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Introduction

Obesity is a global health problem that is reaching epidemic pro-
portions with 1.6 billion adults classified as overweight and an 
extra 400 million adults classified as obese.1 It accounts for 7.5% 
of the total burden of disease2 costing approximately $21 billion 
dollars each year3 in Australia. Using Australia as an example 
of a westernised society, since the 1970s the rates of obesity in 
reproductive-age men has nearly tripled.4 This obesity is coin-
cident with an increase in male infertilty as evidenced by the 
increase in couples seeking artificial reproductive technologies 
(ART) especially intracytoplasmic sperm injection (ICSI).5,6 
There is increasing awareness that male obesity reduces sperm 
quality, in particular altering the physical and molecular struc-
ture of germ cells in the testes and mature sperm for a review 
see refs.7-9 Furthermore, there is increasing evidence that paternal 
health cues can be passed to the next generation with male age 
associated with an increase in autistic spectrum disorders10 and 
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Male obesity in reproductive-age men has nearly tripled in the 
past 30 years and coincides with an increase in male infertility 
worldwide. There is now emerging evidence that male obesity 
impacts negatively on male reproductive potential not only 
reducing sperm quality, but in particular altering the physical 
and molecular structure of germ cells in the testes and 
ultimately mature sperm. Recent data has shown that male 
obesity also impairs offspring metabolic and reproductive 
health suggesting that paternal health cues are transmitted to 
the next generation with the mediator mostly likely occurring 
via the sperm. Interestingly the molecular profile of germ 
cells in the testes and sperm from obese males is altered with 
changes to epigenetic modifiers. The increasing prevalence 
of male obesity calls for better public health awareness at 
the time of conception, with a better understanding of the 
molecular mechanism involved during spermatogenesis 
required along with the potential of interventions in reversing 
these deleterious effects. This review will focus on how male 
obesity affects fertility and sperm quality with a focus on 
proposed mechanisms and the potential reversibility of these 
adverse effects.
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environmental exposures associated with increases in incidences 
of childhood disease.11,12 Alarmingly, there is now evidence in 
animal models that paternal obesity increases the suspectibility 
to obesity and diabetes in offspring, suggesting a possible mecha-
nism in the amplification of these chronic diseases.13,14 Therefore, 
this review will focus on how male obesity affects fertility and 
sperm quality with a focus on proposed mechanisms for this 
altered spermatogenesis and the potential reversibility of these 
adverse effects.

Male Obesity Negatively Impacts Fertilization 
and Pregnancy

In the last 5–10 years it has been demonstrated that mater-
nal obesity is associated with changes to the oocyte that nega-
tively impact embryo development, which reduces subsequent 
pregnancy establishment after in vitro fertilization.15-17 Only 
recently in the last 2–3 years has the impact of an obese male 
partner on embryo development and pregnancy been assessed. 
Currently, there is mounting evidence that male obesity may 
be equally implicated in reducing fertility and embryo health. 
Couples with an overweight or obese male partner, with a female 
of normal body mass index (BMI), have increased odds ratio for 
increased time to conceive compared with couples with normal 
weight male partners.18,19 A limited number of clinical studies 
suggest similar outcomes. With obesity in males associated with 
decreased pregnancy rates and an increase of pregnancy loss in 
couples undergoing ART (Fig. 1).20-22 In part, this effect appears 
to be due to reduced blastocyst development, sperm binding and 
fertilization rates during in vitro fertilization (IVF), when the 
male partner is overweight or obese.20,23 However, more studies 
would be welcomed on this topic as limitations regarding sample 
size, cycle numbers, known factor infertility and the use of either 
IVF or ICSI are potential cofounders. This is suggested in the 
Keltz et al.22 study where they did not see the same changes to 
fertilization and embryo development when sperm were injected 
directly into the oocyte suggesting that the process of ICSI was 
by passing some impairment of the sperm to bind and fertilize. 
Although, this is not surprising as animal models of obesity have 
shown that the capacitation status and sperm binding ability of 
high fat diet mice were impaired compared with controls24,25 sug-
gesting that post ejaculation maturation was altered and can be 
bypassed by ICSI. These embryology based findings which have 
established that male obesity at the time of conception impairs 
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obesity compromised both first and second generation metabolic 
and reproductive health, with the female offspring additionally 
having increased fat mass demonstrating the first direct evi-
dence of transmission of obesity.14,32 Significantly, F1 offspring 
had compromised gamete health with increased oxidative stress 
noted in sperm of male offspring and changes to oocyte mito-
chondrial function in female offspring.14 Taken together these 
data suggest that paternal obesity at the time of conception has 
a marked effect on offspring health therefore, directly implicat-
ing the sperm as the mediator for these changes, likely through a 
molecular mechanism that is transmitted to the resultant embryo 
and offspring (Fig. 2).

