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Ligand-induced activation of the IGF-1 receptor triggers plasma-membrane-derived
signal transduction but also triggers receptor endocytosis, which was previously
thought to limit signaling. However, it is becoming ever more clear that IGF-1R
endocytosis and trafficking to specific subcellular locations can define specific signaling
responses that are important for key biological processes in normal cells and cancer cells.
In different cell types, specific cell adhesion receptors and associated proteins can
regulate IGF-1R endocytosis and trafficking. Once internalized, the IGF-1R may be
recycled, degraded or translocated to the intracellular membrane compartments of the
Golgi apparatus or the nucleus. The IGF-1R is present in the Golgi apparatus of migratory
cancer cells where its signaling contributes to aggressive cancer behaviors including cell
migration. The IGF-1R is also found in the nucleus of certain cancer cells where it can
regulate gene expression. Nuclear IGF-1R is associated with poor clinical outcomes. IGF-
1R signaling has also been shown to support mitochondrial biogenesis and function, and
IGF-1R inhibition causes mitochondrial dysfunction. How IGF-1R intracellular trafficking
and compartmentalized signaling is controlled is still unknown. This is an important area
for further study, particularly in cancer.
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INTRODUCTION

Insulin-like growth factor-1 (IGF-1) stimulates essential cellular processes including proliferation,
differentiation, survival and metabolism and thereby is essential for normal growth and
development. Upon IGF-1 binding to the IGF-1 receptor (IGF-1R), the kinase domain becomes
activated, leading to autophosphorylation of specific tyrosine residues (1–4). The subsequent
recruitment and phosphorylation of Insulin-receptor-substrate (IRS-1 and IRS-2) proteins (5, 6)
facilitates recruitment of PI3-Kinase and activation of the AKT-mTOR pathway (Figure 1A). This
conserved signaling pathway regulates metabolism and transcription to promote cell survival
growth or proliferation (7, 8). Activated IGF-1R may also recruit Src homology and Collagen (SHC)
adaptor proteins (6, 9), and IGF-1-induced SHC phosphorylation leads to activation of RAS and the
MAPK pathways that mediate mitogenic, differentiation, and migratory signals (10, 11).
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IGF-1R activity can facilitate tumorigenesis, maintenance of the
transformed phenotype and cancer progression (12, 13).
Furthermore, IGF-1 may stimulate cancer cell migration,
acquisition of epithelial-mesenchymal transformation (EMT) and
chemotherapy resistance. Unsurprisingly, targeting the IGF-1R has
been extensively investigated as a strategy in cancer therapy. Several
kinase inhibitors and blocking monoclonal antibodies that inhibit
ligand binding and signal transduction, while also triggering
downregulation of the receptor have been tested (14, 15).
However, the fact that these inhibitors have been largely
unsuccessful in clinical trials renewed attention on how
regulation of IGF-1R internalization, subcellular location and
signaling are controlled in normal and cancer cells.

Although once thought that when cell surface RTKs are
internalized, their signal transduction is terminated, it is
now generally accepted that internalized receptors, including
the IGF-1R may signal from endosomal and intracellular
membrane compartments, or may also regulate gene
transcription by translocating to the nucleus (16–22). However,
the mechanisms of intracellular trafficking and which signals
determine the subcellular localization of the IGF-1R or its
compartmentalization with other signaling proteins are not
known. Recent studies suggest that these events are regulated
in a cell type-specific way and that cell-specific signals may
influence the recruitment and activation of effector proteins
(20, 22). Therefore, the cell-specific IGF-1R trafficking,
compartmentalization and its subcellular location may define
how cells respond to different extracellular stimuli.

