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Purpose: To explore the application value of a machine learning model based

onCT radiomics features in predicting the pressure amplitude correlation index

(RAP) in patients with severe traumatic brain injury (sTBI).

Methods: Retrospectively analyzed the clinical and imaging data in 36

patients with sTBI. All patients underwent surgical treatment, continuous ICP

monitoring, and invasive arterial pressure monitoring. The pressure amplitude

correlation index (RAP) was collected within 1h after surgery. Three volume

of interest (VOI) was selected from the craniocerebral CT images of patients

1 h after surgery, and a total of 93 radiomics features were extracted from

each VOI. Three models were established to be used to evaluate the patients’

RAP levels. The accuracy, precision, recall rate, F1 score, receiver operating

characteristic (ROC) curve, and area under the curve (AUC) were used to

evaluate the predictive performance of each model.

Results: The optimal number of features for three predicting models of

RAP was five, respectively. The accuracy of predicting the model of the

hippocampus was 77.78%, precision was 88.24%, recall rate was 60%, the F1

score was 0.6, and AUC was 0.88. The accuracy of predicting the model of the

brainstem was 63.64%, precision was 58.33%, the recall rate was 60%, the F1

score was 0.54, and AUC was 0.82. The accuracy of predicting the model of

the thalamus was 81.82%, precision was 88.89%, recall rate was 75%, the F1

score was 0.77, and AUC was 0.96.

Conclusions: CT radiomics can predict RAP levels in patients with sTBI, which

has the potential to establish a method of non-invasive intracranial pressure

(NI-ICP) monitoring.
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Introduction

Traumatic brain injuries (TBI) are a type of trauma with

high morbidity, disability, and mortality rates (1). Currently, the

treatment of patients with TBI is based on surgery combined

with neurological intensive care (2, 3). Intensive care treatment

is a very important part of the patient’s treatment process,

in which intracranial pressure (ICP) monitoring is necessary

for neurocritical care treatment (3). In clinical work, ICP

monitoring alone does not provide comprehensive information

about the patient’s intracranial pressure, and its derived

parameters such as the relationship of amplitude and pressure

(RAP) can more comprehensively and objectively reflect the

patient’s ICP level (4, 5). The RAP can reflect the changes in

the ICP level of patients more comprehensively and objectively,

which can assist physicians to make decisions and adjustments

in patient treatment and to implement individualized medical

treatment precisely (6).

The implementation of ICPmonitoring relies on the surgical

placement of an intracranial pressure monitoring probe, which

is not yet in line with modern neurosurgery’s pursuit of speed,

accuracy, and efficiency. CT scanning is one of the most popular

imaging techniques used in neurosurgery, and is fast, non-

invasive, and efficient, thus playing a key role in neurosurgical

care. In the past, clinicians used CT images to interpret the

degree of displacement of intracranial structures to assess

the ICP level of patients, but this method lacks theoretical

support. The essence of this study is to obtain high-throughput,

quantitative imaging features fromCT images, filter the features,

and build a reasonable prediction model through machine

learning. The aim of this study is to explore the relationship

between CT imaging histological features and RAP in patients

with TBI, so as to reveal whether building a machine learning

model based on CT imaging histological features can objectively

and in real-time reflect ICP-related parameters of patients, and

to explore the clinical application value of this machine learning

model for realizing non-invasive ICP monitoring.

Materials and methods

Study design and setting

Clinical data of patients with sTBI admitted to the

Department of Neurosurgery, Shanghai General Hospital from

January 2019 to December 2020 were collected and analyzed.

Inclusion criteria were as follows: (1) emergency admission

due to closed craniocerebral injury with a clear history of

trauma; (2) older than 18 years of age, younger than 65

years of age, regardless of gender; (3) received invasive ICP

monitoring; (4) cranial CTwas reviewed within 1 h after surgery.

Exclusion criteria were as follows: (1) patients with a history

of traumatic brain injury, cerebral infarction, brain tumor, or

other neurological diseases or cranial surgical interventions

that might result in an abnormal anatomical structure; (2)

with previous coagulopathy and blood system related diseases.

The study protocol conformed to the ethical guidelines of

the Declaration of Helsinki, and this study was approved by

the Ethics Committee of Shanghai General Hospital, Shanghai

Jiao Tong University School of Medicine. Participants’ right

to know was fully guaranteed and indicated in the ethical

approval document.

Data sources and measurements

In addition to the baseline characteristics, we mainly

collected and analyzed the cranial CT after the surgery and the

RAP value recorded by a Neumatic data collector (a machine

that could analyze the waveform of intracranial pressure). The

CT-related features were acquired from the Digital Imaging

and Communications in Medicine (DICOM) file of the last

cranial CT before ICP monitoring using a 64-slice spiral CT

machine (General Electric Medical Systems, USA). As per the

routine protocol of a CT scan, the CT slices were parallel to

the orbitomeatal plane from the foramen magnum to the vertex.