Male Obesity on Traditional Sperm Parameters

There are several studies that have investigated the impact of 
male obesity on the traditional sperm parameters mandated by 
the world health organization (WHO), namely sperm concen-
tration, sperm motility and sperm morphology (summarized 
in Table 1). There is some evidence that male obesity reduces 
sperm concentration with 15 out of 23 recent studies showing 
this (Table 1). In contrast, there are many contradicting reports 
with regard to sperm motility (with 7/19 showing decreased 
motility) and morphology (7/16 showing decreased normal 
forms) and it is currently unclear if male obesity has an impact 
on these parameters (Table 1). The discrepancies observed in the 
literature likely result from several limitations that are inherent in 
human studies. First, these studies can be confounded by lifestyle 

embryo health, therefore reducing implantation and live birth 
rates are paralleled by animal models of male obesity.26,27 This 
highly suggests a functional change to the molecular makeup of 
sperm that impacts directly on both sperm function but also on 
subsequent embryo development.

Paternal Obesity and Programming the Health 
of the Next Generation

It is widely accepted that nutritional challenges during gestation 
(including maternal obesity) program molecular changes in the 
developing fetus that result in increased susceptibility to adult 
chronic diseases for a review see refs.28,29 However less is known 
about the influence of paternal obesity on childhood and adult 
health. Epidemiology studies have concluded that obese fathers 
are more likely to father an obese child.30,31 Although, it must be 
noted that the extent of the individual contributions of genetic, 
epigenetic and environmental cannot be separated in these asso-
ciation studies due to the common raising environment of both 
father and child. In light of this limitation, animal models of 
paternal obesity have been developed, which have more directly 
demonstrated marked changes to both the metabolic and repro-
ductive health of subsequent offspring.13,14,32 Data from a rat 
model of diet induced obesity and reduced glucose tolerance dem-
onstrated that paternal obesity compromised pancreatic function 
through altered gene transcription and islet cell dysfunction in 
female offspring.13 Subsequently, a mouse model of diet induced 
obesity without reduced glucose tolerance showed that paternal 

Figure 1. The effect of male obesity on pregnancy success in couples undergoing assisted reproductive technologies. Data taken from ref. 20 from 
305 couples undergoing assisted reproductive technologies. BMI classification ranges, Normal (18.5 – 24.9 kg/m2), Overweight (25.0 – 29.9 kg/m2) and 
Obese (≥ 30 kg/m2). Data was analyzed through a multivariate analysis including both paternal and maternal BMI. Different letters denote significance 
at p < 0.05.
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summary, there are conflicting reports about the interaction of 
male obesity with traditional WHO sperm parameters, but it is 
becoming clearer that male obesity is associated with significant 
changes to the molecular composition of sperm which has impli-
cations for its function but also for the resultant embryo.

Male Obesity and Altered Hormone Profiles

Spermatogenesis is a highly complex and selective processes 
whereby sperm are continually produced from the onset of 
puberty until death for a review see refs.50,51 This highly special-
ized process is under strict control from sex steroids, which in 

factors (ie smoking, alcohol consumption and 
recreational drug use) and co-pathologies, 
which can themselves impair sperm function. 
Second, the majority of studies originate from 
fertility clinics, where patient cohorts are fre-
quently biased toward, sub-fertile men, which 
may also confound findings. Third, some 
studies rely on self-reporting of parameters 
such as lifestyle factors and BMI, which can 
lead to under reporting.