Here, we review recent work on IGF-1R endocytosis,
post-endocytotic trafficking and IGF-1R signaling to and from
intracellular membrane compartments. We review how a non-
canonical trafficking pathway via translocation of the receptor to
internal membrane compartments and its signaling from the Golgi
apparatus may contribute to its activity in cancer cells. Finally, we
review the functions of IGF-1R presence in the nucleus and its
effects of IGF1 signaling on mitochondrial activity.
LEAVING THE PLASMA MEMBRANE-
INSULIN-LIKE GROWTH FACTOR 1
RECEPTOR UBIQUITINATION AND
ENDOCYTOSIS

Whether the IGF-1R undergoes ligand-induced endocytosis or
remains on the plasma membrane is determined by the
recruitment of interacting proteins (Figure 1A). It has been
suggested that under pathological conditions like cancer, the
IGF-1R associates with a range of other receptor and signaling
complexes at the plasma membrane (23, 24). In particular,
adhesion receptors and kinases, known to associate with the
IGF-1R include E-cadherin (25), b1-Integrin (26), the discoidin
domain receptor 1 (DDR1) (27), focal adhesion kinase (FAK)
(28, 29), Src (30), the feline-sacroma-related kinase (FER) (31).
All of these have been implicated in modulating IGF-1R stability
or endocytosis to promote specific cellular responses
Frontiers in Endocrinology | www.frontiersin.org 2
(Figure 1A). However, it is unknown whether or how they
might influence IGF-1R endosomal trafficking.

As with other RTKs, IGF-1R endocytosis is initiated by vesicle
formation on the membrane (Figure 1B), and endocytosis via
clathrin-coated-pits (CCP) is considered to be the fastest and
predominant mode of internalization (23, 24, 32). The formation of
CCPs requires recruitment of proteins that contain a ubiquitin-
interacting motif, such as epsin, Eps15, or AP-2, to the activated
receptor (23, 24, 32). Once clathrin-dependent endocytosis is
saturated due to a large number of surface receptors being
activated, it has been proposed that alternative endocytosis
mechanisms subsequently facilitate IGF-1R internalization (33–35).

A clathrin-independent mechanism of endocytosis has been
described for ligand-activated EGFR via micro- and
macropinocytic vesicles. This involves the reorganization of the
cytoskeleton and dynamic membrane ruffling (36–38). Although
a similar process could be possible for IGF 1R endocytosis, it has
not been demonstrated. However, clathrin independent IGF-1R
endocytosis also involves the formation of lipid rafts/caveolae,
which are generally described as plasma membrane
invaginations. Indeed, IGF-1R has been shown to co-localize
with the phosphorylated version of caveolin-1, the main
component of these lipid rafts (35, 39).

Ubiquitination of the b-subunit of the IGF-1R is associated
with initiation of IGF-1R endocytosis (24, 35, 40). This is
dependent on IGF-1R kinase activity and requires the presence
of the receptor C-terminal tail (35, 41).

Four E3 ligases have been described to either directly or
indirectly interact with IGF-1R to facilitate its ubiquitination.
The least studied in the context of IGF-1R is HRD1, which
functions in the endoplasmic reticulum (42, 43), whereas the
others, Nedd4 (40, 44), MDM2 (35, 45–47) and c-Cbl (39), are
well studied (Figure 1B). IGF-1R ubiquitination can be observed
within the first 5 min of ligand-binding. Two IGF-1R
ubiquitination sites at Lys1138 and Lys1141 located within the
kinase domain are believed to be the key lysine residues for
ubiquitination (48). It is proposed that MDM2 recruitment to
the IGF-1R occurs when low amounts of IGF-1are available,
leading to IGF-1R endocytosis via clathrin, while high IGF-1
concentrations may initiate c-Cbl-mediated ubiquitination of the
receptor followed by endocytosis using the caveolin/lipid raft
route (39). This supports the idea that alternative endocytosis
mechanisms are activated to internalize the IGF-1R, once
clathrin-dependent endocytosis is saturated (33–35). A protein
complex consisting of MDM2 and the b-arrestin protein links
K63-conjugated ubiquitin polypeptide chains to the IGF-1R.
This mode of ubiquitination is generally associated with cell
signaling responses, DNA repair and protein trafficking (49–51)
(Figure 1B). c-Cbl attaches K48-conjugated ubiquitin
polypeptide chains to the IGF-1R, which may initiate
degradation of the receptor (51) (Figure 1B). Thus, it is
possible that depending on available IGF-1 levels, different E3
ligases are recruited to the receptor to initiate ubiquitination.

