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A B S T R A C T   

For the first time, different pollution indices and a receptor model have been used to quantify eco- 
environmental and health risk assessments as well as identify the sources of potentially toxic 
elements in soil along the Barapukuria Coal Mine (BCM). Individual indices include enrichment 
and contamination factors showing the soil samples are moderately to highly contaminated by 
arsenic, cobalt, chromium, copper, lead, and zinc and heavily contaminated by sulfur. According 
to the geo-accumulation index, there is significant pollution with arsenic (1.24 ± 0.38), lead 
(1.49 ± 0.58), cobalt (1.49 ± 0.58), and sulfur (1.63 ± 0.38). Modified hazard quotient and 
ecological risk factor values also suggest low to moderate environmental risk hazards from the 
same elements. The nemerow pollution index, pollution load index, nemerow risk index, 
ecological risk index, and toxic risk index of soil range from 1.65 to 3.03, 0.82–1.23, 11–26, 
77–165, and 6.82–11.76 suggest low toxic risk and moderate pollution, among other synergistic 
indices. Health risk assessment indicates that iron poses lower cancer risk for children than adults, 
while both face unacceptable cancer risks from inhaling chromium, cobalt, or arsenic. Principal 
component and phylogenetic cluster analysis extracted by the multiple linear regression with the 
absolute principal component score (APCS-MLR) model refer to the fact that manganese, iron, 
titanium, and nickel have originated from geogenic sources, while coal mine effluents enrich 
elements like arsenic, chromium, zinc, lead, uranium, sulfur, thorium, and zinc and phosphorous 
sourced from agriculture. In addition, geogenic and anthropogenic sources, including mine and 
agriculture activities, could potentially pollute the soil and ecosystem. The findings are crucial for 
regional and national planners in devising strategies to mitigate potentially toxic element 
pollution in soil along coal mine areas.   

1. Introduction 

Coal mining, a longstanding process driven by the global demand for industry and electricity, has played a key role as the most 
abundant fossil fuel. The escalating need for energy, coupled with rapid economic growth, has fueled the expansion of underground 
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coal mining operations worldwide, notably impacting the environment [1–5]. In this context, along the Barapukuria Coal Mine (BCM) 
area, coal mining practices pose exceptional environmental risks, among the most hazardous globally [6]. Many eco-environmental 
threats extend to the surrounding ecosystem along the BCM [7–11]. The extraction of coal through underground mining involves 
significant activities, including the generation of waste rock and plant residues, similar to open-pit mining. These operations contribute 
to environmental pollution by releasing heavy and non-heavy toxic metal compounds into the air and water [8,10,12]. The 
contamination of water sources, a consequence of elevated toxic and heavy metals (HM) concentrations, further extends the envi-
ronmental impact, affecting areas beyond the immediate vicinity of the mine [13]. Coal mining processes, including mine runoff, are 
recognized as substantial contributors to soil and water pollution [5,14]. 

Soil pollution along coal mining areas is a significant environmental concern due to the various pollutants associated with coal 
extraction and processing [15]. The impact of coal mining on soil quality can be extensive, affecting both the surface and subsurface 
layers. Common soil pollutants in coal mining areas include HM, metalloids, acidity, and organic contaminants. Coal and associated 
rocks often contain HM, and mining and coal processing activities can release these metals into the soil. HM can persist in the soil, 
leading to long-term contamination. They pose risks to both ecosystems and human health integrity (Feng et al., 2020; [16]). The 
discharged water from underground coal mines used for agriculture, like in the BCM, can be a viable solution for both water man-
agement and agricultural needs (Fig. 1). However, using effluent from coal mines raises concerns about increased HM content, which 
can adversely affect crops and the environment. Coal mining processes often bring HM to the surface or into the water due to the nature 
of the surrounding geological materials. 

The eco-environmental and health risks associated with soil in underground coal mine areas are influenced by various factors, 
including mining methods used, the geology of the area, the release of contaminants during mining activities, and treatment facilities 
[3,6,16,17]. Soil contamination in and around coal mine areas poses risks due to the presence of various pollutants. The concentrations 
of contaminants and exposure pathways affect the environment. Elevated levels of HM in the soil can increase health risks to humans 
through something direct, such as breathing in dust or consuming contaminated food and water [18,19]. Soil contamination can also 
lead to the leaching of pollutants into groundwater, affecting drinking water sources [20,21]. The geological formation of the 
Pleistocene and the Gondwana deposit, saturated with groundwater, are crucial considerations in understanding the impact of mining 
on the water-bearing sedimentary formation. Soil contamination can negatively affect the diversity and abundance of plant and animal 
species by disrupting ecological balance. Subsidence, the sinking of the land surface, can occur in areas above underground mines, 
leading to habitat disruption [7,22]. 

