight at 4 ◦C followed by incubation of secondary antibodies at room temperature for
1 h with IRDye 680CW goat anti-mouse IgG or IRDye 800CW goat anti-rabbit IgG (LI-COR
Biosciences, Lincoln, NE, USA, cat# 926-68070 and 926-32211). The following primary
antibodies were used for immunoblotting: Phospho-AKT (Ser473, Cell Signaling, Danvers,
MA, USA, cat# 9271), total AKT (Cell Signaling, Danver, MA, USA, cat# 9272), phospho-ERK
1/2 (Thr202/Tyr204, Thr185/Tyr187, Millipore Sigma, St. Louis, MO, USA, cat # 05-797R),
total ERK 1/2 (Cell Signaling, Danvers, MA, USA, cat# 9102), phospho-FAK (Tyr397, Cell
Signaling, Danvers, MA, USA, cat #3283) ASAH1 (Origene, Rockville, MD, USA, cat#
AM31723PU-N) and β-Actin loading control antibody (Invitrogen, Waltham, MA, USA,
cat# MA5-15739). Blots were imaged using an Odyssey infrared imaging system (LI-COR
Biosciences, Lincoln, NE, USA). Densitometry values for each protein were determined
using Image Studio Lite v5.2 software (LI-COR Biosciences, Lincoln, NE, USA).

2.11. Statistical Analysis

All experiments were completed in biological triplicates with a minimum of three
technical replicates per experiment. Analyses of data were completed using Prism v9
(Graphpad Software, San Diego, CA, USA) with relevant tests listed in the figure legends.

3. Results
3.1. ASAH1 Expression Correlated with Worse Survival in GBM Patients

To understand the expression pattern of ASAH1 in GBM as compared to non-tumor
brain, we evaluated ASAH1 gene expression in three different publicaly available patient
mRNA datasets. ASAH1 levels were significantly higher in GBM tissue compared to non-
tumor brain in Gravandeel and TCGA GBM Agilent-4502A (Figure 1A,B) and similarly
trended higher in TCGA GBM HG-U133A (p = 0.0516) (Figure 1C). Next, we assessed
ASAH1 mRNA among three major GBM subtypes. Proneural, mesenchymal, and classical
GBM subtypes are known to involve differences in PDGFRA amplification, NF1 loss, and
EGFR amplification, respectively [28]. While the mesenchymal subtype, which is known for
its highly invasive and migratory phenotype [29], had significantly higher ASAH1 mRNA
in the TCGA GBM Agilent-4502A dataset (Figure 1E), consistently signficant difference in
ASAH1 mRNA levels were not detected across subtypes among the datasets (Figure 1D,F).
Lastly, we assessed survival of IDH1-wildtype GBM patients based on ASAH1 expression.
IDH1-wildtype status is required for GBM designation [30], and we selected these samples
for the initial analysis to ensure any survival differences were not due to associations with
glioma grade or IDH status. High ASAH1 mRNA correlated with a shorter median survival
in all three databases for IDH1-wildtype GBM patients (Figure 1G–I). Elevated ASAH1
mRNA was also significantly associated with worse survival for all glioma patients (GBM
and low-grade gliomas) (Supplementary Figure S1A). In contrast, there was no signficant
correlation of elevated expression of other ceremidases (ASAH2, ACER2, ACER3) with poor
glioma patient outcomes (Supplementary Figure S1B–D).
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Figure 1. ASAH1 correlated with worse survival in IDH1 wildtype GBM patients. Datasets were
accessed using GlioVis (http://gliovis.bioinfo.cnio.es) (accessed on 25 February 2021). ASAH1 mRNA
expression in GBM compared to non-tumor samples in (A) Gravandeel (n = 8 for non-tumor, n = 159
for GBM), (B) TCGA GBM Agilent-4502A platform (n = 10 for non-tumor, n = 489 for GBM), and
(C) TCGA GBM HG-U133A platform (n = 10 for non-tumor, n = 528 for GBM). Data were analyzed
by independent t-test. ASAH1 mRNA expression in the three subtypes of GBM (D) Gravandeel
(n = 52 for classical, n = 54 for mesenchymal, n = 53 for proneural), (E) TCGA GBM Agilent-4502A
platform (n = 182 for classical, n = 156 for mesenchymal, n = 121 for proneural), and (F) TCGA GBM
HG-U133A platform (n = 199 for classical, n = 166 for mesenchymal, n = 163 for proneural). Data
were analyzed by one-way ANOVA followed by Dunnett’s multiple comparisons test and displayed
as means ± SEM. Kaplan–Meier survival curves for IDH1 wildtype GBM patients using optimal
cutoff to determine high and low ASAH1 expression. (G) Gravandeel (n = 93), (H) TCGA GBM
Agilent-4502A platform (n = 339), and (I) TCGA GBM HG-U133A platform (n = 372). Groups were
compared by log-rank test. Not significant (ns), * p < 0.05, *** p < 0.001, **** p < 0.0001.