Although IGF-1R kinase activity is clearly essential for
recruiting the proteins that facilitate receptor internalization
and ubiquitination, it is not understood how the C-terminal
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tail contributes to ubiquitin-mediated IGF-1R trafficking
and degradation. Our recent study showed that IGF-1-
promoted phosphorylation of the Tyr1250/1251 site in the IGF-
1R C-terminal results in enhanced IGF-1R internalization
and proteosomal degradation (22). However, whether the
Tyr1250/1251 phospho-site is involved in or modulates IGF-1R
ubiquitination is still unknown. The C-terminal tail contains
three lysines that are putative sites for ubiquitination, but this
has not been demonstrated in cells. It remains possible that
phosphorylated Tyr1250/1251 could provide a binding site for
adaptor proteins or an E3 ligase that targets these sites.
This would implicate the activity of domains of the receptor
other than the kinase in regulating IGF-1R internalization
and trafficking.

Travel Direction-Determining Insulin-Like
Growth Factor 1 Receptor Trafficking
Routes
CCP/caveolin-vesicles that contain internalized IGF-1R become
fused with early endosomes (27, 40, 44, 52). Here the IGF-1R
proteins are sorted, either targeted for degradation (24, 35),
transported toward the Golgi network (22), transported to the
nucleus (20, 53–56), or recycled back to the plasma membrane
(57) (Figure 1B). Internalized ubiquitinated proteins can be
detected by distinct multiprotein complexes that comprise the
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endosomal sorting complex required for transport (ESCRT)
(58–61) and serve as signal for cargo sorting (58). The fate of
internalized proteins to either undergo degradation or recycling
is determined within the endosomal sorting network (61). Before
membrane cargo within the early endosomes, is submitted to
several rounds of cargo sorting, as the early endosome matures
into a late endosome (62), cargo destined for the fast recycling
route is sorted and delivered back to the cell surface (63). There is
also a slow recycling route where proteins first traffic through the
recycling compartments before moving back to the cell surface.

Emerging evidence indicates that cargo may also enter a
retrograde trafficking route where it is transported back to the
Golgi apparatus, a process that serves to maintain a robust
membrane protein delivery along the Golgi-associated
microtubules (18, 64–66). This particular transport route is
important for b1-Integrin-promoted cell migration and
adhesion (65). Although precise details of IGF-1R sorting
mechanisms and which proteins are involved is still unknown,
it is clear that the endosomal network is essential for selecting
internalized IGF-1R and its trafficking to distinct cellular
compartments. The IGF-1R also travels on a path to the Golgi
apparatus as a response to IGF-1-induced phosphorylation at
Tyr1250/1251 (22). This enhances the potential for distinct
intracellular signaling responses from the IGF-1R in different
cells and different physiological or pathological settings.
A B

FIGURE 1 | Leaving the plasma membrane. (A) Located on the plasma membrane, activated IGF-1R induces two major pathways, PI3-K/AKT and MAPK/ERK1/2,
to regulate cellular processes including metabolism and transcription. Different adhesion related kinases (FAK, Src, FER) and interacting proteins (IRS-1, DDR1)
regulate IGF-1R endocytosis and thereby prolong or reduce IGF-1R signaling from the cell surface. In addition, these IGF-1R interacting proteins can enhance bias
IGF-1R signaling or their cooperation is needed for the activation of IGF-1-induced pathways (Integrin). (B) Ligand-induced IGF-1R activation leads to the recruitment
of E3-liages (MDM-2, Nedd4, c-Cbl) that can initiate IGF-1R poly- and mono-ubiquitination. Via membrane invagination and formation of clathrin- and caveolin-
coated pits, the IGF-1R enters the cell in endosomal vesicles. It is assumed that the endosomal sorting system decides, whether IGF-1R gets degraded, travels back
to the plasma membrane or translocates to intracellular membrane compartments. To this day it is unknown how the post-endocytotic IGF-1R translocation to
intracellular membrane compartments, such as the Golgi and the nucleus is regulated and whether IGF-1R regulation of mitochondrial function is exclusively due to
signaling transduction. Figure elements adapted from Servier Medical Art (https://smart.servier.com/), under license CC-BY3.0.
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BACK TO THE START—THE GOLGI
APPARATUS AS A NEW INSULIN-LIKE
GROWTH FACTOR 1 RECEPTOR
SIGNALING COMPARTMENT

