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The American College of Rheumatology’s (ACR) core 
 dataset1 has caused a major improvement in the standardiza-
tion of clinical trials for rheumatoid arthritis (RA). Response 
criteria have been defined as 20%, 50%, and 70% improve-
ment from baseline and named ACR20, ACR50, and ACR70. 
ACR202 has been accepted as the efficacy benchmark 
in RA clinical trials,3 showing greater discriminant capac-
ity over ACR50 and ACR70 to distinguish active treatment 
from placebo control.4 However, 20% improvement does 
not represent optimal clinical progress and is not a mean-
ingful clinical response for rheumatologists.5 In clinical trials 
conducted since 1997, similar discriminant capacities were 
demonstrated for ACR20 and ACR50 to distinguish active 
versus control treatments, which seems to attest the superi-
ority of newer therapeutic approaches and drugs, achieving 
higher level of ACR response.6 ACR50 and ACR70 are more 
desirable targets for patients and provide useful information 
in addition to ACR20.6,7 Dichotomizing the composite ACR 
assessment into binary variables such as ACR20, ACR50, 
and ACR70 discards information.8,9 Classification as “ACR20 
responder” ignores whether the subject actually reached 50 
or 70% improvement over baseline. Thus, simultaneous mod-
eling of the three available endpoints ACR20, ACR50, and 
ACR70 is a more effective use of the data.10 ACR-N11–13 or 
hybrid-ACR14 analysis would represent a further step toward 
use of a continuous measure based on ACR assessment.

Successive ACR assessments collected repeatedly over 
time for each individual are not independent.15 Not account-
ing for this property in the implementation of ordered logistic 
regression, the standard method to model ordered categori-
cal data16 is expected to lead to over-prediction of the number 
of transitions between the different grades.17 The inclusion 
of Markov elements in the logistic regression18 lead to better 

characterization of the transitions between response and 
non-response for the binary score ACR20.15 Nevertheless, 
the complexity of the model increases dramatically with the 
number of categories and constant influence of preceding 
score(s) is implicitly assumed, whatever the observation 
schedule. The latent variable (LV) approach, that relates the 
observed scores to an underlying continuous measure of 
the disease activity,19 was proposed to model the three ACR 
scores simultaneously.20,21 This approach essentially focuses 
on describing the average probability of the population of 
subjects and was shown to over-predict the number of transi-
tions between scores when applied to stand-alone ACR20 
modeling in its simple implementation.15 It was recently 
extended to accommodate extra-correlation between longi-
tudinal dichotomous data22 but remains complex to imple-
ment and is not integrated in standard software packages. 
The continuous-time Markov model was first proposed in the 
PKPD literature to model the tablet position in the gastro-
intestinal tract.23 It was applied to characterize various types 
of ordered categorical data, such as pain in animal models24 
and side effects in clinical trials: grades of proteinuria in can-
cer patients treated with anti-angiogenic drug17 or extrapy-
ramidal side effects in schizophrenic patients treated with 
antipsychotic drugs.25 This approach addresses the depen-
dence between successive observations with the influence of 
the previous score decreasing with increasing time between 
observations. It is more sparing than inclusion of Markov ele-
ments in proportional odds models when more than two cat-
egories are considered and allows for accurate simulations 
for various observation schedules.