The scanning slice thickness was 1mm. Patients were returned

to ICU after surgery. Radial artery puncture was performed

in all patients, the arterial indwelling needle was connected

to the baroreceptor, and the baroreceptor was connected to

the bedside monitor, for continuous invasive arterial pressure

monitoring. Finally, the Neumatic data collector was connected

to the bedside monitor through a network cable port to collect

real-time intracranial pressure-related parameters. All RAP data

collected within 1 h after the start of monitoring (monitoring

sampling frequency is 3 s, a total of 1,200 data in 1 h) were

recorded, and the mean value of RAP was calculated as the

analysis index.

After obtaining the patient’s CT scan within 1 h

postoperatively, three VOI with the size of 5 ∗ 5 ∗ 5mm

were extracted from the hippocampal gyrus, brainstem, and

thalamus of the injured side by pydicom module in the Python

3.8. At the same time, the radiomics module was used to extract

93 radiomics features in these three VOIs, respectively. Next,

we performed feature selection based on SHAP values. SHAP

value could be used to measure the contribution of each feature

in the model to the prediction results. By calculating SHAP,

the ranking of the importance of features in the model could

be obtained, and the top five important features are selected as

the analysis index. Finally, according to the features selected

for three VOI, three random forest models were established

to evaluate the RAP level of patients. According to previous

studies, RAP > 0.4 was considered to be an indicator of poor

prognosis. In this study, 0.4 was used as the threshold value,

and the dichotomous judgment was made with RAP. The whole

research process is shown in Figure 1.
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FIGURE 1

Case collection and data analysis process.

Statistical analysis

Python 3.8 was used for the statistical analysis of the

data. Numpy module and Pandas module were used for data

operation and sorting, SHAP module was used for feature

selection, RandomForestClassifier module of Sklearn was used

for the model establishment, and the Matplotlib module is

used for drawing. Continuous variables subject to normal

distribution were expressed as the mean (M) ± SD, continuous

variables not subject to normal distribution were expressed

as the median and interquartile range (IQR), and categorical

variables were expressed as the frequency and percentage.

Accuracy, precision, recall, and F1 score were used to evaluate

the performance of each model. The area under the receiver

operator characteristic (ROC) curve was used in all four models

to assess discrimination.

Results

From January 2019 to December 2020, a total of 36 patients

with sTBI were included in this study, among which 25 were

men (69.44%) and 11 were women (30.56%). Participants were

between 18 and 65 years old, and the median age was 47

(IQR: 29–54) years old. The median Glasgow Coma Score

(GCS) was 6 (IQR: 4–7) at the time of emergency admission;
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FIGURE 2

Feature importance based on SHAP value of hippocampal gyrus, brainstem, and thalamus.

TABLE 1 RAP and selected radiomics features.

Patients with sTBI (n = 36)

RAP 0.24 (−0.02–0.51)

>0.4 9 (25%)

Hippocampus (5 features)

Minimum 14 (12–16)

Root Mean Squared 35.5732 (34.0433–37.6606)

Skewness −0.0832 (−0.1991–0.0401)

Small dependence low gray level emphasis 0.0096 (0.0079–0.0117)

Short run emphasis 0.4424 (0.3950–0.4832)

Brainstem (5 features)

Median 31 (29–33)

Minimum 10 (8–12)

Maximum probability 0.7005 (0.5994–0.8129)

Gray level variance 0.1452 (0.0966–0.1861)

Gray level non-uniformity 125.6637 (118.9920–130.9465)

Thalamus (5 features)

Mean 34.4850 (32.8150–35.5325)

Robust mean absolute deviation 3.7269 (3.3536–3.9609)

Skewness −0.1189 (−0.2629–0.1033)

Size zone non-uniformity normalized 0.2234 (0.1878–0.2800)

Small area emphasis 0.3710 (0.2771–0.4710)

27 patients (75%) had an abnormal light reflex in one or

both pupils up-on arrival, among which postoperative pupil

shrinkage was observed in 14 patients (51.85%). The order

of feature importance based on the SHAP value is shown in

Figure 2. Selected features of three VOI and collected RAP data

was shown in Table 1.

TABLE 2 Performance of models based on textural features and

morphological features.

Hippocampus Brainstem Thalamus

Accuracy 77.78% 63.64% 81.82%

Precision 88.24% 58.33% 88.89%

Recall 60.00% 55.36% 75.00%

F1 Score 0.60 0.54 0.77

AUC 0.88 0.82 0.96

The optimal number of features for three predicting models

of RAP was 5, respectively. The accuracy of predicting the model

of the hippocampus was 77.78%, precision was 88.24%, the recall

rate was 60%, the F1 score was 0.6, and AUC was 0.88. The

accuracy of predicting the model of the brainstem was 63.64%,

precision was 58.33%, the recall rate was 60%, the F1 score

was.54, AUC was.82. The accuracy of predicting model of the

thalamus was 81.82%, precision was 88.89%, the recall rate was

75%, the F1 score was 0.77, AUC was 0.96. These three models

all had strong prediction ability and the model of the thalamus

has the strongest prediction ability in discriminating RAP. The

performance of three models in predicting RAP level is shown

in Table 2 and Figure 3.