The Golgi apparatus has a long-understood function in
distribution, modification and secretion of newly synthesized
proteins. However, it is also intimately involved in cellular
processes such as cell polarization (67), directional migration
(68), stress (69) and DNA repair (70). Cell migration requires
coordinated communication between the plasma membrane and
the Golgi apparatus (68). This may be facilitated by the
retrograde trafficking of internalized plasma membrane
proteins back to the Golgi apparatus (65, 71). This retrograde
trafficking enables persistent cell migration because Golgi-
derived microtubules act as a fast-track lane to deliver essential
proteins to cell migration hot-spots, such as the sites of focal cell
adhesion (Figure 2A) (64–66). Several key signaling proteins
including Ras/MAPK (72–74) and RTKs, including MET, KIT,
VGFR2, EGFR, FGFR (21, 75–77) and IGF-1R (22) have been
demonstrated to locate to the Golgi apparatus, which acts as a
signaling hub in normal and cancer cells (Figure 2A).

The rapid endocytosis and subsequent translocation of the IGF-
1R to the Golgi in fibroblasts and cancer cell lines requires an
adhesion-dependent autophosphorylation onTyr1250/1251 in the C-
terminal tail (Figure 2A).Although evident in all cells tested, Golgi-
localized IGF-1R ishowever a particular feature ofmigratory cancer
cells, because cancer cell lines with low or no migratory capacity
exhibit little less Golgi-localized IGF-1R. Golgi-derived IGF-1R
signaling might therefore contribute to aggressive cancer cell
behavior (22). In migratory cancer cell lines, IGF-1-induced SHC
phosphorylation, which is required for cell migration, is dependent
on an intact Golgi apparatus and also requires cell contact with the
extra-cellular matrix (ECM), suggesting that the IGF-1R mediates
communication between the plasma membrane and Golgi. IGF-1-
induced cell migration also requires an intact Golgi apparatus (22),
aswell as cooperative signalingbetween the IGF-1Randb1-Integrin
(26, 78–81) (Figure 2A). b1-Integrin connects the ECM with the
actin cytoskeleton of cells and thereby has both a structural and
signaling function in cell adhesion and migration (82, 83). This
suggests, that inmigrating normal and cancer cell lines b1-Integrin
signaling from the plasma membrane can influence IGF-1R
distribution within cells and determine its presence at the Golgi
apparatus (Figure 2A).

While b1-Integrin is a strong candidate for determining IGF-
1R translocation to and its release from the Golgi in migratory
cells (Figure 2A), E-cadherin is a strong candidate for enhancing
IGF-1R stability and plasma membrane location in low- or non-
migratory cell lines. E-cadherin, which is often repressed in
migratory cancer cell lines and upon EMT, especially in triple
negative breast cancer cells, is readily detectable in a complex
with the IGF-1R at sites of cell–cell contact in cancer cells with
no or low migratory capacity (25, 84). However, in confluent
migratory cancer cells (with evident high levels of cell-cell
contact), and under conditions where cells are unable to
migrate, the IGF-1R remains in the Golgi apparatus. Therefore,
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E-cadherin expression in cancer cells with no or low migratory
capacity may limit IGF-1R translocation to the Golgi apparatus.
Regulated and exclusive expression of cadherins and Integrins
has been linked to the migratory capacity of cells during
embryonic development, tumor invasion and metastasis (85–87).