In this article, we present the development of a continuous-
time type mixed-effect Markov model characterizing the ACR20, 
ACR50, and ACR70 responses as a function of certolizumab 
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The Markovian approach has been proposed to model American College of Rheumatology’s (ACR) response (ACR20, ACR50, 
or ACR70) reported in rheumatoid arthritis clinical trials to account for the dependency of the scores over time. However, 
dichotomizing the composite ACR assessment discards much information. Here, we propose a new approach for modeling 
together the three thresholds: a continuous-time Markov exposure–response model was developed, based on data from five 
placebo-controlled certolizumab pegol clinical trials. This approach allows adequate prediction of individual ACR20/50/70 time-
response, even for non-periodic observations. An exposure–response was established over a large range of licensed and 
unlicensed doses including phase II dose-ranging data. Simulations from the model (50–400 mg every other week) illustrated 
the range and sustainability of response (ACR20: 56–68%, ACR50: 27–42%, ACR70: 11–22% at week 24) with maximum clinical 
effect achieved at the recommended maintenance dose of 200 mg every other week.
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pegol exposure from five phase II and phase III clinical trials 
including both licensed and unlicensed doses. Certolizumab 
pegol is PEGylated Fc free anti-TNF (Fc = crystallizable frag-
ment) licensed for treatment of moderate to severely active RA 
in several countries, including United States and Europe, at 
the dose of 400 mg initially and at weeks 2 and 4, followed by 
200 mg every 2 week (Q2W); for maintenance dosing, 400 mg 
every 4 weeks (Q4W) can also be considered.

RESUlTS
Data
The patient population and study design of the five double-
blind placebo-controlled clinical trials26–29 have been described 
previously.15 Data from 2,380 subjects with RA were analyzed 
(24,519 observations); 1,747 subjects received certolizumab 
pegol at doses ranging from 50 to 800 mg, and 633 subjects 
received placebo. Treatment was administered subcutaneously 
Q2W or Q4W for 12 weeks up to 1 year, as monotherapy or in 
combination with methotrexate (patients were on stable dose 
at inclusion), with a loading dose for the two pivotal studies 
(Table 1). The predicted plasma concentrations at the time of 
ACR assessment (Cp) ranged from 0.4 to 174 μg/ml. Typical 
steady-state average concentration for the 200 mg Q2W and 
400 mg Q4W label treatments was 23.2 μg/ml.

Structural ACR model
At each visit, subjects were classified as ACR20 non-
responder (ACR-NR, score = 0), ACR20 but not ACR50 
responder (ACR20-50, score = 1), ACR50 but not ACR70 
responder (ACR50-70, score = 2), or ACR70 responder 
(score = 3). The probabilities of the scores, modeled as com-
partment amounts, were defined by four ordinary differential 
equations, the sum of the probabilities of the four responder 
states remaining equal to 1 at any time point (Figure 1). At the 
time of observation, the actual score is known, i.e., the prob-
ability of observing this score is equal to 1. The probabilities 
of the other responder states and the integration time were 
reset to 0 (see example dataset in  Supplementary Material). 
Between two observations, the probability “amount” distrib-
utes with time between the different states, with a rate deter-
mined by the transition  parameters. At each time, the total 
probability “amount” in the different states/compartments is 1 
as the system is closed (Figure 2).
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with Kp = TVKp·exp(ηp,i) and TVKp = fp (Kp,0, gp(t), hp(qij))
where Pr(0) to Pr(3) are the probability of the scores from 

ACR20-NR to ACR70, the Kp are the transfer rate parameters 
between the compartments where the first digit of the rate 
parameter represents the current score and the second digit 
the preceding score (e.g., K21 can be read as the transfer rate 
to score 2 given current score of 1). Kp,0 reflects the baseline 

value of the pth transfer rate parameter at the time of the first 
dose of study medication, gp(t) and hp(qij) the time and drug 
effects on the transfer rate, t the continuous time and qij the 
exposure measurement for the jth observation of ith subject. 
The predicted concentration at the time of observation, Cp, was 
selected as marker for drug exposure based on the objective 
function value (OFV).

The ηp,i, representing the random effect around parameter 
Kp for subject i, was assumed to have a normal probability 
distribution of mean zero and variance ω2; its empirical Bayes 
predictions allowed for subject-specific predictions of the cor-
responding transfer rate.

Final model parameters are summarized in Table 2. 
Whenever possible, the model was reduced by combin-
ing effect parameters on different transfer rates. All patients 
were considered as ACR20-NR at baseline (time = 0) and 
the score could improve naturally after this time point. Later 
in the study, scores tended to worsen with time in placebo 
treated patients: transfer rate to lower scores were greater 
than transfer rate to higher scores, i.e., an ACR20 responder 
subject receiving placebo was more likely to revert back to 
ACR20-NR than to become ACR50 responder.