Due to these difficulties in interpreting 
data from human studies, rodent models of 
male obesity have now been established to 
assess the impact of male obesity on sperm 
function, however it is necessary to be aware 
of the differences between species. These stud-
ies have demonstrated that males fed a high 
fat diet to induce obesity had reduced sperm 
motility and a decrease in percentage of sperm 
with normal morphology,24,27,33-35 however it 
should be noted that a number of these studies 
had significant reductions in testosterone24,25 
and altered glucose homeostasis24 in their high 
fat diet groups which could be contributing 
to the results. Although there is some conten-
tion in the literature with regard to the effect 
male obesity has on traditional WHO sperm 
parameters, the changes reported indicate that 
the sperm are indeed compromised on more 
subtle levels.

Male Obesity on Sperm DNA Integrity 
and Oxidative Stress

While traditional WHO sperm parameters 
(sperm concentration and motility) are impor-
tant measures of male fertility it is becom-
ing increasingly apparent that the molecular 
structure and content of the sperm is equally 
important to the ability of a sperm to generate 
a healthy term pregnancy. Sperm DNA integ-
rity is important for successful fertilization and 
normal embryonic development, as evidenced 
by sperm with poor DNA integrity being neg-
atively correlated with successful pregnancies.36-40 Furthermore, 
sperm oxidative stress correlated with decreased sperm motility, 
increased sperm DNA damage, decreased acrosome reaction and 
lower embryo implantation rates following IVF.41-43 Numerous 
human studies as well as an animal study have determined that 
a relationship between obesity and reduced sperm DNA integ-
rity exists, despite the use of a variety of different methodologies 
to measure sperm DNA integrity (TUNEL, COMET, SCSA, 
etc).33,44-48 Only two studies, one human49 and one rodent25,33 
have directly linked levels of sperm oxidative stress with male 
BMI. Both studies concluded that a positive association between 
increasing BMI and increased sperm oxidative stress exists. In 

Figure 2. Hypothesis for the effect of male obesity on spermatogenesis and how it impacts 
offspring health. Paternal obesity in rodents has been shown to negatively impact the 
metabolic13 and reproductive health14 of offspring. Sperm are the likely mediator for altering 
the developmental profile of the embryo,20,26 fetes20,26 and then resultant offspring.13,14,30,31 
This change is likely to be molecular in nature99 and resulting from impaired spermatogenesis 
as a result of the obesity phenotype most likely occurring through changes to acetylation,35 
methylation or non-coding RNA status of sperm .
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with decreased testis weight, and sperm output due to a reduction 
in Sertoli cell numbers.62,63 Therefore it remains plausible that the 
decreased sperm counts observed in male obesity are at least in 
part a result of changes to the HPG axis through testosterone and 
estrogen and likely reduced Sertoli cell function.

Obesity, Metabolic Syndrome and Fertility

Hyperinsulinemia and hyperglycemia is a common occurrence in 
obese individuals and are constant confounding factors in many 
rodent studies of male obesity.13,24,27 Hyperinsulinemia and hyper-
glycemia have been shown to have an inhibitory effect on sperm 
quantity and quality and therefore could be attributing to the 
reduced fertility seen in obese men for a review see refs.64,65 With 
commonly altered makers of sperm function such as decreased 
count, increased reactive oxygen species and sperm DNA dam-
age also seen in diabetic patients for a review see refs.65,66 High 
circulating levels of insulin is suggested as one possible mecha-
nism for the above effects with increased insulin reducing the 
production of SHBG in the liver thereby indirectly increasing the 
amount of active unbound estrogens and testosterone (not bound 
by SHBG) in the blood stream.67 The decreased levels of SHBG 
to sustain homeostatic levels of testosterone could contribute to 
the decreased levels of testosterone and decreased sperm counts 
seen in these patients. Increasing levels of circulating glucose 
have also been shown to reduce the amount of LH released by 
the anterior pituitary in sheep68,69 and therefore could contribute 
to the impaired HPG axis and altered sperm parameters seen in 
diabetic and overweight and obese men. Additionally, there is 
emerging evidence that low testosterone levels can also induce 
aspects of metabolic syndrome and therefore obesity may not be 
the direct cause of reduced sperm counts seen in these men but a 
symptom of the same low testosterone.70-72

