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Summary

Understanding how neurons acquire specific response

properties is a major goal in neuroscience. Recent studies
in mouse neocortex have shown that ‘‘sister neurons’’

derived from the same cortical progenitor cell have a
greater probability of forming synaptic connections with

one another [1, 2] and are biased to respond to similar sen-
sory stimuli [3, 4]. However, it is unknownwhether such line-

age-based rules contribute to functional circuit organization
across different species and brain regions [5]. To address

this question, we examined the influence of lineage on the
response properties of neurons within the optic tectum, a

visual brain area found in all vertebrates [6]. Tectal neurons
possess well-defined spatial receptive fields (RFs) whose

center positions are retinotopically organized [7]. If lineage
relationships do not influence the functional properties of

tectal neurons, one prediction is that the RF positions of
sister neurons should be no more (or less) similar to one

another than those of neighboring control neurons. To test

this prediction, we developed a protocol to unambiguously
identify the daughter neurons derived from single tectal pro-

genitor cells in Xenopus laevis tadpoles. We combined this
approach with in vivo two-photon calcium imaging in order

to characterize the RF properties of tectal neurons. Our
data reveal that the RF centers of sister neurons are signifi-

cantly more similar than would be expected by chance.
Ontogenetic relationships therefore influence the fine-scale

topography of the retinotectal map, indicating that lineage
relationships may represent a general and evolutionarily

conserved principle that contributes to the organization of
neural circuits.
Results and Discussion

To examine whether lineage-based rules contribute to func-
tional circuit organization in the optic tectum, we developed
amethod for labeling a single neuronal clone per animal, which
enabled us to definitively identify sister tectal neurons. All an-
imal procedureswere conducted in accordancewith UKHome
Office regulations. Individual tectal progenitor cells in the
proliferative zone [8] of stage 44–47 Xenopus laevis tadpoles
(7–16 days postfertilization) were targeted for single-cell elec-
troporation with a dextran-conjugated red fluorescent dye
(Figure 1A; Supplemental Experimental Procedures available
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online) [9]. This dye does not leak out of cells and is only
passed on to daughter cells [10, 11]. To ensure that a single
neuronal clone was labeled, we conducted in vivo two-photon
imaging at different time points. The first imaging was con-
ducted 1–3 hr after electroporation to be certain that only
one progenitor had taken up the dextran (Figure 1B). From a
total of 438 animals in which we confirmed that a single pro-
genitor cell was labeled, 103 contained two or more labeled
sister neurons when the animal was reimaged 6–19 days later
at stage 49 or 50 (Figure 1C).
To reveal the architecture of the tectum and to probe the

functional properties of tectal neurons, we then injected the
calcium indicator dye Oregon Green BAPTA1-AM (OGB1-
AM) into the region encompassing the dextran-labeled neu-
rons. Images taken before and after the OGB1-AM injection
enabled us to confirm 45 animals in which the dextran-
labeled neurons could still be clearly distinguished, and the
different tectal layers were clearly demarcated [12, 13] (Fig-
ure 2A). Each clone was comprised of 2–7 fluorescently
labeled neurons. The majority of clones (25 out of 45; 56%)
spanned multiple cell-dense layers of the tectum, and,
in the remainder (20 out of 45; 44%), the neurons were
restricted to the same layer (Figure 2B). Across all clones,
there was a strong tendency for neurons derived from the
same progenitor to be situated within nearby cell-dense
layers (p < 2 3 1025, bootstrap test; Figure 2C; Supplemental
Experimental Procedures).
We then used two-photon calcium imaging to assess the

response properties of clonally related neurons. We mapped
spatial receptive fields (RFs) by simultaneously recording
visually evoked calcium responses in both dextran-labeled
and nonlabeled tectal neurons in the same animals (Figures
3A–3C; Supplemental Experimental Procedures) [14–16]. For
clones to be included in the analysis, labeled neurons were
required to exhibit robust spatially localized RFs, as deter-
mined statistically by fitting each RF with a 2D Gaussian
function (Figures 3D and 3E; Supplemental Experimental Pro-
cedures). Clones in which only one neuron satisfied these
criteria had to be excluded because sister comparisons
were not possible. Under these criteria, we obtained a subset
of animals with significant spatially selective responses in
multiple dextran-labeled sister neurons and in a large fraction
of nonlabeled neighboring neurons (11 labeled neurons, 531
nonlabeled neurons, four animals). Importantly, there was
no significant difference between labeled and nonlabeled
neurons in terms of their response amplitudes, the quality
(R2) of the RF fits, or the eccentricity of their RF centers
(Figure 3F).
These data provided the opportunity to test whether

clonal relationships influence the RF properties of tectal
neurons. To quantify functional differences between pairs of
tectal neurons, we computed the euclidean distance between
the centers of their fitted RFs (Dcenter; Figure 4A). As ex-
pected, given the retinotopic organization of the tectum,
there was a significant positive correlation between the
spatial separation of pairs of neurons and their Dcenter
values (Figure 4A). Although pairs of sister neurons had
smaller Dcenter values than nonsister pairs (Figure 4B), they
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Figure 1. Lineage Tracing of Individual Tectal Progenitor Cells

(A) Schematic dorsal view of a tadpole’s head (top) illustrating the positions

of the two optic tecta (shaded); epifluorescence image (bottom) showing

the electroporation of a single tectal progenitor cell with a fluorescently con-

jugated dextran (red). Region corresponds to dashed box above. ven,

ventricle; pz, proliferative zone; ncb, neuronal cell bodies.

(B) Two-photon image showing a single tectal progenitor cell captured 2 hr

postelectroporation. The scale bar represents 50 mm.