A positive exposure–response relationship was identi-
fied. Emax-models with positive Emax value (K10) and linear 
functions with positive slope (K21 and K32, common slope) 
described the effect of the drug concentration on upward 
transfer rate parameters. Emax-models with negative esti-
mates of Emax, described the drug effect on downward rate 
parameters (K01, K12, K23, common Emax). Kp were restricted 
to be positive by setting the lower boundaries of the initial 
parameter estimates.
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where sltp and sldp represent the slopes of the linear relation-
ship to continuous time and concentration, respectively, Emax p 
is the maximum change in the pth transfer constant value as 
a function of exposure measure and EC50 the concentration 
to reach half of the maximum effect related to Cp, common to 
the relevant transfer rate parameters.

Incorporation of a full variance-covariance matrix charac-
terizing the correlations between the transition rate param-
eters markedly improved the fit of the model to the data 
(decrease in OFV of 338 units) and the simulation perfor-
mance of the model. Transfer rate parameters to higher ACR 
were highly correlated (K10, K21: 62%, K10, K32: 60%, K21, K32: 
82%). Transfer rate parameters to lower ACR were less cor-
related, except 79% for K01, K12. However, inclusion of these 
15 additional parameters dramatically increased the run time, 
and resulted in failure of the covariance step.

Upward transfer rates were decreased (lower ACR 
response) with increased baseline swollen joint count and 
concomitant corticosteroid treatment. Downward transfer 
rates increased with increased age, resulting in decreased 
ACR response for elderly subjects. Upward transfer rates 
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were higher for subjects originated from Central and South-
ern America than for North Americans and Western, Eastern, 
and Northern Europeans.

The concomitant use of methotrexate was not found to 
affect the probability of ACR response. This is not  surprising, 
as patients had to be on a stable methotrexate dosage 

Table 1 Study design and available data

Study
Duration 
(weeks)

Active  
doses (mg) Control

Dosing 
schedulea Formulation Pharmacodynamic assessment (weeks)

no. of  
subjectsb

Dropout  
frequency (%)

Total/active Active/placebo

1 (phase II) 8 50, 100, 200, 
400, 600, 800

Placebo Q4W Liquid pH5.5 1, 2, 4, 5, 6, 8, 9, 10, 12 320/239 11/37

2c (phase III) 24 400 Placebo Q4W Lyophilized 
solution

1, 2, 4, 8, 12, 16, 20, 24 219/111 32/73

3c (phase III) 24 400 Placebo+ MTXa Q4W Lyophilized 
solution

1, 2, 4, 8, 12, 16, 20, 24 243/124 21/45

4c (phase III) 52 Loadd+200, 
400

Placebo + MTX Q2W Lyophilized 
solution

1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 
40, 44, 48, 52

979/780 32/78e

5c (phase III) 24 Loadd+200, 
400

Placebo+MTX Q2W Liquid pH 4.7 1, 2, 4, 6, 8, 12, 14, 16, 20, 24 619/493 28/87e

aMTX, methotrexate; Q2W, every other week; Q4W, every 4 weeks. bAll subjects who received at least one study treatment dose and provided at least one 
certolizumabpegol concentration were included in the analysis. cStudies 2, 4, and 5 are the FAST4WARD,26 RAPID 1 (ref. 28), and RAPID 2 (ref. 29) studies, 
respectively. Study 3 was also reported.27 dLoad = 400 mg at weeks 0, 2, and 4. eIncludes the dropout defined by study design for subjects who were assessed as 
ACR20 non-responders at weeks 12 and 14.

Figure 1 Transition model for the four ACR scores based on the clinical responses ACR20, ACR50, and ACR70.
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Figure 2 Individual profile, observation every other day. (a) Evolution of the probability of the four modeled scores with time for a subject 
reaching ACR70 response. 0, 1, 2, and 3 symbols represent the probability of the modeled scores ACR20-NR, ACR20-50, ACR50-70, and 
ACR70 scores, respectively; (b) corresponding observed ACR grades from non-responder to ACR70.
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upon enrollment in the relevant studies. The ACR assesses 
improvement from baseline, thus the methotrexate effect 
should already be included in the baseline assessment.