3.2. ASAH1 Expression Correlated with Genes in the Focal Adhesion-PI3K-AKT-mTOR Pathway

We next sought to identify pathways and phenotypes associated with ASAH1 ex-
pression in GBM patients. We performed gene set enrichment analysis (GSEA) using
WebGestalt, a web-based gene set analysis toolkit [25], to identify pathways that have a
high degree of positive (>0.3) or negative (<−0.3) correlation with ASAH1. This analy-
sis was performed using the same publicly available datasets as in Figure 1. The focal
adhesion-PI3K-Akt-mTOR-signaling pathway positively correlated with ASAH1 in the Gra-
vandeel dataset (Figure 2A) and had a positive normalized enrichment score in both TCGA

http://gliovis.bioinfo.cnio.es
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GBM HG-U133A (Figure 2B) and TCGA GBM Agilent-4502A (Figure 2C). This signaling
pathway was the only pathway which appeared in all three GSEA of the datasets, although
we only observed a statistically significant enrichment with low false discovery rate in
the Gravandeel dataset (Table 1). Furthermore, ASAH1 expression positively correlated
with an increase in chemokine signaling in two of the datasets which further emphasizes
the utility of this analysis: S1P is a known chemokine for immune populations such as
macrophages and T cells [31,32] (Supplementary Figure S2). In view of the association of
ASAH1 expression with the focal adhesion-PI3K-AKT-mTOR pathway and the known link
between ceremide levels and AKT signaling [33,34], we focused on the potential biological
role of ASAH1 in GBM cell migration.

Cells 2022, 11, x FOR PEER REVIEW 7 of 20 
 

 

performed using the same publicly available datasets as in Figure 1. The focal adhesion-
PI3K-Akt-mTOR-signaling pathway positively correlated with ASAH1 in the Gravandeel 
dataset (Figure 2A) and had a positive normalized enrichment score in both TCGA GBM 
HG-U133A (Figure 2B) and TCGA GBM Agilent-4502A (Figure 2C). This signaling path-
way was the only pathway which appeared in all three GSEA of the datasets, although 
we only observed a statistically significant enrichment with low false discovery rate in the 
Gravandeel dataset (Table 1). Furthermore, ASAH1 expression positively correlated with 
an increase in chemokine signaling in two of the datasets which further emphasizes the 
utility of this analysis: S1P is a known chemokine for immune populations such as mac-
rophages and T cells [31,32] (Supplementary Figure S2). In view of the association of 
ASAH1 expression with the focal adhesion-PI3K-AKT-mTOR pathway and the known 
link between ceremide levels and AKT signaling [33,34], we focused on the potential bio-
logical role of ASAH1 in GBM cell migration. 

 
Figure 2. ASAH1 expression positively correlated with genes in the Focal Adhesion-PI3K-AKT-
mTOR pathway. Pathway analysis of positive and negative gene correlations to ASAH1. Datasets 
were accessed using GlioVis (http://gliovis.bioinfo.cnio.es) (accessed on 12 August 2021). GSEA of r 
values > 0.3 and <−0.3 for genes compared to ASAH1 in (A) Gravandeel (B) TCGA GBM HG-U133A, 
and (C) TCGA GBM Agilent-4502A. Data were analyzed using WebGestalt 

Figure 2. ASAH1 expression positively correlated with genes in the Focal Adhesion-PI3K-AKT-
mTOR pathway. Pathway analysis of positive and negative gene correlations to ASAH1. Datasets
were accessed using GlioVis (http://gliovis.bioinfo.cnio.es) (accessed on 12 August 2021). GSEA
of r values > 0.3 and <−0.3 for genes compared to ASAH1 in (A) Gravandeel (B) TCGA GBM HG-
U133A, and (C) TCGA GBM Agilent-4502A. Data were analyzed using WebGestalt (http://www.
webgestalt.org) (accessed on 12 August 2021) and compared to Wikipathway cancer with a 10 gene
minimum/pathway and weighted set cover.