Interaction of Adipose Tissue 
with Hormonal Regulation

A working hypothesis proposed that elevated estrogens in obese 
men may in part result from the increased mass of white adipose 
tissue. White adipose tissue is responsible for aromatase activ-
ity and adipose derived hormones and adipokines, which are 
elevated in obese men.73 Aromatase cytochrome P450 enzyme, is 
produced by many tissues including adipose tissue and testicular 
Leydig cells, and in men activity converts testosterone to estro-
gens.74,75 Due to obesity increased influx of white adipose tissue 
it is suggested that elevated estrogen concentrations may result 
from an increased conversion of androgens to estrogens by white 
adipose tissue therefore contributing to the increased plasma 
estrogen levels seen.76-78 Another key hormone produced by white 
adipose tissue is leptin, which plays a pivotal role in the regula-
tion of energy intake and expenditure for a review see refs.79,80 
Leptin mainly targets receptors in the hypothalamus by coun-
teracting the effects of neuropeptide Y. However leptin receptors 
have recently been discovered in ovaries and testes, functioning 
to regulate the HPG axis.81-85 Specifically, increased levels of 
leptin significantly decreased the production of testosterone from 

turn are regulated by the hypothalamus, pituitary and Leydig 
and Sertoli cells located in the testes for a review see refs.50,51 
Examining the effect of obesity on this process is underpinned by 
the hypothesis that the hypothalamic pituitary gonadal (HPG) 
axis is deregulated by obesity.

Several studies document that increased male BMI is associ-
ated with reduced plasma concentrations of SHBG and therefore 
testosterone and a concomitant increased plasma concentra-
tion of estrogen.21,44,49,52-58 Decreased testosterone and increased 
estrogen have long been associated with sub fertility and reduced 
sperm counts by disrupting the negative feedback loop of the 
HPG axis and are therefore common markers of fertility for a 
review see ref.59 The Sertoli cell is the only somatic cell in direct 
contact with the developing germ cells by providing both physi-
cal and nutritional support and are therefore are of interest in 
male infertility. Adhesion of Sertoli cells to the developing germ 
cells is dependent on testosterone, with decreased testosterone 
leading to retention and phagocytosis of mature spermatids and 
therefore reducing sperm counts.60,61 Other hormones involved 
in the regulation of Sertoli cell function and spermatogenesis, 
such as FSH/LH ratios, inhibin B and Sex Hormone Binding 
Globulin levels have all been observed to be decreased in males 
with increased BMI for a review see refs.7-9 With mouse knockout 
models including both loss of FSH or FSH receptor associated 

Table 1. Summary of the studies investigating paternal obesity and their 
effect on basic sperm parameters

Concentration Motility Morphology

Strain et al.146 Decreased No change n/a

Jensen et al.58 Decreased No change Decreased

Magnusdottir et al.147 Decreased Decreased n/a

Fejes et al.148 Decreased No change No change

Koloszar et al.149 Decreased n/a n/a

Kort et al.45 Decreased * Decreased * Decreased *

Qin et al.150 No change No change No change

Hammoud et al.151 Decreased Decreased Decreased

Pauli et al.56 No change No change No change

Aggerholm et al. 52 No change No change No change

Nicopoulou et al.152 Decreased n/a n/a

Hofny et al.153 Decreased Decreased Decreased

Stewart et al.154 Decreased n/a n/a

Chavarro et al.155 No change No change No change

Shayeb et al. 156 No change No change Decreased

Koloszar et al. 149 Decreased n/a n/a

Sekhavat et al. 157 Decreased Decreased n/a

Paasch et al. 54 Decreased No change Decreased

Tunc et al. 49 Decreased No change No change

Rybar et al.158 No change No change No change

Bakos et al. 20 Decreased Decreased No change

Kriegel et al.46 No change No change Decreased

Fariello et al. 48 No change Decreased No change

*Significant for Normal Motile Sperm (NMS) = volume*concentration*%
motility*%morphology.
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hypomethylation generally allows increased access of transcrip-
tion factors to the DNA and increases gene expression. It is esti-
mated that 96% of the genomic CpGs in sperm DNA are usually 
methylated, although there are site specific variations of methyla-
tion in mature sperm.105

Analysis throughout human spermatogenesis has determined 
that DNA methyltransferase proteins (DNMT 1, 3A, 3B) are 
present during the spermatogenic cycle as knockout studies 
result in changes to sperm methylation and in some cases sperm 
function.106 The stage specific changes in nuclear localization of 
these three proteins during spermatogenesis coincides with the 
establishment of the methylation imprints in the spermatogonia. 
Subsequent maintenance of these imprints occurs throughout the 
remainder of spermatogenesis suggesting methylation imprints 
are key molecular events during spermatogenesis.107