Dropout model
The subjects’ dropout status (yes/no) was assessed at each 
visit. The dropout probability was modeled using a logistic 
model. No random effect around the dropout probability was 
estimated because subjects could only drop out once during 
the trial. The increase in dropout with time from the start of 
the trial was described by a Hill function on the logit scale 
where the time to reach half of the maximum dropout was 
estimated to approximately 3 weeks. In addition, ACR70 and 
ACR50 responders had the same, lower probability of drop-
ping out than ACR20 responders, who had lower probability 
of dropping out than ACR20 non-responders:

PACR ACR ACR ACR

Logit

ACR ACR ACR

max T

= ϕ ⋅ + ⋅ + ⋅

= ϕ +
⋅
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where ϕ reflects the baseline (time = 0) logit score of the 
dropout, Emax T the maximum change in the logit related to 
time, T50 the time to reach half of this maximum change. The 
parameters θACR20, θACR50, and θACR70 reflects the effects of pre-
vious ACR outcome (ACR20 = 1 if the patient was an ACR20-
50 and 0 otherwise, similarly for ACR50-70 and ACR70).

Model evaluation
The model simulated well the observed ACR levels  (Figure 3a) 
and the observed proportions of transitions between the ACR 
levels (Figure 3, drug data in panel b and placebo data in 
panel c) for the whole dataset. For a few of the schedules, 
e.g., 200 mg Q2W, some small misfit is apparent when the 
ACR clinical scores by treatment were predicted (Figure 3d). 
Inter-study or inter-treatment variability was not included, that 
may impact the fit of individual studies.

Simulations
Simulations were performed to illustrate the exposure-
response relationship. Typical PK exposure was derived 
from the population PK model (71.5 kg subject who did not 
develop anti-drug antibody) and the ACR scores simulated 
from the continuous Markov model. For example, at week 12, 
the rate of response ranged from 53.7 to 67.3% for ACR20, 
from 22.4 to 35.0% for ACR50 and from 6.5 to 14.4% for 
doses ranging from 50 mg Q2W to 400 mg Q2W (Figure 4). 
This range of doses extending outside the label dosages was 
chosen for illustration purpose, as a plateau in the response 
is rapidly reached and the dose of 400 mg Q2W is not mark-
edly better in term of efficacy than the 200 mg Q2W dose. 
Subjects that dropped out were considered as non-respond-
ers in the computation of these statistics, corresponding to 
what was done in the traditional statistical analysis of the 
performed clinical trials (worst case scenario). At week 24, 
the ACR20 outcome from the two pivotal trials RAPID 1 
(ref. 28) and RAPID 2 (ref. 29) were somewhat lower than 
simulated from the model (for 200 mg Q2W: 58.8 and 57.3% 

observed ACR20 response vs. 65.2% simulated, 37.1 and 
37.7% observed ACR50 response vs. 37.7% simulated, 21.4 
and 15.9% ACR70 response vs. 16.7% simulated). An expla-
nation could be that compared to the simulations that were 
based on a typical subject’s PK, these studies included sub-
jects with lower exposure due to higher body weight and/or 
formation of anti-drug antibodies.

To exemplify the potential use of the model for clinical pur-
pose, some other outcomes were derived from the simulations 
(Figure 4). At long term, the probability of responder subjects 
at week 12 still being responder at week 48 increased with 

