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In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues,
and their immunologic dysregulation contributes to the progression of obesity and
associated metabolic disease. There is accumulating evidence that innate immune cells
also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical
brain region controlling both energy and glucose homeostasis. Specifically, microglia, the
resident parenchymal myeloid cells of the CNS, play important roles in brain physiology
and pathology. Recent studies have revealed an expanding array of microglial functions
beyond their established roles as immune sentinels, including roles in brain development,
circuit refinement, and synaptic organization. We showed that microglia modulate MBH
function by transmitting information resulting from excess nutrient consumption. For
instance, microglia can sense the excessive consumption of saturated fats and instruct
neurons within the MBH accordingly, leading to responsive alterations in energy balance.
Interestingly, the recent emergence of high-resolution single-cell techniques has enabled
specific microglial populations and phenotypes to be profiled in unprecedented detail.
Such techniques have highlighted specific subsets of microglia notable for their capacity
to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL),
apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2).
The discovery of this transcriptional signature highlights microglial lipid metabolism as a
determinant of brain health and disease pathogenesis, with intriguing implications for the
treatment of brain disorders and potentially metabolic disease. Here we review our current
understanding of how changes in microglial lipid metabolism could influence the
hypothalamic control of systemic metabolism.

Keywords: microglia, hypothalamus, lipids, obesity, diabetes
INTRODUCTION

The brain contains the second highest lipid concentration in the body, behind adipose tissue, and
lipids constitute 50% of the brain’s dry weight (1). Beyond serving as energy substrates, brain lipids
play a wide range of roles in cellular physiology, including membrane organization, protein
modification, cell-cell interactions, membrane trafficking, energy storage and signal transduction.
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Lipid metabolism within the brain is therefore highly regulated,
and disruption of central nervous system (CNS) lipid
homeostas is can produce devastat ing neurologica l
consequences. For instance, impaired cholesterol or fatty acid
metabolism leads to severe neurodevelopmental defects,
intellectual disabilities, and motor dysfunction (2, 3). Neurons
themselves engage in relatively low levels of lipid synthesis, in
contrast to recent studies which suggest that glial cells are critical
for both the synthesis and metabolism of lipids in the brain (4).
For example, an “astrocyte-neuron lactate shuttle” has been
postulated, in which astrocytes metabolize lipids in order to
provide energy substrates for neurons (5) and regulate neurite
outgrowth and synaptogenesis (6). Oligodendrocytes are also
highly active in lipid metabolism, and have been shown to
synthesize the cholesterol necessary for myelin sheath
formation (7). Importantly, microglia can both synthesize and
accumulate lipids, and both microglial lipid composition and
lipid metabolic capability are increasingly implicated in
determining their ability to regulate neuronal functions as well
as their contributions to brain pathology (8–10).

Integration of lipidomic and genomic datasets can elucidate
gene-environment (e.g. diet) interactions regulating lipid
metabolism as a means to reveal biomarkers predictive of
metabolic disease (11). Recent studies utilizing lipidomics and
single-cell RNA sequencing (scRNA-seq) have revealed
intriguing heterogeneity among microglia, and the importance
of lipid and lipoprotein metabolism in microglial physiology (12,
13). This work had been done primarily in the context of specific
neurodegenerative diseases, while our lab and others have
investigated the role of dietary lipids in the immunological
activation of microglia in the context of obesity and
metabolism (14–16). This review summarizes our current
knowledge of lipid metabolism in microglia, with a focus on its
potential contribution to hypothalamic physiology and
dysfunction in the context of metabolic disease.
LIPID METABOLISM IN THE BRAIN

The brain has a high energy demand, and historical consensus
has been that its energy requirements are almost entirely satisfied
by glucose metabolism. However, this dogma has been recently
challenged, as it was shown that approximately 20% of the
brain’s total energy requirement is met though the oxidation of
fatty acids (FAs) (17). Additionally, FA oxidation by cultured
mouse brain slices is increased by withdrawing extracellular
glucose (18). Astrocytes and microglia likely contribute
significantly to brain utilization of FAs as energy substrates
(18, 19). Astrocytes express higher levels of key FA oxidation
enzymes, however detailed cell-type specific experiments
comparing the capacity to oxidize fatty acids in vivo have not
been reported (18). Neurons may have also the capacity to utilize
FAs as an energy source, as a recent study using rat brain
demonstrated that isolated neuronal mitochondria utilize FAs
as an energy source even in the presence of other mitochondrial
substrates (20). By contrast, the capacity of neurons to oxidize
Frontiers in Endocrinology | www.frontiersin.org 2
FAs for energy is known to be quite limited (21). One reason for
this limited capacity may be that neurons are highly susceptible
to reactive oxygen stress (ROS) generated by FA oxidation, and it
is widely accepted that mitochondrial oxidative stress and
dysfunction contribute to neurologic disorders (22). Thus, the
selective pressure to avoid oxidative stress may underlie the
neuronal preference to oxidize glucose as their primary fuel
source (21).

Neuron-Glia Interactions in Brain
Lipid Metabolism
Given the importance of lipids to overall brain physiology, the
limited lipid metabolic capacity of neurons themselves has
prompted exploration into the essential roles of glial cells in
lipid metabolism, storage and synthesis. This effort has revealed
the importance of coordinated lipid metabolism and trafficking
between neurons and glia, as exemplified by work done to
establish a genetic link between Parkinson’s disease (PD) and
genes controlling lipid metabolism (23, 24). Indeed, both PD
patients and experimental animal models of PD exhibit
abnormal lipid accumulation in dopaminergic neurons and
their surrounding microglia, but have a reduced lipid load in
adjacent astrocytes. One recent study found that a Western diet
impairs recovery from demyelinating injuries, by inhibiting
microglial phagocytosis and clearance of lipid debris (25).
Another study found that in the setting of demyelination,
microglia synthesize desmosterol, the immediate cholesterol
precursor and liver X receptor (LXR) agonist, and that
microglial sterol synthesis is essential for efficient
remyelination (26). As oligodendrocytes were thought to be the
primary synthesizers of sterols in the brain, and require sterols
for myelination, this indicates a new role for intercellular
trafficking of sterols. Together, these findings indicate that a
disturbance in the multicellular handling and trafficking of lipids
plays may play a key role in PD pathogenesis (27).