There is some evidence that the methylation status of sperm 
DNA is associated with sub-fertility. Hypomethylation of 
imprinted genes and repeat elements in sperm have been linked 
with reduced pregnancy success and correlate with increased 
sperm DNA damage in males undergoing fertility treatment.108-111 
Additionally, altered levels of methylation in the promoter 
regions of genes such as MTHFR are associated with decreased 
sperm function. Further, imprinted regions such as H19 and 
ALU repeat elements are more likely to be hypomethylated in 
subfertile men.110,111

Environmental exposures have also been linked with changes 
to methylation status of sperm. Toxins such as exposure to 
5-aza-2'-deoxycytidine, tamoxifen and chemotherapy agents 
disturb the de novo methylation activity in sperm as shown in 
animal models.112-114 This aberrant methylation was observed at 
imprinted regions such as Igf2 and H19. Subsequently this lead to 
a disruption of the DNA methylation reprogramming of the male 
pronucleus, which in turn increases post implantation pregnancy 
loss.112-114 Moreover, excessive alcohol consumption in men been 
associated with site-specific hypomethylation in sperm,115 a find-
ing confirmed in animal models.116 Excessive alcohol consump-
tion impacts negatively on offspring prenatal growth and also 
alters the methylation status of offspring DNA.117,118

To date there is little information as to the impact of obesity 
on the methylation status of DNA originating from male germ 
cells, however obesity has been shown to alter the methylation 
status of DNA originating from other tissues for a review see 
ref.119 Whether the metabolic and reproductive changes observed 
in offspring as well as reduced fertilization and increased preg-
nancy loss induced from paternal obesity results from alterations 
to de novo methylation patterns of developmental genes in the 
male germ line is yet to be determined.

Acetylation. Histone acetylation is vital for spermatogen-
esis to proceed and is necessary and essential for the removal 
of histones so they can be replaced by protamines during sper-
miogenesis. Furthermore, histone acetylation is essential to 
relax chromatin structure that allows for the repair of the DNA 
double and single strand breaks that result.120 Protamination is 
required to enable the tight packing of the DNA that occurs 
within the sperm head, which aids in the protection against 
DNA damage in the absence of normal cellular defenses that 

Leydig cells.86 Taken together this suggests that elevated leptin 
levels commonly found in obese males87 could alter the HPG 
axis, thus contributing to the decreased testosterone production 
observed.

Interaction of Adipose Tissue 
on Testicular Temperature

One side effect of obesity that may potentially contribute to 
altered sperm production/parameters is raised gonadal heat 
resulting from increased scrotal adiposity. The process of sper-
matogenesis is highly sensitive to heat, with optimal temperature 
ranging between 34–35°C in humans.88 Increased testicular heat 
is associated with reduced sperm motility, increased sperm DNA 
damage and increased sperm oxidative stress.89-91 Changes to tes-
ticular temperature can occur via a number of mechanisms such 
as physical disorders (ie varicoceles), increased scrotal adiposity 
or environmental disturbances (ie prolonged bike riding) and are 
associated with reduced sperm function and sub fertility.92-98 It 
is therefore not surprising that increased testicular heat caused 
by increased adiposity in obesity has been proposed as a possible 
mechanism. It is noteworthy that increased sperm DNA dam-
age and oxidative stress are commonly impaired in obese patients 
and that a single study which investigated the surgical removal of 
scrotal fat reported an improvement in sperm parameters.95

Impact of Male Obesity on Molecular Aspects 
of Spermatogenesis

Recent data, which has shown that paternal health cues are 
transmitted to the next generation most likely via the sperm, 
has resulted in a renewed interest into the molecular function of 
sperm99 and has helped lead to our current hypothesis (Fig. 2). 
The mechanisms inducing changes to sperm molecular compo-
sition are yet to be determined in obese individuals. However, 
several studies examining transgenerational effects13,14 have pro-
posed epigenetic modifications to the sperm through changes to 
non-coding RNA content, methylation and acetylation status 
which are changed in obese individuals for a review see refs.99,100 
Additional reports suggest that the proteomic profiles of sperm 
also differ between obese and non obese men.46 It is now becom-
ing increasingly accepted that the environment that the founder 
generation is exposed to impacts the phenotype of subsequent 
generations with the term ‘transgenerational epigenetic inheri-
tance’ coined to reflect this phenomena.101,102 Rodent models of 
male diet induced obesity document impaired metabolic and 
reproductive phenotypes in F1 offspring13,14,32 and therefore sug-
gest that transgenerational epigenetic inheritance is involved.