(C) Image of a tectal clone consisting of one radial progenitor cell (solid

arrowhead) and two daughter neurons (open arrowheads), collected

10 days postelectroporation. The scale bar represents 50 mm.
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also tended to be situated closer to one another within the
tectum (Figure 4C). Thus, to assess the effect of clonal rela-
tionships, it was crucial for us to control for the bias intro-
duced by this spatial clustering. We therefore compared
each pair of sister neurons with a spatially matched set of
A B

C

nonsister control pairs (Figure 4D; Supplemental Experi-
mental Procedures). The spatially matched control pairs
had to be situated in the same combination of tectal layers,
and they had to be the same distance apart as the corre-
sponding sister pairs, to within a tolerance of 610 mm. We
expressed the degree of functional similarity between each
sister pair relative to its matched controls as a percentile (Fig-
ure 4E; Supplemental Experimental Procedures). Percentile
values less than the median indicate neuron pairs that had
more similar RF center positions than their average matched
control pair. Across the population, we found that sister pairs
had a significantly smaller average percentile value than
would be expected by chance (p < 0.001, bootstrap test; Fig-
ures 4F and S1A; Supplemental Experimental Procedures).
Thus, pairs of sister neurons show more similar RF center po-
sitions than would be expected, given their spatial proximity
within the tectum. This bias was also evident when we
excluded pairs of neurons located within the same tectal
layer (Figure S1B).
Our data demonstrate that sister neurons within the optic

tectum have significantly more similar RF centers than non-
sisters, indicating that neuronal lineage relationships influence
the fine-scale topography of the retinotectal map. This is
consistent with the observation that clonally related neurons
can show similar orientation preferences in mouse visual cor-
tex [3, 4]. The functional significance of such a mechanism is
not yet fully understood, but it has been proposed that lineage
relationships contribute to the establishment of precise ca-
nonical microcircuits [1, 5]. Given that retinotopic map forma-
tion has been shown to be controlled by molecular gradients
Figure 2. Morphology and Laminar Distribution of

Tectal Sister Neurons

(A) Two-photon image showing a pair of labeled

sister neurons (red, open arrowheads) within a

tectum loaded with OGB1-AM (cyan). The scale

bar represents 50 mm. Boundaries of the nine

tectal layers are annotated on the left.

(B) Example morphological reconstructions of

labeled sister neurons located in different tectal

layers (top) and in the same tectal layer (bottom).

Dotted white lines denote the positions of the

layer boundaries, as determined from the

OGB1-AM loading. Scale bars represent 50 mm.

(C) Diagram showing the main tectal layers and

cell types (left) and laminar fates of labeled sister

neurons (right; n = 45 clones). Cell-dense layers

are gray; neuropil layers are white. Red circles

within each dashed column represent layer posi-

tions of daughter neurons generated by a single

progenitor cell.
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Figure 3. Two-Photon Calcium Imaging of Sister Neurons and Nearby Nonsister Neurons in the Optic Tectum

(A) Experimental setup for in vivo calcium imaging and visual stimulation.

(B) Two-photon stack through a region of tectum containing a single clone (red) and loadedwith OGB1-AM (cyan). The z axis represents depth relative to the

pial surface.

(C) Single plane containing two dextran-labeled sister neurons. The scale bar represents 50 mm.

(legend continued on next page)
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Nonsister pairs

Figure 4. Sister Neurons in the Optic Tectum Have More Similar Spatial RFs Than Nonsisters

(A) Relationship between spatial distance and Dcenter value for all pairs of tectal neurons (***p < 0.001, r = 0.45, Spearman correlation). Inset illustrates how

the Dcenter value was computed for a pair of RFs.

(B) Dcenter values for sister and nonsister pairs of tectal neurons (data indicate mean 6 SD; n = 13 clonal pairs and n = 72,546 nonclonal pairs from four

animals in which a single clone was labeled; ***p < 0.001, Mann-Whitney U test).

(C) Spatial distances between somata of sister and nonsister pairs (***p < 0.001, U test).

(D) Schematic showing a pair of sister neurons and its corresponding set of spatially matched nonsister control pairs.

(E) Cumulative distribution of Dcenter values for an example pair of sister neurons and its set of matched nonsister control pairs.

(F) Pairwise bootstrap test confirms that sister neurons have more similar RF center positions than would be expected, given their spatial proximity within

the tectum. Cyan distribution represents a random sample of mean percentile values (Supplemental Experimental Procedures). The mean percentile for

sister pairs (red arrow) was significantly smaller than would be expected by chance (***p < 0.001, bootstrap test).
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and neuronal activity [17, 18], the influence of lineage upon a
tectal neuron’s functional properties could reflect the inheri-
tance of a particular profile of gene expression [19, 20] and/
or activity-dependent processes [2, 4]. Fundamentally, the
fact that clonal relationships influence responses in the optic
tectum, an ancient brain structure that is common to all verte-
brates, indicates that lineage relationships may represent a
general and evolutionarily conserved principle that contributes
to the organization of neural circuits.
Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and one figure and can be found with this article online at http://dx.doi.org/

10.1016/j.cub.2014.07.015.
(D) Example traces showing visually evoked calcium responses recorded from

the mean response across trials. The corresponding visual stimuli are shown ab

also shown (right).

(E) Fitted spatial RF maps obtained simultaneously from the two labeled siste

superimposed onto their respective soma positions. The scale bar represents

(F) Population data showing that clonally labeled tectal neurons do not differ fro

0.35; maximumDF/F, p = 0.31; n = 11 labeled neurons and n = 531 nonlabeled ne

RF fits, p = 0.34), or the eccentricities of their RFs, as measured by either the e

stimulus area to the center of the fitted RF. Plots indicate mean 6 SD.
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