Table 2 Final model parameter estimates

Parametera Estimate
Bootstrap 

median
Bootstrap 

SD

Transfer rate constants

  → K10,0 (day−1) 0.00677 0.00677 0.00073

  → K21,0 (day−1) 0.0168 0.0166 0.0029

  → K32,0 (day−1) 0.00778 0.00775 0.00156

  ← K01,0 (day−1) 0.0859 0.0860 0.3301

  ← K12,0 (day−1) 0.1800 0.1800 0.0592

  ← K23,0 (day−1) 0.1330 0.1330 0.0504

Time effects on Kp

  → Slope(t) on K10 (day−1) 0.0103 0.0103 0.0019

  → Slope(t) on K21/K32 (day−1) 0.00256 0.00256 0.00355

  ← Slope(t) on K01/K12/K23 (day−1) −0.00159 −0.00157 0.00039

Exposure effects on Kp

  → Emax(Cp) on K10 (day−1) 4.21 4.25 0.52

  ← Emax(Cp) on K01/K12/K23 (day−1) −0.697 −0.697 0.041

  ↔  EC50(Cp) on K10/K01/K12/K23  
(μg/ml)

3.04 3.04 0.43

  → Emax(slope) on K21/K32 (day−1) 0.0103 0.0103 0.0031

Dropout model

  Intercept −6.47 −6.45 0.30

  From ACR20 response −1.49 −1.47 0.13

  From ACR50 response −2.60 −2.61 0.33

  From ACR70 response −2.65 −2.63 0.28

Time effect on dropout

 Emax T 4.08 4.04 0.32

 T50 (days) 23.1 23.8 3.7

  Gamma 1.58 1.60 0.21

Covariate effects

  → Steroids on K10/K21/K32 −0.208 −0.208 0.037

  → BS28 on K10/K21/K32 −0.00628 −0.01003 0.00687

  ← AGE on K01/K12/K23 0.0139 0.0138 0.0037

  → North America, Western Europe 0.397 0.396 0.090

  → Central and South America 1.89 1.89 0.06

  → Northern Europe −0.271 −0.269 0.075

Inter-individual variabilityb

  → K10 1.13 1.13 0.08

  ← K01 2.19 2.19 0.26

  → K21 0.897 1.03 0.111

  ← K12 1.41 1.41 0.209

  → K32 1.24 1.53 0.39

  ← K23 2.39 2.39 0.26
aThe arrows help in visualizing upward and downward parameters. bAll 
estimates of the full correlation block are provided as initial estimate in the 
NONMEM control stream provided in Supplementary Material.
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the dose: 72.1–77.3% for ACR20, 71.4–78.6% for ACR50 and 
56.9–68.8% for ACR70 for treatment from 50 to 400 mg Q2W. 
At week 24, the likelihood of remaining responder was high, 
between 77 and 94%, for the three ACR scores whatever the 
dose, characterizing a sustained response. On the other hand, 
non-responders at W4 had between 41 and 48% chance to 
achieve ACR20 at week 12, 12–17% to achieve ACR50 and 
2–5% to achieve ACR70 depending on the dose.

DISCUSSIOn

This pooled analysis established the relationships between 
exposure to the anti-TNFα drug certolizumab pegol and the 
ACR20, ACR50, and ACR70 responses in five phase II and 
III clinical trials, including both licensed and unlicensed doses. 
The model development was based on the database that was 
previously used to develop stand-alone models for ACR20 

a

b
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(ref. 15) and ACR50 (ref. 10) responses; however, this new 
approach has the advantage of gaining more information from 
the same amount of data, as various levels of response are 
characterized simultaneously. The model adequately predicts 

both the proportion of response for the three ACR thresholds 
and the transition between the four statuses of response.

The exposure–response relationship was established over 
a large range of doses, including doses from the dose-ranging 