Methylation. Methylation of DNA and histones is dynamic 
during spermatogenesis and is vital for the normal processes of 
spermatogenesis and fundamental for a successful pregnancy. 
Changes to sperm methylation is required and essential for X 
chromosome inactivation during meiosis and for the establish-
ment of paternally imprinted genes in sperm.103,104 Generally, 
hypermethylated DNA at promoter regions inhibits gene expres-
sion by excluding transcription factor binding. In contrast, 
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There is evidence that the retention 
of these histones during protamination 
is not random with key pluripotency 
regulating genes remaining histone 
bound (ie Nanog, Oct4 and Sprouty).123 
Therefore these loci are capable of 
normal somatic cell histone modifica-
tions.123 Thus, alterations to histone 
acetylation at such loci due to environ-
mental cues could result in epigenetic 
modifications to sperm that might form 
the basis of paternal programming of 
offspring.

The N-terminus of histones is a key 
region attracting post translational mod-
ifications such as acetylation. Acetylated 
histones in mature sperm are thought 
to represent epigenetic marks capable 
of transmission to the oocyte during 
fertilization and regulate gene expres-
sion in early embryogenesis. Given that 
key pluripotency genes retain histones 
it is proposed that this is in readiness 
for immediate activation of expres-
sion of these genes post fertilization.123 
Hyperacetylation of H4 and H3 is 
required for normal spermiogenesis and 
for appropriate replacement of histones 
by protamines during spermiogenesis. 
Studies exploring the roles of histone 
deacetylases (HDAC) found that germ 
cells treated with HDAC inhibitors, 
result in premature hyperacetylation 
of late round spermatids.124-126 The 
functional consequence of this early 
hyperacetylation is still to be fully 
understood, however studies indicate 
that an increased rate of DNA damage 
occurs as the result.125,127 Interestingly, 
male mice fed a high fat diet similarly 
displayed altered acetylation status in 
late round spermatids which also cor-
related with increased DNA damage 
in the germ cells35 (Fig. 3). Alterations 
to sperm histone acetylation correlates 
with poor protamination, which in turn 
positively correlates with increased DNA 
damage in mature sperm and therefore 
potentially contributes to poor sperm 
parameters observed in obese males.128-

130 Taken together, alterations to histone 
acetylation represent a potential epigenetic basis for the program-
ming observed in resultant embryos and sired by obese males.106

RNA and small non-coding RNA. The long held dogma 
was that sperm were transcriptionally and translationally silent 
and that the small amounts of RNA contained were thought 

are greatly diminished by the shedding of the cytoplasm during 
epididymial transport. The histone to protamine transition is 
incomplete with roughly 1% of histones remaining in mature 
murine sperm.121 Curiously, up to 15% of histones are retained 
in human mature sperm.122