Thus, it is likely that IGF-1R function in facilitating cell
migration through its translocation to and signaling from the
Golgi is influenced by adhesion related proteins that are
expressed differently depending on cell type, which may be
influenced by their hormone receptor expression, and fate, as it
has already been proposed (23, 24). However, the mechanisms of
this interplay between adhesion receptors and IGF-1R trafficking
to and from the Golgi are still unknown. It is not known how
phosphorylation and or dephosphorylation of key residues on
the receptor control this and how the array of signaling proteins
present at the Golgi interact.
JOURNEY TO THE CENTER OF THE
CELL- INSULIN-LIKE GROWTH FACTOR 1
RECEPTOR IN THE NUCLEUS

Several RTKs have been observed in the nucleus of cancer cells.
These include EGFR family members (88–90), FGFR1 and 3 (91,
92), the IR (93, 94),VEGFR (95, 96), and IGF-1R(19, 20, 52–54, 97).

Translocation of the IGF 1R to the nucleus in cancer cells is
induced by IGF-1 (20, 53, 98). Nuclear IGF-1R is more
pronounced in cancer cell lines, including breast cancer,
prostate cancer and sarcoma cells, compared to non-
transformed cells (97). Furthermore, nuclear IGF-1R has been
linked to a poor outcome for cancer patients and suggested to
promote a more advanced disease stage (20, 53, 98, 99). Nuclear
IGF-1R traffics from the plasma membrane (97) and the levels of
IGF-1R nuclear translocation are proportional to ligand-induced
kinase activation, because its translocation in cancer cells can be
inhibited by xentuzumab, an IGF-1/2 neutralizing antibody, or
by inhibition of IGF-1R endocytosis (20, 53, 54).

The precise mechanisms of IGF-1R import into the nucleus of
normal and cancer cells are still unclear because the IGF-1R does
not have a nuclear localization sequence (NLS) (53, 54) (Figure
2B). SUMOylation of the IGF-1R induced by IGF-1R
internalization was proposed to be important (54), and IGF-1R
translocation in cancer cells is facilitated by a specific subunit of
dynactin p150Glued (52) (Figure 2B). The latter study showed
that IGF-1-bound and internalized IGF-1R is transported within
early endosome antigen 1 (EEA1)-positive vesicles (Figure 2B),
it becomes positioned in the nuclear pore complex by b-
importin, and is subsequently SUMOylated by RanBP2 for
translocation into the nucleus (52). Suppression of any of the
proteins involved in this import, leads to a significant decrease in
nuclear IGF-1R. However, mutation of the SUMOylation lysine
sites on IGF-1R did not abolish accumulation of IGF-1R in the
nucleus (54), suggesting that additional import mechanisms
exist. IGF-1R association with other proteins containing an
NLS, such as IRS-1, which was previously shown to translocate
to the nucleus in response to IGF-1, could also promote the
January 2021 | Volume 11 | Article 620013
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import (100). It has also been suggested that heterodimerization
with the IR, which occurs rapidly in response to Insulin
stimulation (93) could promote nuclear import (55).

Nuclear IGF-1R may associate with DNA to enhance
transcription (19, 54–56, 101), for example, by mediating the
recruitment of RNAPol2 (20). Nuclear IGF-1R autoregulates its
own expression in breast cancer cells depending on their
estrogen receptor (ER) status (102) and binds the LEF1
transcription factor, which subsequently leads to upregulated
cyclinD1 and axin 2 and cell proliferation (56). In HeLa cells,
nuclear IGF-1R can increase the expression of SNAI2 (55), which
is involved in EMT by suppressing E-cadherin expression (103).
In prostate cancer cells nuclear IGF-1R facilitates expression of
JUN and FAM 21, which are linked to cell survival, anchorage
independent growth and cell migration, all of which are
associated with advanced cancer stage (20). Nuclear IGF-1R is
associated with proliferation of alveolar rhabdomyosarcoma cells
(104) and contributes to chemoresistance in sarcomas and
hepatocellular carcinoma (105, 106).
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Overall, the results from recent studies suggest that nuclear
IGF-1R facilitates an aggressive cancer phenotype. However,
Aleksic et al. suggest that the sites of IGF-1R binding in DNA,
and therefore the genes influenced by nuclear IGF-1R, might be
cell type specific and that this could be defined by nuclear
structure and chromatin organization (20). This is supported
by the result of Sarfstein et al., which suggests that in presence of
ER, nuclear IGF-1R cannot enhance its own expression (102).
GOING THE DISTANCE-INSULIN-LIKE
GROWTH FACTOR 1 RECEPTOR SIGNALS
TO THE MITOCHONDRIA