c

d

Figure 3 Visual predictive checks of the final model. Circles represent the observations and shaded areas the 95% confidence interval from the 
final model. Q2W, every other week; Q4W, every 4 weeks. *Load = 400 mg at weeks 0, 2, and 4. (a) Modeled scores ACR20-NR, ACR20-50, 
ACR50-70, ACR70, drug (top panel) and placebo (bottom panel). (b) Transitions between modeled scores, drug data. (c) Transitions between 
modeled scores, placebo data. (d) ACR clinical scores by treatment (black: ACR20, middle gray: ACR50 and light gray: ACR70).
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phase II study that are outside of the range of recommended 
doses for maintenance certolizumab pegol treatment in the 
RA indication, 200 mg Q2W and 400 mg Q4W. A plateau 
in the probability of becoming a responder and achieving 
a higher ACR response is reached, with the 200 mg and 
400 mg Q2W doses providing similar level of response. The 
dropout is also affected, as subjects with higher level of ACR 
response are less likely to drop out. The model character-
ized a sustained response to treatment, a factor that is rec-
ognized as key in evaluating the treatment response and 
disease status in patients with RA,7 the aim being to prevent 
joint damage and achieve sustained low disease activity or 
remission.30 As such, the new EULAR/ACR recommenda-
tions request to include time to onset of response and sus-
tainability of response when evaluating treatment response 
in clinical trials.31,32

Depending on the audience, each of the three ACR levels 
may provide the most relevant information. Regulatory authori-
ties may be interested in the ACR20 and ACR50 responses 
to discriminate between drugs, rheumatologists may consider 

higher thresholds as a more relevant target to be achieved in 
clinical trials and might rather consider the time to reach ACR50, 
while patients will appreciate sustained ACR70 response to 
treatment. The model can be utilized to provide clinically inter-
esting information through population simulations, with a large 
population, or through trial simulations, with a limited number 
of subjects and a specific design, according to the question of 
interest. For example, this could be the prediction of the long 
term response or the evaluation of the chance for an ACR20 
non-responder at an early time point to achieve an ACR20, 
ACR50, or ACR70 response at a later time.

Accounting for the dropout and simultaneous modeling of 
the three ACR thresholds enables accurate trial simulations 
with specific study design. For example, in two of the studies 
used for the present analysis, a study-design dropout was 
defined based on the ACR20 response at weeks 12 and 14, 
which was an issue for developing a stand-alone ACR50 
model.10 It also allows for applying different post-processing 
rules to compute the response rate, e.g., to consider dropped 
out subjects as non-responders.

Figure 4 Simulation from the models, 50–400 mg Q2W (subject simulated as dropouts were considered as non-responders when not stated 
otherwise). (a) Proportion of responders at week 12, 24, and 48 (open symbols: only subjects simulated to not drop out were taken into 
account). (b) Illustration of sustained response at W24 and prediction of long-term response in various settings.
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The dependency between the successive ACR assess-
ments was accounted for by mimicking a compartment model 
where the probability flows between the compartments are 
estimated. Any transitions between the four levels of ACR 
response are allowed, but the model is parameterized such 
that only transitions between neighboring states are esti-
mated, making it more parsimonious than a proportional odds 
model with Markov elements. For nonconsecutive observed 
scores (e.g., ACR20 to ACR70), it is assumed that the inter-
mediate unobserved score (ACR50 in this example) must 
have been reached at an intermediate time. The influence 
of previous observations decreases with increasing time 
between observations, i.e., if observations are made with 
large time interval, the influence of the previous observation 
will be small compared if two observations are made close 
in time. The half-life for transfer between the compartments 
were found to be dependents on drug concentration and time 
in the study. In addition, the inter-individual variability allowed 
for different patients to have different transfer rates.

The latent variable (LV) approach has also been pro-
posed to model the ACR20, ACR50 and ACR70 scores 
simultaneously.20 The concept was, however, different, aim-
ing at describing the average probability of ACR20/50/70 
response in the population rather than an accurate descrip-
tion of an individual’s evolution of the response with time. It 
had the appeal to be parsimonious while flexibility can be 
added by fitting separate intercepts for the different thresh-
olds. The continuous Markov model enables larger flexibil-
ity by allowing different covariate and drug effects for each 
transition rate, but this increases further the complexity of 
the model. We tried, however, to keep the model as simple 
as possible by using the same effects on the different trans-
fer rates whenever possible.

Similar to models for ordered categorical data and the 
ACR20 Markov model, the parameters of the continuous 
Markov model may be difficult to interpret directly, and their 

clinical relevance is most easily interpreted through simu-
lations from the model. The latent variable model may be 
considered as a step further for a more mechanistic interpre-
tation, with parameters such as E

max that can be interpreted 
directly. Run time may be another limitation of the continuous 
Markov model—coded as differential equations—particularly 
with large datasets and increased number of categories.