However a broader, more systematic understanding of the
regulation of lipid metabolism and flux between brain cell types
in different physiological and pathological states is limited, with
few detailed lipidomic profiles of CNS cell types having been
published to date. However, recent studies have revealed that
certain lipid species are enriched in distinct cell types and brain
regions. For instance, microglia are enriched in sphingolipids
and characterized by high levels of sphingomyelin species, which
are almost absent in neurons and oligodendrocytes (13).
Microglia in particular are essential for the clearance and
recycling of lipid debris, and recent work has shown that
aging-related defects in microglial lipid handling contribute
both to their inflammatory activation and to the impairment of
their response to demyelination (28). Further insights into
microglial lipid metabolism will be essential to understanding
how lipids impact brain function.

Effects of Diet on Brain Lipid Composition
and Metabolism
In addition to having a relatively high absolute lipid content, the
composition of brain lipids is also distinct from that of other
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tissues in the body. Indeed, 75% of lipids in mammals are present
exclusively in neural tissues, underscoring that brain function
has unique lipid requirements (29). The brain is the most
cholesterol-rich organ in the body, and brain cholesterol is
primarily supplied by local de novo synthesis (30). Cholesterol
is essential for neuronal physiology, and defects in cholesterol
metabolism leads to neurological diseases (31). Despite the
primary de novo synthesis, diet may also affect sterol
metabolism in the brain. The cholesterol metabolite 27-
hydroxycholesterol (27-OHC) can pass through the BBB, and
27-OHC is significantly increased in plasma and adipose tissue of
animals on HFD (32). Excess 27-OHC impairs brain glucose
uptake (33). Additionally, peripheral cholesterol contained in
circulating HDL, undergoes selective uptake mediated by the
scavenger receptor class B type 1 for entry into the brain (34). In
humans, low HDL levels are associated with increased risk for
PD (35). Interestingly, genetic HDL deficiency caused increased
astrogliosis, but not microgliosis, in the hypothalamus (36).

On the other hand, some FAs must be transported into the
brain from the systemic circulation in a dynamic process (37).
For instance, the brain is rich in long-chain polyunsaturated fatty
acids (LC-PUFAs), particularly arachidonic acid (AA),
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)
but the brain has limited capacity to synthesize LC-PUFAs (38,
39). These have to therefore be provided through the diet, either
as precursors, n-6 linoleic acid (LA) and n-3 a−linolenic acid
(ALA), or as preformed AA and DHA (40, 41). Indeed, several
radiolabeled studies have shown incorporation of circulating FAs
into neurons (37). FAs could passively diffuse across the blood
brain barrier (BBB), as shown for palmitate (PA), AA and DHA
(42–44), however FA transporters such as FAT/CD36 may also
play a key role in promoting the dissociation of FAs albumin in
order to facilitate their diffusion across the BBB (45). In
summary, brain lipid composition is highly regulated, and
while distinct from peripheral lipid composition, is importantly
influenced by circulating lipids including those from
dietary sources.

The obesogenic high-fat diets (HFD) commonly used in mice,
including the so-called “Western” diet with increased cholesterol
levels, are characterized by a markedly high saturated fatty acid
(SFA) content and a relatively low n-3 polyunsaturated fatty
acids (PUFA) content, resulting in a high n-6/n-3 ratio (46).
Given this, it is notable that studies suggest that not every type of
fat is equally obesogenic when consumed in an isocaloric
manner. Indeed, the profile of consumed fats, rather than
strictly the energy they contain, may be critical for the
development of obesity (47). Circulating lipid levels are
affected by dietary fat composition; for example, one lipidomic
analysis of postprandial plasma showed significant changes in
the levels of 316 different lipids species after an individual
switched from eating a breakfast based on dairy foods to one
that was soy oil-based (48). Recent studies have also investigated
the effect of dietary fat on the brain lipidome. Mice consuming a
HFD have reduced EPA content in cerebral phospholipids and
sphingolipids, in association with increased inflammation and
consequently impaired brain function (49). By contrast, diets
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enriched in the n-3 fatty acids EPA and DHA induce a different
set of alterations in the FA composition of brain phospholipids,
including increasing the number of double bonds in several
phospholipid species (13). Indeed, supplementing a standard
saturated fat-rich HFD with a daily gavage of fish oil rich in EPA
and DHA is sufficient to increase brain PUFAs and reduce brain
gliosis in obese mice (50). In probing this further, it is notable
that both EPA and DHA are precursors of pro-resolving lipid
mediators with anti-inflammatory properties (51). In contrast,
n-3 deficient neonatal mice exhibit increased microglial
phagocytosis of synaptic elements resulting in altered neuronal
morphology and function (10). Thus, dietary changes in EPA
and DHA, as detected by monitoring dietary n-6/n-3 ratios, may
directly modulate microglial polarization states in a manner
relevant to CNS diseases associated with microglial dysfunction.
INTEGRATION OF LIPID SIGNALS BY THE
MEDIOBASAL HYPOTHALAMUS (MBH)