While IGF-1signaling inmetabolismhasbeenwell studied (107), its
contributions to mitochondrial function, maintenance and
turnover is an emerging topic. Mitochondrial metabolism and
oxidative phosphorylation (OXPHOS) provide building blocks
A B

C

FIGURE 2 | IGF-1R trafficking routes and signaling to the mitochondria and from the Golgi and the Nucleus. (A) The IGF-1R translocates to the Golgi apparatus. In
migratory cell lines, IGF-1R autophosphorylates Tyr1250/1251 in an adhesion dependent manner. Phosphorylation of Tyr1250/1251 IGF-1R leads to rapid IGF-1R endocytosis
leads to activation of the MAPK pathway and results in translocation of the IGF-1R to the Golgi which promotes sustained SHC activation to facilitate migration. points.
The release and retention of IGF-1R in the Golgi may be regulated by b1-Integrin and its interaction with the ECM. In cells with low or no migratory capacity, IGF-1R
remains on the surface inducing signaling from the membrane. The interaction with other proteins, including E-cadherin, stabilizes the adhesion points and internalization
rate of the IGF-1R is low. (B) IGF-1R translocates to the nucleus. IGF-1 binding to the IGF-1R induces the translocation of the membrane receptor to the nucleus. Various
mechanisms have been proposed for the import of the IGF-1R to the nucleus. Nuclear IGF-1R can bind to DNA and enhance or initiate the transcription of various genes,
leading to cell survival, migration, EMT and cell cycle progression. (C) IGF-1 signaling regulates mitochondrial function. The activation of the PI3-K pathway in response to
IGF-1 induces the expression of the mitophagy regulators PGC1b and PRC. Inhibition of GSK-3 b by PI3-K activation leads to the release of NFE2L2/Nrf2, which
translocates to the nucleus to enhance the expression of the mitophagy receptor BNIP-3. Activation of IGF1-R also enhances the expression of the UTP importer PNC-1,
which was linked to cell growth and the reduction of ROS. Through these pathways IGF-1 signaling contributes to the maintenance of mitochondrial homeostasis. Figure
elements adapted from Servier Medical Art (https://smart.servier.com/), under license CC-BY3.0.
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and energy for all cellular functions (108).At the same time, reactive
oxygen species (ROS), which are a normal by-product of OXPHOS
are neutralized to avoid accumulation and cell damage (109).
Mitochondria synthesis (mitochondrial biogenesis) and the
regulation of numbers and quality (mitophagy linked to
mitochondrial fission and fusion) are well-orchestrated processes.
The importance of mitochondrial quality control and
mitochondrial homeostasis in the maintenance of healthy tissues
is well documented (108, 110). Impairedmitophagy can lead to the
accumulation of dysfunctional mitochondria and oxidative stress,
which is associated with various diseases including
neurodegeneration, diabetes, heart disease and cancer (108,
111–115).