In conclusion, an exposure–response model that simul-
taneously characterized the temporal course of the ACR20, 
ACR50, and ACR70 assessments in patients suffering from 
RA enrolled in phase II and phase III clinical trials, treated with 
certolizumab pegol and placebo, was successfully developed. 
The model predicted that increased certolizumab pegol expo-
sure resulted in an increased probability of attaining higher 
level of ACR response, with the majority of the clinical effect 
being attained at the exposure achieved with the 200 mg Q2W 
label maintenance dose. This approach is applicable to model 
any ordered categorical score where consecutive observations 
are dependent.

METHODS

The present analysis was performed retrospectively on 
pooled data from five clinical trials, not following the protocol 
analysis and hence the results cannot be directly compared 
with the published results of the respective studies.

Data
Clinical score: ACR20, ACR50, and ACR70 responses are 
defined as a decrease of 20, 50, or 70%, respectively, in both 
tender and swollen joint counts, as well as the same magni-
tude of improvement in at least three of the five other mea-
sures of the ACR core dataset: the patient’s and physician’s 
global assessments of disease activity, the patient’s assess-
ment of pain and physical function, and an acute phase reac-
tant (C-reactive protein level or erythrocyte sedimentation 

Table 3 Covariates

Category Covariate
Continuous covariates: median (min–max)
Categorical covariates: % subjects by category

Patient-related covariates Age 53 (18–83) years
Body weight 72 (41–164) kg
Gender Females (81%)

Males (19%)
Geographical regions Eastern Europe (31%)

Northern Europe and Baltic states (25%)
Western Europe (20%)
North America (15%)
Central and South America (6%)
Asia/Oceania (3%)

Disease-related covariates Disease duration at entrance in the study 6 (0.3–47) years
Baseline reduced tender joint count 17 (0–28)
Baseline reduced swollen joint count 14 (0–28)
Baseline C-reactive protein level 15 (0.2–273) mg/l
Physician’s assessment of disease activity 65 (14–100) mm
Patient’s assessments of disease activity 64 (6–100) mm
Patient’s assessments of physical function 1.6 (0–3)
Patient’s assessments of arthritis pain 65 (0–100) mm

Concomitant medications Methotrexate dose at baseline 10 (0–30) mg/week
Use of corticosteroids 39% : 46.3% on placebo; 37.6% on drug treatment
Use of non-steroidal anti-inflammatory drugs 60% ; 62.9% on placebo; 59.2% on drug
Use of analgesics 16%: 16.9% on placebo; 15.6% on drug

Previous medications Number of previous disease-modifying anti-rheumatic  
drugs (DMARDs) other than methotrexate

1 (0–9)
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rate). The C-reactive protein level was used to compute the 
ACR scores in the present analysis.

Study population and design: Subjects with active RA diag-
nosed at adult age since at least 6 months and inadequate 
response to methotrexate monotherapy were enrolled in the 
five clinical trials (Table 1). Study protocols were approved by 
the medical ethics committees or institutional review boards 
of the participating centers, and all subjects provided written 
informed consent prior to initiation of study procedures.33

In studies 4 and 5, subjects assessed ACR20 non- 
responders at both week 12 and week 14 withdrew at week 
16 with the option of entering an open-label extension study 
(data not included in the analysis). This design feature was 
reproduced in the model evaluation.

Covariate data: Covariates tested during model development 
are summarized in Table 3.

Certolizumab pegol exposure measures: Certolizumab pegol 
plasma concentrations were determined using a validated 
enzyme-linked immunosorbent assay (ELISA) method. Indi-
vidual exposure measurements (individual certolizumab 
pegol concentration at the time of clinical observation Cp and 
average certolizumab pegol concentration over the last dos-
ing interval Cavg) were derived from a previously developed 
one-compartment population model using the empirical Bayes 
post hoc estimates from NONMEM. These exposure measures 
were set to 0 for placebo data.