The MBH, defined here as the hypothalamic region containing
the arcuate nucleus (ARC) and median eminence (ME), is
strategically located to directly sense and coordinate a response
to nutritional signals. The structure and function of the BBB
within the ME and ventromedial ARC, as a circumventricular
organs, is unique, being supplied by fenestrated capillaries (52–
55). Thus, substances that do not cross into the brain
parenchyma in other regions of the brain may pass into the
ME and ARC with relative ease (56, 57). For example, very low
density lipoproteins (VLDL) are not thought to cross the BBB
(34), however we demonstrated rapid accumulation of VLDL
within the MBH after intravenous administration, and this was
predominantly localized to microglia in the ME and ARC (14).
Indeed, a recent study showed that triglyceride (TG)-rich
lipoproteins are sensed in the hypothalamus by an LPL-
dependent mechanism (58), and the uptake of dietary PA, a
common SFA, into the hypothalamus is remarkably higher than
for other brain regions (59). Thus, specialized fuel-sensing
neurons that form critical hypothalamic circuits are uniquely
positioned to sense circulating glucose and lipid species,
including FAs (60).

Whereas lipid sensing in the MBH may create responsiveness
to nutritional lipids, there may be roles for lipid sensing in other
brain regions as well. For instance, recent work has shown that
both nutritional and parenteral TG exposure modulated activity
of neurons in the mesocorticolimbic system (MCL) and affects
behavioral and reward responses (61, 62). These effects were
dependent on neuronal lipoprotein lipase, suggesting a direct
response to TGs (61, 62). Radiolabeled triolein was able to be
detected in whole brain after peripheral injection, suggesting that
some intact TG may pass through the BBB, however the location
of triolein accumulation within the brain was not determined
(63). This sensing capacity may play a role in the context of
autophagy, lipids housed within locally-generated lipoproteins
(e.g. APOE), or perhaps by context-specific selective
permeability of the vasculature in certain brain regions to
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circulating lipids. Further research is needed to tease apart
these possibilities.

Lipid Sensing by Hypothalamic Neurons
Circulating FA levels are increased after consumption of a HFD
(64, 65) and the rate of entry of FAs into the brain is proportional
to their plasma concentration (59). Indeed, hypothalamic levels
of free FAs are increased by HFD feeding, suggesting an
important role for these FAs in hypothalamic lipid-sensing
pathways (66). Supporting this, it has been shown that FAs
modify neuronal firing rates in the ARC (67). Moreover,
intracerebroventricular (ICV) infusion of the monounsaturated
FA, oleic acid (OA), suppresses food intake and hepatic glucose
production (68) indicating that FAs can signal nutrient
availability to the brain. Furthermore, increased LCFA-CoA
levels in hypothalamic neurons suppress endogenous glucose
production suggesting that hypothalamic lipid sensing regulates
glucose homeostasis through a mechanism involving the
esterification of LCFAs to LCFA-CoAs (69). Also, ICV
infusions of OA or DHA, but not PA, reduce food intake and
body weight indicating a selective hypothalamic response to
specific unsaturated fatty acids (UFAs). However, ICV and
direct infusions of FAs into the brain are not physiological.
Short-term (3 days) of HFD can cause rewiring of anorexigenic
proopiomelanocortin (POMC) neurons in the ARC, suggesting a
physiological role for lipid sensing in the hypothalamus (70). In
further support of this concept, a recent elegant study found that
intragastric administration of lipids inhibited the activity of
hunger-promoting Agouti-related protein (AgRP) neurons in
the MBH (71). Furthermore, the ability of lipid infusion to
inhibit the activity of AgRP neurons was blunted in HFD-fed
animals, suggesting a reduction in the lipid sensitivity of AgRP
neurons in this context (72). In summary, there is clear evidence
that a HFD, in particular dietary FAs, is sensed by hypothalamic
neuronal pathways to regulate energy homeostasis. The precise
mechanisms of lipid sensing by hypothalamic neurons have been
well studied, and have been recently reviewed (73–75).

Dysregulated lipid metabolism in the hypothalamus may
affect neuronal FA sensing and therefore contribute to the
development of metabolic diseases. In particular, excessive
lipid accumulation and resultant activation of cellular stress
pathways can lead to disruption of hypothalamic function.
During both acute and chronic HFD feeding, multiple
inflammatory and stress response pathways are activated in the
hypothalamus, leading the dysfunction of hypothalamic circuits
regulating energy and glucose homeostasis, resulting in leptin
and insulin resistance (76). In evaluating the specific changes in
hypothalamic lipid composition induced by overconsumption,
specific attention has been paid to how excess lipid accumulation
drives ER stress in the hypothalamus (77). Rodent studies have
shown that HFD feeding induces ER stress in multiple metabolic
tissues including the hypothalamus (78). This response is not
uniform across all hypothalamic nuclei and seems to be specific
to the ARC but not other regions such as the paraventricular
nucleus (PVN) (78). Induction of hypothalamic ER stress leads
to increased food intake, reduced energy expenditure and
resultant obesity, and this is mediated at least in part by
Frontiers in Endocrinology | www.frontiersin.org 4
defective a-MSH production among POMC neurons (79) and
development of leptin resistance (80). Fat composition is
important in this regard, because saturated fats (e.g., PA) are
more deleterious than unsaturated fats to hypothalamic neurons
(81), and ER stress sensors are specifically activated by increasing
ER membrane lipid saturation (82). Interestingly, PA-induced
ER stress in hypothalamic neurons decreases protein abundance
and function of the melanocortin 4 receptor (MC4R) (83), and
central inhibition of lipid oxidation and ER stress is sufficient to
restore hypothalamic lipid sensing and energy homeostasis in
mice (84).