IGF-1 signaling and a functional IGF-1R is essential for
mitochondrial biogenesis through inducing the transcriptional
mediators Peroxisome proliferator-activated receptor gamma
coactivator 1 b (PGC1b) and PGC-1-related coactivator (PRC)
(116, 117) (Figure 2C). Suppression of the IGF-1Ror the PI3-
Kpathway using the IGF-1R kinase inhibitor BMS-754807 or
LY294002, respectively, leads to a reduction in mitochondrial
mass and biogenesis (116). IGF-1 also induces the mitophagy
receptor BNIP-3 (116) through GSK-3b mediated activation of
NFE2L2/Nrf2 (118) (Figure 2C). This highly conserved signaling
pathway is conserved from C. elegans where it coordinates
mitochondrial biogenesis with mitophagy and thereby controls
cellular metabolism that is ultimately linked with lifespan (119,
120). In mammalian cells (normal or transformed), IGF-1-
mediated regulation of mitochondrial biogenesis and mitophagy
is more complex that in C. elegans. In metazoans, it needs to be
integrated with metabolic status and IGF-1-stimulated mTORC1
actions in suppressing cellular macro-autophagy (121, 122).
Although IGF-1 signaling may be critical for both mitochondrial
biogenesis andbasalmitophagy, it isnothowever easy todistinguish
specific signals for mitophagy from general autophagy. Moreover,
IGF-1 signals may control basal mitochondria health and the
triggering of mitophagy in very specific cellular contexts such as
cell division or differentiation.

Further evidence for an essential IGF-1 signal in maintaining
healthy mitochondria comes from the IGF-1-inducible
mitochondrial UTP importer, pyrimidine nucleotide carrier 1
(SLC25A33/PNC1) that is required for maintaining
mitochondrial RNA and DNA (123, 124) (Figure 2A).
Suppression of PNC-1 results in cellular accumulation of ROS
under normal oxygen conditions, an increase in glycolysis and a
profound induction of EMT in cancer cells (124).

Overall, it will be important to establish how IGF-1 signals
and IGF-1R activity support mitochondrial function in normal
cells and in phenotypically distinct cancer cells, and whether an
Frontiers in Endocrinology | www.frontiersin.org 6
essential component of these signals is to maintain a healthy pool
of mitochondria that would prevent cancer aggressiveness that is
associated with hypoxia, mitochondria dysfunction and an
accumulation of cellular ROS.

Where to go From Here?—Remaining
Questions in the Field
This review summarizes current knowledge on IGF-1R trafficking
and signaling to and from intracellular compartments. Overall, the
potential for intracellular IGF-1R signaling adds complexity to
understanding and modulating IGF-1 actions in physiological
and patho-physiological conditions. For example, efforts to
inhibit IGF-1R signaling at the plasma membrane are not very
effective, as is evident from the poor success ofmAb in targeting the
IGF-1R in cancer. One explanation for this is that continued
signaling from intracellular pools of IGF-1R in association with
specific organelles or protein signaling complexes may circumvent
plasma membrane targeting. Correlating IGF-1R location and
activity at the Golgi or in the nucleus with a specific subset of
cancermay be a valuable biomarker for targeting IGF-1R in cancer
(125). Therefore, if IGF-1R trafficking to and signaling from
intracellular compartments determines its activity in cancer and
contributes to an aggressive cancer behavior (20, 22), it is now
important to identify themolecular regulatorsof IGF-1R trafficking.
The functions of these proteins in selecting incoming receptors and
regulating their cellular distribution and localizationmay the key to
cellular signaling responses. Illuminating the mechanisms of IGF-
1R trafficking and endosomal sorting would provide new insights
on IGF signaling in normal cells and cancer cells, and may also
identify potential co-targets for pharmacological intervention in
cancer. Targeted therapy against proteins facilitating IGF-1R
location and activity in the Golgi or the nucleus, or enhancing
IGF-1R sorting toward proteosomal degradation may be beneficial
in certain subtypes of cancer.Moreover, the presence of the IGF-1R
at the Golgi may have potential to identify cancer subtypes where
membrane targeting would not be effective. Our data on IGF-1R
derived Golgi signaling also suggest that removing the receptor is
important to suppress IGF-1 signaling. However, it is not yet clear
whether specific antibodies that promote IGF-1R internalization
could be used to direct it to the degradation machinery. It may be
necessary to identify the key regulators of receptor trafficking to
achieve selectivity here. 125.
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