Figure 3. The effect of diet induced obesity in C57BL6 mice on Acetylation and DNA damage levels 
in spermatids during protanimation. Data taken from.35 Data was analyzed through a univariate 
general linear model with replicate fitted as a covariate and mouse ID as a random factor. Correla-
tion data was determined by a Pearson’s Rho. (A) The effect of diet induced obesity in mice on 
acetylation levels of H3K9 in elongating spermatids representative of > 120 spermatids from at least 
5 mice per treatment group. (B) The effect of diet induced obesity in mice on DNA damage levels 
in elongating spermatids representative of > 4000 spermatids from at least 5 mice per treatment 
group. There was a negative correlation found between acetylation levels of H3K9 and DNA damage 
levels in round spermatids R2 = 0.60, p = 0.023 n = 8 animals.
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measures (sperm count and motility).143 Furthermore, our recent 
studies of diet and exercise interventions in an obese mouse 
model have determined that sperm function is correlated with 
the metabolic health of the individual.24 Improvements in meta-
bolic health such as a return of plasma concentrations of glucose, 
insulin and cholesterol to normal levels result in improvements in 
sperm motility and morphology, concomitant with improvements 
to molecular composition such as reductions in oxidative stress 
and reduced DNA damage.24 To date there is little information 
about the impact of diet/exercise intervention in obese men with 
regard to semen parameters in the human. The largest study to 
date examined 43 obese men during a 14 week residential weight 
loss program and demonstrated significant improvements to both 
total sperm count and sperm morphology in men who lost the 
greatest amounts of weight.144 However, a recent case report of 
three patients who underwent bariatric surgery to achieve dras-
tic weight loss demonstrated that sperm parameters worsened.145 
These parameters remained poorer two months post surgery in 
all patients and only one patient had minimal improvements 
after two years.145 However, the impact of nutritional deficiencies 
that might persist even after surgical intervention, and metabolic 
health of these men were not studied. The full potential of diet 
and exercise interventions to restore the fertility of obese men 
and improve embryo and offspring outcomes are yet to be fully 
characterized.

Conclusion

There is emerging evidence that male obesity negatively impacts 
fertility through changes to hormone levels, as well as direct 
changes to sperm function and sperm molecular composition. 
Data from animal models implicate the nutritional status of 
the father as setting the developmental trajectory of resultant 
offspring. Both male and female offspring born to fathers with 
sub-optimal nutrition have a constellation of metabolic and 
reproductive health pathologies. Nutritionally induced altera-
tions to both the physical and molecular composition of sperm 
evidently implicates it as the mediator of these impacts on both 
the father’s fertility and the health of the next generation, spark-
ing renewed research interest in spermatogenesis and the detri-
mental effects of obesity. Additionally with the recent animal 
studies showing that simple diet and exercise interventions can 
be used to reverse the damaging effects of obesity on sperm 
function, understanding the impacts will be important for the 
development of public health messages for men considering 
fatherhood.

to be remnants left over from spermatogenesis.131 However, it 
is now evident that mature sperm contain a regulated suite of 
both mRNA and other non-coding RNA that are suggested to 
be important for normal fertilization and subsequent embryonic 
development, with active transcription and translation occurring 
in the sperm’s mitochondria.132-135 Although it is not yet clear 
what the precise role these RNAs play, it has been empirically 
proven that these RNA can cause phenotypic change in resultant 
offspring after injection into oocytes, albeit at amounts that far 
exceed biological concentrations.136 While to date there is little 
known about mRNA abundance in sperm from obese males, 
one rodent model of obesity and diabetes has shown significant 
differences in several mRNA within testes compared with lean 
controls.27

Mature sperm also contain significant levels of small non-
coding RNAs including silencing RNAs (siRNAs), microRNAs 
(miRNAs) and in a recent study piwi-interacting RNA (piR-
NAs).137 Small non coding RNAs are 20–22 nucleotides (nt) in 
length and contain an abundance of stop codons and generally 
lack open reading frames.138 They regulate at the level of both 
transcription and translation via control of chromatin organi-
zation, mRNA stability and protein synthesis. Interestingly, 
microRNAs also regulate methylation in several tissues.139 
Indeed, hypomethylation of repeat elements in the male germ-
line has been associated with an increase in miR-29, which is 
predicted to downregulate DNMT3a, a protein necessary for 
establishing genomic methylation.140

It is apparent that these RNAs have a role in the oocyte dur-
ing fertilization and in embryo development, fetal survival and 
offspring phenotype. Alteration of microRNA abundance in the 
male pronucleus of recently fertilised zygotes produce offspring 
of phenotypes of variable severity depending on the ratios of 
microRNAs injected.141 One preliminary study reported that the 
microRNA profile is altered in sperm as a result of male obesity in 
rodents.142 However, the impact of these changes on fertilization 
and embryo health remains to be determined.

Reversibility

While it is becoming clearer that male obesity has negative 
impacts on fertility, sperm function and long-term impacts on 
the health burden of the offspring It is equally clear that simple 
interventions such as changes to diet and/or exercise can reverse 
both the disease state and the offspring outcomes. There is 
emerging evidence that intake of selenium enriched probiotics by 
obese rodents improves both their metabolic health and fertility 
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