ER stress and inflammatory pathways are functionally
coupled, and induction of CNS ER stress in lean mice is
sufficient to activate NF-kB signaling (85). Furthermore, there
is convincing evidence that ER stress activates the NLRP3
inflammasome in myeloid cells through different pathways in a
context-dependent manner. We demonstrated that IRE1a, a
critical ER sensor of both unfolded protein and saturated lipid
stress, mediates SFA-induced IL-1b secretion in macrophages
upon sensing increasing saturation of cellular phospholipids
(86). However, most metabolic studies in the hypothalamus
have focused on neuronal ER stress, and the potential
contribution of ER stress in glial cells to hypothalamic
dysfunction has not been explored yet. However, a recent
study did show that disrupting proteasome activity in
microglia triggers the induction of a type I interferon (IFN)
response in an IRE1-dependent manner (87), suggesting that
microglial ER stress is worth studying in the context of
hypothalamic regulation.

Lipid Sensing by Non-Neuronal Cells
Hypothalamic neurons are critical to the regulation of energy
and glucose homeostasis, and our understanding of neuronal
circuits controlling metabolism has advanced greatly over the
past decade. However, recent studies implicate non-neuronal
cells, including microglia, as physiologic regulators of
hypothalamic function as well. For instance, astrocytes are the
most abundant glial cells in the CNS and are involved in multiple
fundamental processes, including metabolic homeostasis,
neurovascular coupling, and BBB maintenance (88). Recent
studies show that disrupting astrocyte lipid homeostasis may
contribute to neurological disorders (89, 90). In addition,
astrocytes participate in immune responses, and HFD
consumption induces morphological changes in hypothalamic
astrocytes (91). Astrocytes can influence hypothalamic circuits
involved in the control of feeding and energy metabolism, at least
in part by regulating extracellular levels of adenosine (92, 93).
Furthermore, a recent study suggested that astrocytic insulin
signaling regulates hypothalamic glucose sensing and systemic
glucose metabolism (94). Also, astrocytes in the MBH can
respond to acute changes in nutritional exposure, with
morphological changes after overnight fasting (91), or as soon
as 1-hr post-prandially (95). Interestingly, post-prandial
retraction of astrocytes surrounding POMC neurons was only
seen with standard chow diet, but not HFD (95). Tanycytes are
radial glia-like cells that line the wall of the third ventricle in the
brain, a privileged position to integrate multiple peripheral
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inputs (96, 97). Tanycytes can sense nutrients such as FAs in the
cerebrospinal fluid (CSF), facilitate the transport of metabolic
hormones across the BBB, and integrate signals to regulate
appetite and energy balance (98, 99).

Microglia are increasingly being recognized as highly
dynamic cells that continuously monitor for alterations to their
environment, and assume different states of activation according
to the unique CNS microenvironment in which they reside.
Within the hypothalamus, microglia are emerging as key
physiological mediators, both in the context of normal
hypothalamic function and regulating the metabolic response
to HFD. As such, key details of microglial lipid sensing and
metabolic regulation have gained considerable interest, and are
therefore reviewed below.
MICROGLIA AS NOVEL REGULATORS OF
HYPOTHALAMIC FUNCTION

Recent findings reveal an expanding array of functions for
microglia, beyond their established roles as immune sentinels
and phagocytic removers of cellular debris. These include roles in
synaptic organization (100), neuronal excitability (101) and
trophic support for brain repair (102) (Figure 1). Given the
vital role of microglia in maintaining CNS homeostasis, it is not
surprising that several brain disorders are associated with
microglial dysfunction (103). Disrupting the interactions
between neurons and microglia has devastating effects on
memory, anxiety and other behavioral domains, demonstrating
Frontiers in Endocrinology | www.frontiersin.org 5
the importance of myeloid cells in brain physiology (104).
Furthermore, interactions between microglia and astrocytes
have been implicated in brain health and disease (105), and
their cross-talk may play an important role in HFD-induced
hypothalamic dysfunction. Activated microglia can induce
reactive astrocytes by secreting proinflammatory molecules,
such as IL-1a, TNF and C1q as previously demonstrated in a
lipopolysaccharide (LPS)-induced murine neuroinflammation
model (106). In addition, recent work suggests that microglial
activity is directly regulated by metabolites of dietary tryptophan
metabolism produced by commensal flora, and that this response
controls a downstream inflammatory response among astrocytes
(107). Recently, we showed that the inflammatory signaling of
microglia dictates susceptibility to diet-induced hypothalamic
dysfunction and obesity (15).

Microglial Inflammatory Signaling
Regulates Hypothalamic Immune
Response to Dietary Excess
Chronic low-grade inflammation is considered one of the
hallmarks of metabolic disease, and activation of inflammatory
pathways have been described in several metabolic tissues. Animal
and human studies have identified white adipose tissue (WAT) as
the primary site where inflammation is initiated and exacerbated
in response to weight gain (108). Obesity promotes drastic changes
in the resident immune cell profile and function inWAT. Adipose
tissue macrophages adopt a metabolically activated (MMe)
phenotype distinct from that associated with classical “M1”
activation, upregulating proteins involved in lipid processing
FIGURE 1 | Microglia as dynamic cellular mediators of hypothalamic function. Microglia can perform diverse functions to maintain brain homeostasis, actively
screening the surroundings, intercellular communication and remodeling the brain circuits through synaptic pruning and neuronal plasticity. Hypothalamic microglia
integrate systemic metabolic signals such as dietary lipids to establish functional states that influence neuronal control of energy homeostasis. TG: refers to
triglyceride-rich lipoproteins, including chylomicrons and VLDL particles. Figure created with BioRender.com.
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including ABCA1, PLIN2 and CD36 to maintain adipose tissue
homeostasis (109). Moreover, a novel and conserved macrophage
population called lipid-associated macrophages (LAMs) is
involved in controlling WAT lipid homeostasis has been
recently described in multiple obesity-related mouse models (110).