Discussion

This study retrospectively analyzed the CT images of

patients with sTBI after operation treatment, conducted

texture analysis, established three models to predict the

RAP level according to the textural features obtained from

selected morphological structure, and compared them with
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FIGURE 3

Performance of models based on radiomics features in discriminating RAP level; the AUCs for these models were 0.88, 0.82, and 0.96,

respectively.

invasive ICP (I-ICP) monitoring. The results showed that

three models all had strong prediction ability for the RAP

level of patients with sTBI, the model of the thalamus has

the strongest prediction ability in discriminating RAP. All

of these results show CT radiomics has the potential to

establish a method of non-invasive intracranial pressure (NI-

ICP) monitoring.

Elevated ICP is the main pathophysiological change in

patients with sTBI and the main cause of irreversible damage

to brain function (7, 8). Early post-injury monitoring of sTBI

patients with ICP and aggressive interventions based on changes

are effective ways to reduce the mortality and disability rates (9,

10). Current ICPmonitoring techniques are invasive and require

the placement of ICP monitoring probes inside the patient’s

skull, which can lead to complications such as infection and

bleeding (11, 12). Sometimes the time window for implantation

of the ICP monitoring probe in the body does not meet the

treatment needs, and monitoring has to be terminated to avoid

the occurrence of infection, and the ICP monitoring needs

for subsequent treatment cannot be met (13, 14). But, there

is no established NI-ICP monitoring method that can serve

as an alternative to the gold standards of I-ICP monitoring.

To solve the above problems, Oliver et al. (15) evaluated a

new method of NI-ICP monitoring performed using algorithms

to determine ICP based on acoustic properties of the brain.

Bernhard et al. (16) attempted non-invasive assessment of ICP

by using cerebral blood flow velocity (CBFV) and arterial blood

pressure (ABP) based on a mathematical model. Andersen et al.

propose a method to assess ICP by using retinal arteriole and

venule diameter ratio (A/V-ratio), A/V-ratio can be measured

using fundus photography, they correlated changes in the

intracranial pressure with the diameter of vessels of the retina

(17). However, none of these programs have been widely

promoted in clinical practice. Although ICP monitoring is more

than half a century old and its application techniques have

changed considerably in the process, it still has a lot of space

for improvement in itself compared to the development of other

scientific advances.

With the increased awareness of the concept of non-

invasive, more and more protocols are being proposed, among

which the CT image-based ICP evaluation is the most superior

(18). CT is usually the front-line imaging approach in sTBI

(18, 19). In the past, the analysis of CT images was limited

to the interpretation of structural information, despite the

widespread use of CT, their diagnostic accuracy for detection

of elevated ICP and their correlation with ICP measurement
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are unknown. The analysis of CT texture features provides

a perspective for establishing relevant assessment criteria and

monitoring techniques (20). The morphological structural

information alone is interpreted with a serious subjective bias

(21). Texture features are quantifiable and can be analyzed

to make abstract ICP monitoring data concrete, and provide

a more objective basis for their interpretation. Here we

analyzed texture features and then statistically integrated them

to form a machine learning model to predict RAP in patients

with sTBI. This is a complement to traditional machine

learning models for predicting ICP and fills the gap in the

direction of ICP-related parameter prediction by machine

learning models.

The main damage after sTBI occurs is the destruction of

important intracranial structures and functions (22). On top

of these primary injuries, secondary injuries due to cerebral

edema and hematoma further aggravate the damage to brain

tissue and lead to deterioration of the condition. In our study,

three important intracranial structures were selected for VOI

extraction features to buildmodels, in an attempt to fully explore

the ability of CT imaging histology in machine learning to

predict RAP. Among the three models, the thalamic model has

the strongest predictive power, and we analyzed the reasons for

this: (1) the thalamic structure is located in the deep part of

the brain tissue, and its deformation and CT value changes are

less subject to pressure changes, (2) the structural morphology

of the thalamus is stable and is an ideal reservoir for texture

feature extraction, and (3) the dense blood supply and blood

flow in the thalamus are uniform. The above features are

more universal in feature extraction and can fully reflect the

internal changes of brain tissue. Building a machine learning

model based on texture analysis for RAP capability is fully

described in our study, while the feasibility of non-invasive

ICP monitoring options can continue to be explored in future

studies based on the above model. This provides potential

options for the successful implementation of non-invasive

ICP monitoring.

However, this study also had some limitations. Firstly,

the number of cases is low. Secondly, studies focus on a

single craniocerebral trauma type. Thirdly, retrospective patient

past history should be considered in the study. The above

issues will be addressed in subsequent studies, and further

work will focus on expanding the capacity of the database

and joint multicenter collaboration. The methods of CT

impact histology quantification should be improved and more

detailed and standardized criteria should be developed to

fully take into account the impact of inter-case variation on

the study, which should be assessed by a more sophisticated

learning model.

Conclusions

In summary, the machine learning model based on texture

feature analysis was constructed to be able to predict the RAP

of patients with sTBI. At the same time, the construction of

such analysis and prediction models has application value and

facilitation to achieving non-invasive ICP monitoring.
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