3.3. ASAH1 Knockdown Decreased Migration of GBM Cells Derived from PDXs

To determine the effect of ASAH1 on GBM cell migration, we utilized ASAH1-targeted
shRNA and analyzed migration in Boyden chamber assays (Figure 3A) using D456 GBM
cells isolated from the patient-derived xenograft (PDX). The D456 cells represent the

http://gliovis.bioinfo.cnio.es
http://www.webgestalt.org
http://www.webgestalt.org
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proneural subtype of GBM, and we previously demonstrated their invasive properties [35].
ASAH1 mRNA was significantly decreased when cells were transduced with lentivirus
expressing ASAH1-directed shRNA (Figure 3B). Cells were allowed to migrate toward 10%
FBS as a chemoattractant similar to previous reports for Boyden chamber assays [36–40].
Representative images of Boyden chamber inserts show less cell migration (stained in
purple) when ASAH1 was knocked down (Figure 3C). Quantification of migration, reflected
by crystal violet-stained cells, demonstrated significantly decreased migration compared to
the non-targeting control (Figure 3D). To differentiate between growth and migration, cells
were plated and received the same treatment as cells added to Boyden chamber assays for
growth assays. As quantified by Cell Titer Glo, we observed a decrease in growth with
the ASAH1 knockdown (Figure 3E). However, when migration was normalized to growth,
there was a significant effect on migration (Figure 3F). ASAH1 was knocked down using a
second ASAH1-targeted shRNA, but cell viability was greatly reduced with this construct,
so we did not continue with the migration analysis (Supplementary Figure S3). Together,
these data indicate that the genetic inhibition of ASAH1 decreases migration independent
of growth.

Table 1. The Focal Adhesion-PI3K-AKT-mTOR pathway appeared in all three ASAH1 correlation
analyses. Data represent enrichment scores (ES), normalized enrichment scores (NES), p values, and
false discovery rate (FDR) for the Focal Adhesion-PI3K-AKT-mTOR pathway in each dataset.

Data Set Gene Set ES NES p Value FDR
Gravandeel

Focal Adhesion-PI3K-
Akt-mTOR-signaling

pathway

0.2472 2.0613 0.00351 0.03479

TCGA GBM
HG-U133A 0.1867 0.9670 0.49793 0.48293

TCGA GBM
Agilent-4502A 0.2265 1.3467 0.14067 0.32006

3.4. Carmofur Decreased Migration of GBM Cells

After confirming the link between ASAH1 expression and GBM migration, we identi-
fied commonly used inhibitors (carmofur, B13, and N-oleoylethanolamide) of ASAH1 and
sought to determine the optimal concentration at which these inhibitors induce cell death in
each cell line. We evaluated growth at seven days in the absence or presence of the three in-
hibitors in a standard cell line (U251) and/or cells derived from GBM PDXs (JX22 and D456)
(Supplementary Figure S4). Of the three inhibitors, only carmofur and B13 significantly
decreased growth at seven days. Guided by these findings, we next evaluated the effects
of carmofur on migration. Carmofur was chosen as it is known to cross the blood–brain
barrier and has been clinically used to treat other malignancies [11,41]. Using the IC50
values defined in the growth assays at 7 days, we assessed migration at earlier timepoints
where growth was not affected. While carmofur is a derivative of 5-FU, a thymidylate
synthase inhibitor, the concentration at which we treated the GBM cells is 100× less than
the IC50 for thymidylate synthase inhibition [9]. Migration was assessed by scratch assays
using the U251 GBM cells, as they grow in adherent monolayers in the presence of FBS even
for short periods of time. Within 24 h, significant decreases in migration were evident with
carmofur inhibition as shown in representative images (Figure 4A). Changes in migration
were quantified by counting cells in the scratch after 24 h, with the scratch area being
defined at time 0 (lines outlining area shown in red) (Figure 4B). Growth was unchanged
in matching growth analysis performed with Cell Titer Glo assays (Figure 4C). As with
the ASAH1 KD, the normalization of migration to growth showed migration effects of
carmofur that did not depend on changes in growth (Figure 4D). We further confirmed this
phenotype with a second ASAH1 inhibitor, B13 [42], which significantly decreased migra-
tion when normalized for growth (Supplementary Figure S5). While ASAH1 expression
has been associated with the CD133+ stem-like population of GBM [8], we saw no changes
in ASAH1 protein expression after 48 h of culture in FBS which is the maximum amount of
time GBM cells were exposed to FBS in any experiment (Supplementary Figure S6).
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Figure 3. ASAH1 knockdown decreased migration of D456 cells. Cells were transduced with either
non-targeting (NT) control or ASAH1 shRNA. After 48 h, the cells were plated at 50,000 cells/insert for
the Boyden chamber migration assay with 10% FBS as a chemoattractant, 5000 cells/well for growth
assay, and the remaining for RNA. (A) Schematic showing Boyden chamber assay steps. (B) mRNA
expression of ASAH1 at time of assay normalized to β-Actin using ∆∆CT. (C) Representative images
of D456 migration inserts with crystal violet staining for non-targeting and ASAH1-directed shRNA
constructs. (D) Migration inserts were imaged with 6 images at 10× magnification/insert and
quantified using particle analysis in ImageJ and normalized to the NT control. (E) Matching growth
was analyzed by Cell Titer Glo and normalized to NT control. (F) Percent migration was divided by
the relative cell growth to determine the ratio of migration to growth. Data from three independent
experiments were combined and analyzed using independent t-test (n = 3–4 per experiment). Data
are displayed as means ± SEM. ** p < 0.01, **** p < 0.0001.