Interestingly, recent studies have provided evidence that HFD
consumption also increases the expression of genes governing
inflammatory signaling in the hypothalamus (111–113). This
phenomenon has also been described in human obesity, and
obese individuals without a systemic disease showed markedly
increased levels of inflammatory markers in the hypothalamus
compared to healthy non-obese individuals (114, 115). With this in
mind, it is notable that HFD consumption inmice rapidly increases
the accumulation and activation of microglial populations
secreting inflammatory cytokines specifically in the MBH (14).
Moreover, the activation of hypothalamic inflammatory pathways
in response to HFD consumption is much more rapid than it is in
peripheral tissues such as WAT, even preceding any significant
diet-induced weight gain, suggesting that the inflammatory
response of the MBH to dietary excess is a cause, rather than a
consequence, of obesity (113). Indeed, a single high-fat meal is
sufficient to induce morphological changes and increased Iba1
expression in hypothalamic microglia (16).

We have shown that either pharmacologically depleting
resident microglia, or genetically restraining their inflammatory
Frontiers in Endocrinology | www.frontiersin.org 6
capacity via NF-kB signaling, protects mice from diet-induced
hyperphagia and weight gain, whereas specifically forcing NF-kB-
dependent microglial inflammatory activation reduces energy
expenditure and increases both food intake and weight gain
even in absence of a dietary challenge (15). Microglial
inflammatory signaling may induce obesity by causing
hypothalamic neuronal dysfunction, including the induction of
neuronal insulin and leptin resistance (76). Moreover, prolonged
microglial activation may also induce apoptosis of anorexigenic/
catabolic POMC neurons (116).

Metabolic Plasticity of Microglia
Microglia have the ability to adapt their metabolic pathways to
use the energy substrates available in their local environment,
and to acquire diverse and complex phenotypes during
inflammatory activation in response to an insult or injury (18)
(Figure 2). A comparative transcriptional profiling of genes
related to energy metabolism in different brain cell types
revealed that microglia express specific sets of genes required
for both glycolytic and oxidative energy metabolism (117). For
instance, microglia express the long-chain fatty acyl-CoA
synthetase, which catalyzes the formation of fatty acyl-CoAs
that are, in turn, b-oxidized into acetyl-CoA units and can be
further metabolized in the TCA cycle. Additionally, a recent
study showed that microglia are able to maintain oxidative
FIGURE 2 | Metabolic pathways regulating microglial activity during homeostasis and pathological responses. Microglia can rapidly adapt their energy metabolism to
nutrient availability and transcriptomic analyses revealed that microglia express genes necessary for both glycolysis and oxidative metabolism. Microglia in their
homeostatic status show reliance on oxidative metabolism to maintain their neuroprotective properties. However, microglia in proinflammatory states preferentially
use glycolysis for energy production. This metabolic switch towards glycolysis allows microglia to produce ATP rapidly, despite being comparatively less efficient, for
the secretion of inflammatory cytokines. High-fat diet (HFD) triggers a microglial inflammatory response leading to neuronal dysfunction in the MBH. Figure created
with BioRender.com.
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phosphorylation and homeostatic function during periods of
hypoglycemia by shifting fuel utilization to glutamine (18).
Homeostatic microglia, which are tasked with regulating day-
to-day aspects of tissue homeostasis throughout the CNS, rely
mainly on oxidative phosphorylation for ATP production, while
microglia activated in the context of pro-inflammatory
circumstances favor glycolysis (118, 119). When specifically
activated, microglia are able to release several metabolites into
the extracellular milieu (e.g.: succinate, itaconate, lactate) that
modulate neuronal functionality and survival. For instance, a
recent study showed that succinate produced by CNS myeloid
cells is sensed by neural stem cells during the chronic phase of a
mouse model of experimental autoimmune encephalitis (EAE) to
ameliorate neuroinflammation via succinate-dependent
mechanisms (120). Experiments on cultured microglia
consistently show that they respond to proinflammatory
stimuli by increasing glycolytic flux (121, 122). The metabolic
alterations of isolated cells in vitro may differ from those in vivo.
However, a novel approach to image NADH fluorescence has
been recently employed to detect an enhanced glycolytic
response of microglia to LPS treatment in mouse brain slices
(18). Glycolysis is less efficient than oxidative phosphorylation
(OXPHOS), however this glycolytic shift may redirect
metabolites to provide the cell with precursor molecules for the
production of inflammatory factors. Indeed, it has been shown
that glycolysis is indispensable to stimulate secretion of pro-
inflammatory cytokines by macrophages, the peripheral tissue
analogs of microglia (123). Conversely, fatty acid b-oxidation
and mitochondrial function are necessary for microglia to
manifest relatively anti-inflammatory polarization states (124).

In considering what might control broad shifts in fuel
metabolism among microglia, it is notable that epigenetic
changes, including histone modifications and DNA
methylation, are important modifiers of gene expression and
are known to mediate the metabolic reprogramming of myeloid
cells. For instance, feeding mice a HFD for 4 weeks is sufficient to
induce lasting epigenetic modifications in myeloid progenitor
cells in the bone marrow, leading to increased immune responses
to LPS challenge even after the mice were returned to a regular
low-fat chow diet (125). Despite the fact that metabolic alterations
have been implicated in several disease models (126), more
knowledge is needed to understand which specific metabolic
pathways can be targeted to restore the homeostatic microglia
phenotype in chronic inflammatory diseases, including obesity.