Software and data analysis
The model was developed in NONMEM 7.1.2 (ref. 34) (ICON 
Development Solution, Hanover, MD) and finalized in NON-
MEM 7.3.0. launched with PsN (Uppsala University, Uppala, 
Sweden).35 The Laplacian method was used to approximate 
the marginal likelihood; it uses a second-order expansion 
around the empirical Bayes predictions of the inter-individual 
random effects. R version 2.11 and 2.15 (ref. 36) (R Founda-
tion for Statistical Computing, Vienna, Austria) were used for 
data management and graphical outputs.

Model development
Model structure: See Results section.

Model building and selection: During the model building, efforts 
were made to keep the model as simple and parsimonious as 
possible. Modeling was initiated based on placebo data. Vari-
ous functions of increasing complexity, such as linear, Emax, Hill, 
second order and quadratic polynomial were tested to describe 
the influence of time since start of the study on the transfer 
rates between the four scores and on the dropout probability. 
After addition of data from certolizumab pegol-treated subjects, 
drug-effect models were evaluated. The effect of drug on the 
transition rates were modeled as functions of exposure, using 
a treatment flag, the dose, Cp or Cavg as markers for certoli-
zumab pegol exposure. The exposure relationships for each of 
the transfer rate were explored using linear, Emax and Hill equa-
tions. Effects were tested separately on each transition rate and 
the parameters were shared between rate constants if found 
to be similar and this did not lead to a significant increase in 
OFV. Equations retained in the final model are presented in the 
results section.

Inter-individual variability was assessed for the six transfer 
rate parameters.

Covariate model: Covariates were included in the model 
based on their statistical significance. The potential covari-
ate effects were added on all transition rate constants (see 
example in the NONMEM control file). Continuous covariates 
were introduced as

K Kp = ⋅ ⋅ −( )( )p,0 cov CONT CONTmedexp θ (4)

where θcov is the estimated covariate effect, CONT the con-
tinuous covariate value and CONTmed the median of the 
covariate in the dataset.

Co-medications were evaluated as binary covariates (use/
no-use). Categorical covariates were introduced as

K Kp = ⋅
+ ⋅ + ⋅

+ ⋅ +p,0
CAT1 CAT

CAT

CAT
CAT CAT
1 1

2 3
2

3

θ θ
θ

cov, cov,

cov, . ....






 (5)

where the θcov,CATx are the estimated covariate effects, CATx = 
1 for the corresponding covariate, CATx = 0 otherwise.

A manual stepwise approach was used, beginning with 
a univariate testing (α = 0.05). Significant covariates were 
included in both forward inclusion (α = 0.05) and backward 
elimination (α = 0.001) steps, which continued until only 
significant covariates remained in the model.

Model evaluation: Model selection was based on changes 
in the NONMEM OFV evaluated using a likelihood ratio  
test (nested models, P = 0.05) and simulations from the 
models (visual predictive checks) to evaluate the model’s 
capacity to capture the observed frequency of scores and 
transitions between the scores over time. For that purpose, 
250 datasets were simulated from the model of interest. 
Additional rows at planned visits were added in case of 
early dropout in the original dataset in order to reproduce 
the theoretical observation scheme and allow subjects to 
drop out according to model simulations. The frequency 
of ACR outcomes and transitions between the four ACR 
scores were plotted as a function of time and compared 
with the observed data. Residuals were not available for 
evaluating the goodness of fit because the model estimated 
the probability of scores and not a prediction of the scores 
themselves.

A bootstrap with 100 samples, stratified on study and 
treatment, was performed to evaluate the precision of 
estimation of the parameter estimates. For each model 
parameter, the median and the standard deviation of the 
parameters’ distributions from the bootstrap runs were com-
puted and reported.

Simulations: For performing simulations, a probability amount 
of 1 was allocated in the compartment corresponding to the 
simulated score (subjects are set to non-responder at baseline, 
see model file and an example simulation dataset in Supple-
mentary Material).
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