3.5. Carmofur Decreased Migration of PDX-Derived GBM Cells

After confirmation of migratory effects in a GBM cell line, we sought to confirm the
effect of carmofur on cells isolated from the GBM PDX, JX22. Unlike the experiments
shown in Figure 4, the JX22s were not cultured in FBS to maintain stemness during the
time of the assay, and the chemoattractant was 2× EGF/FGF and 2% FBS media [17].
Additionally, the JX22 cells represent the mesenchymal GBM subtype which is known for
its highly invasive and migratory phenotype [35,43]. As with shRNA knockdown of ASAH1,
chemical inhibition of ASAH1 with carmofur blocked migration of GBM PDX-derived cells
in Boyden chamber assays as shown by decreased purple staining in the carmofur-treated
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group (Figure 5A). Quantification of cells on Boyden chamber inserts revealed significantly
decreased migration with the carmofur treatment (Figure 5B). We also analyzed invasion but
did not see any significant decrease with the carmofur treatment (Supplementary Figure S7).
Therefore, we concluded that ASAH1 inhibition decreased general cell motility not specific
to invasion. Importantly, carmofur did not alter cell growth during the timeframe of the
Boyden chamber assay (Figure 5C), and migration normalized to growth was significantly
decreased (Figure 5D). Taken together, the observations presented in Figures 4 and 5 suggest
that carmofur decreases migration independent of growth effects in two separate GBM cell
types and migration assays.
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Figure 4. Carmofur decreased migration of U251 GBM cells. Cells were serum-starved in the
presence of vehicle (DMSO) or 5 µM carmofur 16 h prior to introducing the scratch and re-treated
at the time of the assay. After 24 h, cells were fixed in formalin and stained with crystal violet.
(A) Representative images of U251 scratch assays at 0 h, 24 h, and 24 h with crystal violet staining
taken at 10× magnification. (B) Image centers of 24 h 20× images were quantified using particle
analysis in ImageJ and normalized to 0 h images before normalizing to vehicle for quantification.
Comparison of groups was performed using independent t-test. (C) Matching growth was analyzed
by Cell Titer Glo and normalized to vehicle control. (D) Percent migration was divided by the relative
cell growth to determine the ratio of migration to growth. Data are displayed as means ± SEM.
* p < 0.05, ** p < 0.01 with independent t-test (n = 3).