Recent studies have shed light on how changes in
mitochondrial morphology and function may impact microglia
polarization and function. Microglia stimulated with LPS,
demonstrate increased mitochondrial fragmentation, which
was dependent on ROS-mediated activation of adenosine
monosphosphate-activated protein kinase (AMPK) (127).
Mitochondrial fragmentation in reactive microglia requires
dynamin-related protein 1 (DRP1), an essential component of
mitochondrial fission (127). Short-term HFD (3 days) caused
decreased size and increased number of mitochondria in
microglia in the MBH, associated with increased levels of
activation of DRP1 (128) (Figure 2).
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Mitochondrial uncoupling protein 2 (UCP2) plays a key role
in reactive microglia. Knockdown of UCP2 modulates microglia
response to both LPS and IL-4 (129). Deletion of microglial
UCP2 prevented HFD-induced increases in mitochondrial
fission in MBH microglia, and reduced microglial activation in
the MBH and HFD-induced obesity (128). UCP2 has been
shown to effect both ROS production (130, 131) and fuel
utilization (132). Microglia in culture showed increased
mitochondrial respiration in the presence of high glucose and
palmitate, dependent on the presence of UCP2 (128). Further
mechanistic studies are necessary to explore the impact of
mitochondrial function and fuel utilization in the regulation of
MBH microglia.

The Impact of Sex on Microglial
Phenotypes in Metabolic Regulation
The study of sex differences in physiology has gained attention,
and sexual dimorphism in obesity and metabolic disease has
been described (133, 134). HFD induces activation of microglia
in the MBH of rodents, in a sexually dimorphic manner, affecting
male differently than females (135). However, the mechanism
underlying these differences are not well understood.
Interestingly, recent studies suggest that male and female mice
differentially metabolize lipids acquired from the diet. For
instance, HFD feeding increases PA and sphingolipids levels in
the hypothalamic tissue of male mice but not in the females
(135). Alterations in sphingolipid-mediated signaling pathways
might provide an additional mechanism by which SFAs induce
hypothalamic dysfunction in the MBH (136). On the other hand,
microglia in the adult mouse brain have sex-specific features and
that could explain sex differences in neurological disease
susceptibility (137). Moreover, it has been recently shown that
microbiota influences adult microglia in a sex-specific manner
(138). For instance, short-chain fatty acids (SCFAs) are the main
metabolites produced by bacterial fermentation of dietary fiber in
the gastrointestinal tract, and these SCFAs influence gut-brain
communication and brain function directly or indirectly through
immune, endocrine, and vagal pathways (139). Although the
SCFAs have been shown to protect against diet-induced obesity
in mice (140) and overweight humans (141), the underlying
mechanisms are not well understood. SCFAs are important
regulators of innate immune responses and recently have been
involved in the regulation of microglial function (142). Thus,
regulating CNS myeloid cell functions by manipulating the gut
microbiota may represent a promising therapeutic approach to
mitigate metabolic diseases.
DIETARY LIPIDS REGULATE MICROGLIAL
POLARIZATION AND RESPONSES
IN THE MBH

Bioactive dietary FAs are potent modulators of microglial
inflammatory responses. Lipid accumulation in myeloid cell
types more broadly, is well demonstrated to be associated with
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the activation of inflammatory signaling cascades (143).
Moreover, microglia express a wide range of lipid metabolism-
related genes such as those encoding fatty acid oxidation
enzymes (144), lipoprotein lipases, lipid transporters, and
lipid-sensitive receptors (e.g. receptors for endocannabinoids,
prostaglandins or phospholipids), suggesting that lipids are
important regulators of microglial physiology. Microglia can
store FAs within lipid droplets, which are known to control
their inflammatory responsiveness and phagocytic activity (145).
Some reports suggest that dietary lipids in the context of the
whole mammal, can also influence microglial function through
indirect mechanisms including microbially-derived metabolites,
hormonal control, and gut and systemically-derived
inflammatory signals. For instance, treating microglia with
insulin in vitro decreases LPS-induced TNF production and
phagocytic activity in a dose-dependent manner (146).
Moreover, ghrelin, an orexigenic hormone produced by the
stomach and duodenum, directly exerts anti-inflammatory and
anti-oxidative effects on LPS-activated microglia when
introduced to them in culture (147).

In particular, long-chain SFAs have emerged as a potential
nutritional triggers of microglial activation in the MBH, exerting
effects in the brain analogous to those documented for peripheral
tissues. HFD intake increases brain SFA levels, and more
specifically those of lipids containing PA (14). Indeed, PA
levels are increased in the CSF of overweight and obese
humans (148). We showed that microglia in the MBH can
sense rising levels of saturated fats, when consumed in excess,
and transduce this to instruct local neurons. Moreover, enteric
isocaloric gavage of SFAs, but not UFAs, for only 3 days is
sufficient to induce microglial activation in the MBH,
reproducing the response seen in the MBH of mice fed a HFD
(14). These findings support the idea that SFAs trigger this
response. However, the HFD commonly used for animal
studies also contains high amounts of sugars, and another
study suggested that dietary sugars, instead of fat, drive
hypothalamic inflammation (149). One caveat of this study
was that the authors did not control for calories and the
sources of fat vs. carbohydrates across diets. Intriguingly, a
recent comprehensive study of 29 different diets with different
macronutrient compositions showed that only dietary fat, but
not protein or carbohydrates, regulates hypothalamic control of
energy intake and promotes adiposity (150). Besides
macronutrient distribution, the specific source of dietary FA is
can modulate microglial inflammatory responses. For instance,
the substitution of dietary lard for flaxseed oil or olive oil reduced
food intake and inflammatory markers in the MBH, highlighting
a specific pro-inflammatory impact of SFAs (151).

SFAs were initially thought to induce inflammation as direct
agonists of the toll-like receptor 4(TLR4), a member of the
interleukin-1 receptor superfamily with a prominent role in
innate immune responses. In support of this hypothesis,
pharmacological and genetic approaches to inhibit
hypothalamic TLR4 signaling suppressed SFA-induced
microglial activation and inflammatory cytokines expression in
rodent models fed a HFD (112, 152). However, a recent study
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showed that TLR4 is not the receptor for SFAs. Rather, TLR4-
dependent priming alters cellular metabolism, lipid metabolic
pathways and membrane lipid composition, changes that are
required for engagement of SFA-induced inflammatory
pathways (153). The fatty acid translocase CD36 is another
potential mediator of microglial lipid-sensing. Indeed, CD36
has been shown to be essential for microglia-mediated uptake
of myelin debris (154), and microglia response to beta-amyloid
(155). However, while CD36 is known to be involved in long-
chain fatty acid uptake and sensing in other tissues, its role in
lipid-sensing in microglia has not been reported. Unlike SFAs,
PUFAs have beneficial effects on the brain and reduce
neuroinflammation. PUFAs, when incorporated into cell
membranes, increasing membrane fluidity in a manner that
was shown to help microglia engage in phagocytosis (156).
Microglial movement was remarkably impaired in mice fed a
diet deficient in n-3 PUFAs (157). Also, PUFAs are endogenous
ligands of the G-couple receptor GPR120, which may explain, at
least in part, how they activate anti-inflammatory signaling
pathways (158). Moreover, GPR120 is primarily expressed by
microglia in the hypothalamus and is suggested to be involved in
regulating microglial inflammatory responses that influence
energy homeostasis (159).
LIPOPROTEIN METABOLISM AND
LIPID MEDIATORS REGULATING
MICROGLIAL PHENOTYPES

The emergence of new technology such as scRNA-seq has
enabled the identification and characterization of the diversity
of microglial populations. These studies have revealed that the
heterogeneity of microglia in both normal and disease states
exists beyond the simplistic M1/M2 paradigm, with a spectrum
of cellular states existing from homeostatic microglia to
pathology-associated microglia (160, 161). In addition, scRNA-
seq of myeloid cells has revealed extensive regional heterogeneity
in both microglia and non-parenchymal brain myeloid cells
including so-called “border-associated” macrophages found
proximal to, and within, meningeal lining tissue (162).
Recently, several comprehensive ex vivo scRNA-seq analyses of
microglia have defined specific transcriptional clusters with
common metabolic characteristics. For instance, a novel
microglial population called disease-associated microglia
(DAM) was recently identify in a mouse models of AD and
amyotrophic lateral sclerosis (ALS) expressing a distinct set of
genes associated with lipid and lipoprotein metabolism (163).
This transcriptional signature represents a preference for lipids
as fuel substrates, ostensibly to meet the increased bioenergetic
demands of this form of activated microglia (163). A similar
signature is also observed in microglia in the context of
demyelination, suggesting engagement of a transcriptional
microglial phenotype that enables the ability to phagocytose
and clear lipid debris (164). Moreover, human microglia from
white matter adjacent to chronic multiple sclerosis (MS) lesions
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showed upregulation of scavenger receptor and lipid metabolism
genes including LPL and PPARG (165). Additionally, analyses of
non-diseased human brain revealed clusters of microglia
enriched for expression of metabolism-encoding genes,
including APOE and LPL, in white- vs. grey matter, and
increased with aging (166). While the transcriptional signature
of activated microglial populations in these studies have shown
variability in the response to different stimuli and experimental
conditions, there is a clear consistent implication of alterations in
lipid metabolism in analyses of microglia activated by stimuli
other than those associated with acute infection.

Lipoprotein Lipase (LPL)
Lipoprotein lipase (LPL), an enzyme needed for the hydrolytic
cleavage and release of FAs from TGs, and a number of recent
reports have highlighted LPL as a key feature of reparative
microglia, which are recruited to restore tissue homeostasis in
the context of injury, for example. scRNA-seq of DAM, in a murine
model of Alzheimer’s disease (AD), revealed that LPL levels are
markedly increased in a unique microglial subset associated with
phagocytosis and protection in AD (163). Furthermore, LPL gene
transcription is elevated in a cuprizone model of demyelination
(167), and a recent study suggested that LPL is a novel feature of a
the supportive microglial phenotype that emerges during
remyelination and repair via clearance of lipid debris (9).

LPL is expressed in the brain, spinal cord, and peripheral
nerves but is predominantly expressed by macrophages and
microglia in the human and murine brain (117, 168). Although
the function of LPL in the microglia l response to
neurodegenerative disease is not well understood, LPL
polymorphisms are been implicated in disease risk, such as an
association with AD risk. For instance, loss-of-function LPL
polymorphisms with reduced enzymatic activity are associated
with increased AD risk as well as with increased VLDL-TG levels
(169). Conversely, patients with LPL polymorphisms leading to
increased LPL activity have reduced hippocampal amyloid
plaque formation (170). Microglia-specific knockdown of Lpl
exhibited decreased cell number and soma size of microglia in
the ARC of mice fed a hypercaloric diet (168), supporting the
hypothesis that lipoprotein metabolism is important in the
regulation of MBH microglial function. In these mice, POMC
neuronal loss was accelerated and they gained more weight than
control mice. Microglia lacking Lpl demonstrated a shift in fuel
utilization towards glutamine and decreased phagocytic capacity,
suggestive of an immunometabolic shift (168). Taken together,
these data suggest that LPL regulates lipid and lipoprotein
uptake, which may provide the lipids needed to maintain
homeostatic microglial functions in the MBH.

Apolipoprotein E (APOE)
Apolipoprotein E (APOE) is the major carrier for lipids in the
brain, and APOE genotype is the most profound genetic risk
factor for AD, predominantly by modulating microglial activation
(171). In the brain, APOE is expressed predominantly by
astrocytes and microglia and a major role for APOE in the
brain is to maintain a consistent supply of essential lipids to
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neurons (172). Extensive studies have established the role of
APOE in mediating inter-cellular cholesterol transport from
glia to neuronal cells (173). The human APOE gene exists as
three different alleles, e2, e3 and e4 and these isoforms change the
lipid and receptor binding ability of APOE.