3.6. Pharmacologic Inhibition of ASAH1 Decreased Migration-Related Pathways

To understand the impact of ASAH1 inhibition, we used RNA-sequencing and iden-
tified genes differentially expressed following the treatment with carmofur compared to
vehicle control (Figure 6A). A total of 364 differentially expressed genes (p value < 0.2,
base mean > 5) were identified. These genes were analyzed using WebGestalt [25] and
WikiPathway Cancer functional databases for GSEA (Figure 6B) to identify pathways which
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are differentially expressed with the carmofur treatment. Based on normalized enrichment
scores (NES), carmofur was found to decrease some of the same pathways identified in our
correlation analyses of publicly available datasets (Figure 2). While not significantly different
with carmofur treatment, pathways associated with migration, including MAPK signaling
and focal adhesion-PI3K-Akt-mTOR signaling, may be altered (Table 2). Regulation of the
assembly and disassembly of focal adhesions is required for migration of cancer cells [44].
Additionally, loss of focal adhesion kinase suppresses epidermal growth factor receptor
signaling to decrease GBM cell migration [45]. To further identify relevant pathways altered
by ASAH1 inhibition, we used Qiagen Ingenuity Pathway Analysis. Such analyses revealed
“cancer” as the top disease or disorder (Supplementary Figure S8) and “cellular movement”
as the top molecular and cellular function (Supplementary Figure S9) associated with the
carmofur treatment. Of the network maps identified through this analysis, IPA predicted
inhibition of mTOR signaling with downstream inhibition of PI3K/AKT signaling and actin
organization Figure 7. Based on the current literature and our RNA-sequencing findings,
we hypothesized that carmofur’s impact on GBM cell migration was mediated, at least in
part, through either the MAPK or the PI3K-AKT-mTOR signaling pathway.
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Figure 5. Carmofur decreased migration of PDX-derived GBM cells. Cells were serum-starved in the
presence of vehicle (DMSO) or 5 µM carmofur 16 h prior to migration assay. At the time of assay, cells
were plated at 50,000 cells/insert for the Boyden chamber assay on top of BTIC with 2× EGF/FGF
and 2% FBS as the chemoattractant. At the same time, cells were plated at 5000 cells/well for
matching growth assay. (A) Representative images of crystal violet-stained migration inserts from
carmofur-treated JX22 GBM cell migration in Boyden chamber assays are shown. (B) Images were
quantified using the cell count function on PICO Imagepress. (C) Matching growth was analyzed by
Cell Titer Glo and normalized to vehicle control. (D) Percent migration was divided by the relative
cell growth to determine the ratio of migration to growth. Data are displayed as means ± SEM. Not
significant (ns), * p < 0.05 with independent t-test (n = 3–4).
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Figure 6. Pharmacologic inhibition of ASAH1 decreased migration-related pathways. To match
conditions of the scratch assay, U251 cells were plated in 10% FBS, serum-starved in the presence
of vehicle (DMSO) or 5 µM carmofur for 16 h, and changed to 10% FBS with new vehicle or car-
mofur for the final 24 h. Cells were collected for RNA-sequencing at the end of the 24 h treatment.
(A) Visualization of RNA-sequencing by volcano plot of transcripts revealed that U251 cells treated
with 5 µM carmofur displayed an altered pattern, relative to vehicle control (n = 3). (B) GSEA for
genes with log2 FC > 0.5 or <−0.5 analyzed using WebGestalt (http://www.webgestalt.org) (accessed
on 4 December 2021) and compared to Wikipathway cancer with a 3 gene minimum/pathway. Gene
input included those with a base mean > 5 and a p-value < 0.2.

Table 2. Pharmacologic inhibition of ASAH1 suggested decreases in migration-related pathways. Ta-
ble for GSEA analysis including ES, NES, p values, and FDRs for each pathway as well as differentially
expressed genes (DEGs) for that pathway.

Gene Set Description Size Leading Edge
Number ES NES p

Value FDR DEGs

WP382 MAPK Signaling
Pathway 4 4 −0.5072 −1.1697 0.2591 1

MAPK12,
PLA2G4A, PDGFB,

DUSP7

WP4239
Epithelial to

mesenchymal transition
in colorectal cancer

3 2 −0.4992 −0.9973 0.4734 1 COL4A3, MAPK12

http://www.webgestalt.org
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Table 2. Cont.

Gene Set Description Size Leading Edge
Number ES NES p

Value FDR DEGs

WP3932
Focal Adhesion-PI3K-
Akt-mTOR-signaling

pathway
5 5 −0.3613 −0.9129 0.5568 0.9598

ITGA7, ANGPT1,
SREBF1, GNG10,

PDGFB

WP3929 Chemokine signaling
pathway 3 3 −0.3822 −0.7803 0.7407 0.9453 CCL26, GRK5,

GNG10

WP4223 Ras Signaling 3 3 −0.3362 −0.6739 0.9022 0.876 KSR1, PLA2G4A,
GNG10

WP4018 Pathways in clear cell
renal cell carcinoma 4 4 0.3862 0.8617 0.6248 0.6455 KSR1, PDGFB,

PSAT1, PHGDH
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Figure 7. Carmofur treatment affects transcripts associated with mTOR signaling. Qiagen Ingenuity
Pathway Analysis (https://digitalinsights.qiagen.com/IPA) (accessed on 18 February 2022) of RNA-
sequencing data suggested decreases in mTOR signaling with potential downstream inhibition of
PI3K/AKT signaling and Actin organization as highlighted in the red box.
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3.7. ASAH1 Inhibition Decreased pAKT, but Not pERK

Based on the observed migration phenotype and the pathways identified by the cor-
relation analysis, we sought to determine whether AKT and/or ERK1/2 were involved
in ASAH1-dependent migration. We assessed AKT and ERK1/2 phosphorylation and
determined that pAKT was significantly decreased relative to total AKT (Figure 8A,C),
but pERK1/2 was unchanged relative to total ERK1/2 (Figure 8B,D). Similarly, we as-
sessed the ability of another ASAH1 inhibitor, B13, to inhibit AKT signaling and identified
decreases in total AKT with the B13 treatment (Supplementary Figure S10). Finally, we
confirmed that the shRNA knockdown of ASAH1 decreased pAKT relative to total AKT
(Figure 8E,F). We also explored the ability of carmofur to inhibit phosphorylation of focal
adhesion kinase based on the pathway analysis, but we saw no changes at the protein
level (Supplementary Figure S7). Our data suggest that ASAH1 modulates migration via
changes in AKT signaling that does not depend on changes in ERK1/2 or focal adhesion ki-
nase phosphorylation. Importantly, similar effects of ASAH1 expression on AKT signaling
were observed using both pharmacologic and genetic approaches.
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Figure 8. ASAH1 inhibition decreased pAKT, but not pERK. U251 cells were plated in 10% FBS
followed by serum-starvation in the presence of vehicle (DMSO) or 5 µM carmofur for 16 h. Then,
cells were stimulated with 10% FBS for 15 min followed by 45 min in the presence of fresh vehicle
or carmofur. (A,B) Western blot expression of pAKT, AKT, pERK1/2, ERK1/2, and β-actin with
carmofur treatment. (C,D) Densitometry values for each protein were determined using Image Studio
Lite software. Quantification of densitometry values (n = 3) for expression of pAKT compared to total
AKT and pERK1/2 compared to total ERK1/2. D456 cells were transduced with either non-targeting
(NT) control or ASAH1 shRNA. After 48 h of transduction, cells were serum-starved for 16 h. Then,
cells were stimulated with 10% FBS for 1 h. (E) Western blot expression of p-AKT, AKT, and β-actin
for NT and ASAH1 KD cells. (F) Quantification of densitometry values (n = 3) for expression of
p-AKT compared to total AKT. Data are displayed as means ± SEM. Not significant (ns), ** p < 0.01,
**** p < 0.0001 with independent t-test.

4. Discussion

Our study suggests that ASAH1 is overexpressed in GBM patients, and elevated
expression of ASAH1 is associated with worse survival in IDH1-wildtype GBM patients.
Targeting this group of glioma patients is key to extending survival as these tumors almost
always recur despite aggressive therapies [3,46,47]. Further analysis of ASAH1 expression
data suggested that ASAH1 regulates GBM cell migration through PI3K-AKT-mTOR
signaling. We confirmed that ASAH1 inhibition decreased GBM cell migration and AKT
signaling. We targeted ASAH1 genetically with shRNA and pharmacologically with
carmofur, although there may be ASAH1-independent effects of carmofur that contribute
to its effects. Inhibition of ASAH1 to decrease migration of GBM cells is a novel finding for
both sphingolipid biology and neuro-oncology research.