Microglial APOE production is strongly induced during injury
and disease, including in AD (174). APOE is a key component of
transcriptional signature of activated microglia, as demonstrated
in post-mortem human brain studies, AD mouse models and
studies of cultured microglia (163, 171). APOE induces an anti-
inflammatory phenotype in macrophages and similarly an APOE
peptide inhibits inflammatory processes in isolated microglia
through the APOE receptor, LRP1 (175). In APOE-deficient
mouse models, peptides based on the APOE receptor-binding
domain prevent LPS-induced inflammation (176). Interestingly,
blocking inflammatory signaling increases APOE expression in
microglia (177), suggesting a negative feedback loop between
APOE levels and inflammation.

The mechanistic role of APOE expression in hypothalamic
microglia has not been explored in models of diet-induced
obesity, but data from studies in neurodegenerative disease
lend clues towards the potential function.

Triggering Receptor Expressed on Myeloid
Cells 2 (TREM2)
The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2)
is a type 1 transmembrane receptor protein expressed on
myeloid cells. This receptor binds a wide array of ligands
including extracellular lipids and lipoproteins, and loss of
function variants in TREM2 are also associated with increased
risk of AD. TREM2 modulates inflammatory signaling in
myeloid cells, and in the brain is primarily expressed by
microgl ia . TREM2 is crucia l for induct ion of the
transcriptomic and functional program of DAMs, by activation
of phagocytosis and lipid metabolism-related pathways. TREM2-
deficient microglia have strong metabolic defects, characterized
by impaired lipid metabolism, accumulation of cholesterol esters,
aberrant autophagy, altered mTOR signaling, and reduced ATP
production (8, 178). Also, TREM2-deficient microglia have
reduced mitochondrial mass and increased phosphorylation of
AMPK (178), a key regulator of energy metabolism that is
activated in response to low glucose and inhibits a shift in the
cellular metabolism from oxidative phosphorylation to glycolysis
(179). A recent study revealed that TREM2 activation by APOE,
drives a neurodegenerative phenotype in microglia,
characterized by suppression of transcription factors regulating
homeostatic microglia (171). Thus, targeting of the TREM2-
APOE pathway may represent a novel therapeutic approach to
restore homeostatic microglia in neurological disease.

TREM2 signaling in peripheral macrophages has recently
been linked to metabolic disease. TREM2 KO mice exhibit
increased obesity, insulin resistance and altered adipose tissue
remodeling in response to HFD feeding (180). TREM2 is
required for induction of monocyte-derived LAMs, in which
LPL and APOE are induced by a TREM2-dependent mechanism
as a consequence of HFD-induced obesity in mice (110). Similar
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transcriptional signatures were also identified in aortic
macrophages during atherosclerosis (181) and fatty livers of
mice fed a HFD (110). TREM2 activation via DAP12
antagonizes TLR signaling and inflammatory cytokine
production in cultured macrophages and, conversely, TREM2
expression is abrogated by pro-inflammatory signaling (182,
183). However, the role of TREM2 in lipid-induced microglial
activation in the MBH has not been investigated.
CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

Both microglia and lipid metabolism are now known to play keys
role in the onset and progression of the pathology of a wide
variety of neurological diseases. The traditional view of the brain
as an immune privileged organ has undergone a paradigm shift.
In recent years, it has become increasingly clear that immune
cells actively contribute to homeostatic processes in the CNS.
Furthermore, dysfunctional microglial subsets characterized by
excessive droplet- and membrane-associated lipid accumulation
and attenuated lipid efflux have recently been the subject of
considerable investigation (28, 184). Based on exciting data from
other fields, it is increasingly becoming likely that a better
understanding of how lipid mediators regulate the interaction
between the immune and nervous systems may help uncover
novel therapeutic targets to prevent and treat metabolic diseases
as well. Indeed, many of the advances in determining of the role
of lipid and lipoprotein metabolism that have occurred in the
context of neurodegenerative disease (12) have the capacity to
provide direct insight into the mechanisms by which microglia
are activated in the MBH by nutritional signals.

The CNS hosts a heterogeneous population of myeloid cells,
including parenchymal homeostatic microglia, and perivascular
and meningeal border-associated macrophages. These myeloid
cells share the expression of numerous markers, and a major
obstacle has been the lack of tools to discriminate between
specific microglial as well as other brain myeloid populations.
However, new approaches for single-cell profiling have revealed
a remarkable functional complexity in the CNS myeloid
compartment in both homeostatic and disease contexts.
Microglia are highly dependent on environmental signals to
maintain their polarization. Given that such signals may vary
across brain regions, it is notable that immune profiling of
human brain microglia by single-cell proteomics revealed
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remarkable regional heterogeneity (185). Myeloid cells
strategically located in close proximity to fenestrated blood
vessels in the MBH may be able to sense metabolic factors
including circulating lipids. To this end, we showed that HFD
feeding induces the accumulation of a unique mix of myeloid
cells in the MBH (15). This immunological response also
includes the accumulation of perivascular macrophages
involved in alterations systemic glucose metabolism (186).
However, methods using marker-based analyses have technical
limitations, and unbiased approaches are needed to resolve the
heterogeneity and complexity of myeloid cell types within
different CNS regions. Understanding the contribution of
individual diet-responsive myeloid cell types will be critical for
the development of novel therapeutics for obesity and T2D.

In summary, the emergence of a new field focused on
microglial function, heterogeneity, and cell-cell crosstalk is
providing us with an unprecedented understanding of how
dietary lipids modulate microglial functions and their
engagement with other cell types within the brain, including
the MBH. This information has tremendous potential to help us
identify new therapeutic targets to prevent overnutrition-
induced hypothalamic dysfunction and metabolic disease.
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