Although our work has yet to identify the precise downstream mechanisms through
which ASAH1-mediated decreases in AKT signaling affect migration, we hypothesize that
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AKT-mediated alterations of cytoskeleton-related proteins may be involved. For example,
AKT signaling can induce expression or activation of GSK3β, F-actin, and Girdin [48–51].
Additionally, AKT1 has been shown to promote migration of fibrosarcoma cells through
NF-κB [52]. This signaling mechanism as a means to decrease GBM migration was strength-
ened by the use of two different ASAH1 inhibitors as well as shRNA knockdown of ASAH1.
Additional mechanistic approaches could be strengthened by using PDX-derived cells,
samples from PDX treated with inhibitors in vivo, and/or increasing replicates to improve
statistical power in the RNA-sequencing studies as well as implementing rescue experi-
ments including the use of a constitutively active AKT construct [53] or overexpression
of one of the potential downstream targets mentioned above. Moreover, assessment of
migration ability could be conducted using spheroid migration assays to eliminate the use
of FBS [54]. Overall, our work suggests that ASAH1 inhibition by shRNA or carmofur
exerts its anti-migratory effects through decreased AKT signaling.

While direct inhibitors of AKT function have been tested in vitro, none have been effi-
cacious in GBM patients [55]. One such inhibitor, perifosine, showed pre-clinical promise,
but had limited blood–brain barrier penetrance, a significant challenge for any GBM ther-
apeutic [56]. Ceranib-2, another acid ceramidase inhibitor, has been evaluated in breast
cancer cell lines and decreased AKT signaling [57] as we have suggested in GBM cells with
carmofur. However, carmofur has an advantage in that it is known to cross the blood–brain
barrier [9]. Additionally, carmofur may decrease cell migration via both AKT and S1P
signaling through inhibition of ASAH1. Since ceramides activate protein phosphatases,
they could also decrease activity of JAK2, STAT5, and MYC [58]. In contrast to our findings,
previous work in melanoma cells suggested that inhibiting ASAH1 increased pFAK. They
further showed decreased invasiveness through activation of the integrin αVβ5-focal ad-
hesion kinase signaling [59]. Therefore, the mechanism through which ASAH1 inhibition
decreases migration may be specific to certain cancer types. While not explored in this
study, the ability of carmofur to decrease chemokine signaling may serve as an added
benefit for therapeutic combinations. However, a potential concern of targeting the sph-
ingolipid balance is that the modulation of S1P receptor 1 could worsen lymphopenia in
brain tumor patients [60]. Targeting ASAH1 should increase ceramides and decrease S1P
without affecting the S1P receptors, but the effect on immune suppression in these patients
would need to be considered for future clinical trials.

Restoration of the sphingolipid balance has long been proposed as a mechanism to
attenuate multiple hallmarks of cancer including proliferation, migration, and angiogene-
sis [61]. As highlighted in our previous review, attempts at modulating the sphingolipid
balance in brain tumor patients have not yet proven to be successful [5]. Recent work in
brain tumors has focused on inhibiting sphingosine kinase 1 to decrease the production
of S1P, thus preserving the pro-apoptotic capability of ceramides. Targeting sphingo-
sine kinase 1 in GBM cell lines decreased angiogenesis along with decrease in growth
of temozolomide-resistant GBM cells [1,62]. Unfortunately, these inhibitors have not yet
been tested in GBM patients. Based on the lack of FDA-approved sphingosine kinase
inhibitors for GBM and the finding that ASAH1 is increased following radiotherapy, we
chose to focus on ASAH1, an enzyme responsible for producing sphingosine and regulating
ceramide catabolism [4,63]. This approach may preferentially increase ceramides compared
to inhibiting sphingosine kinases as these inhibitors have been suggested as combination
or maintenance therapy following another ceramide-inducing agent [64].

While this study did not directly compare the effects of 5-FU to carmofur for assess-
ment of migration, 5-FU has a low therapeutic index when delivered systemically and
has not been studied for its anti-migratory potential in GBM [65]. In contrast to 5-FU,
carmofur is more orally bioavailable and generally well-tolerated by patients even when
given multiple times per day to overcome the short half-life [41]. Therefore, carmofur may
have dual roles as a 5-FU pro-drug and a modulator of the sphingolipid balance in GBM.
As modulation of the sphingolipid balance has emerged as an important target for GBM
therapeutics, more inhibitors are being developed in addition to the identification of previ-
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ously unknown mechanisms for current drugs. For example, tamoxifen, a well-established
treatment of ER-positive breast cancer, was recently shown to inhibit ASAH1 re-enforcing
the utility of repurposed drugs for GBM patients [66]. Taken together, we propose the
use of ASAH1 inhibition, specifically by carmofur, to decrease the migration of GBM cells.
Finally, inhibiting the migration of cancer cells by blocking ASAH1 may be a promising
avenue for metastatic brain tumors [18,67–70].
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