In the BCM region, the coal mine piles contain a combination of shale, sandy shale, mudstone, and coal. Notably, black shale is 
identified as a significant source of HM such as arsenic, chromium, copper, cobalt, manganese, nickel, lead, zinc, and non-metallic 

Fig. 1. Location map of the study area showing sampling sites along BCM.  
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elements like sulfur, phosphorus, and so on [8,9,11,12,23]. This environmental concern is compounded through the eradication of 
native soils and the development of new soils, as acknowledged by FAO [24]. Understanding the potential harm to human health and 
the ecosystem necessitates a comprehensive investigation into the transport of potentially toxic elements through soil in the conti-
nental environment. HM, a prevalent environmental pollutant, can be transmitted to animals and humans through various exposure 
pathways, including direct contact and the food chain [25,26]. Given the hazardous effects of certain metals on soil, it is imperative to 
assess the extent of HM pollution in the vicinity of the BCM. 

A variety of individual and synergistic indices are used to evaluate pollution, environmental, and health risk assessments of the 
area. Individual indices have been widely used in several studies to assess the impact of a single pollutant, while a new approach, 
synergistic indices, consider multiple pollutants and their combined effects, providing a more comprehensive understanding of overall 
environmental risk [27–30]. The APCS-MLR model has been used for quantitative analyses of probable sources of individual elements 
in soil [27,28,31,32]. According to Zhang et al. [33], the APCS-MLR model is a useful method for classifying samples and identifying 
the origins of HM. The model has recently been used for pollution source apportionment in the sediment since it does not rely on past 
source signatures [32,34]. 

Effluent water from underground BCM used for irrigation raises ecological and health risks due to the presence of contaminants [8, 
9,12]. The simultaneous mine effluent water, fertilizers, and pesticides used for irrigation can lead to complex soil pollution issues, 
affecting the elemental composition of the soil. However, research on pollution and subsequent ecological and health risks in the 
vicinity of BCM and combustion have negative effects on the water, soil, and plants in the surrounding area [8,10,23]. A few studies 
have been carried out to evaluate ecological risk and identify the potentially toxic elements in soil using a receptor model along the 
BCM. However, there is still a need for an integrated evaluation of pollution indices, source apportionment and source-specific risk of 
HM in the area. This research aims to determine the elemental composition of soil along the BCM, evaluate ecological and health risks 
using different individual and synergistic pollution indices, and identify the sources of elements using statistics and a receptor model. 
The research helps evaluate specific risks, identify the sources of elements, and take mitigation measures depending on the charac-
teristics of the contaminants, the local environment, and the specific agricultural practices in the area. 

2. Study area 

The study area is located in the northwestern part of Bangladesh coordinates ranging between latitude 88◦57′ E to 88◦59′ E and 
longitude 25◦31′ N to 25◦35’ N (Fig. 1). In 1985, the Geological Survey of Bangladesh drilled seven coal-exploring boreholes. Based on 
the core study, Jiangsu Coal Geology Company began developing an underground coal mine in June 1996. Commercial coal pro-
duction began in September 2005 after Barapukuria Coal Mining Company Limited was established. The coalfield covers an 
approximate area of 6.49 Km2 and exhibits a total thickness of 74.14 m, hosting six groups of coal-bearing seams. Tectonically, the 
Barapukuria basin falls on the Rangpur saddle of the Indian Platform. Rangpur Saddle is connected to the Indian Shield and Rajmahal 
Hill to the west, while the Shillong Massif to the east. A set of faults crossed by the NW-SE and N–S directions, as well as NW-SW 
trending faults, formed smaller elevated ridges (horsts) and subsiding basins (graben and half-graben) that separate the region 
[35]. The region is separated into smaller elevated ridges and sunk basins, as seen by the regional gravity data [36,37]. The plain 
terrain in the Recent Alluvium and remnants of Pleistocene Barind Clay cover the Barapukuria basin [36]. The region under 
consideration falls within the alluvial plain, primarily influenced by the confluence of the Ghirnai and Khorkhori rivers. It includes the 
Barind Tract of the Pleistocene, the Old Himalayan Floodplain, and the Tista Floodplain of the Recent Age [38]. 

3. Methodology 

3.1. Sample preparation and analysis 

A comprehensive soil sampling process was conducted, resulting in the acquisition of a significant number of samples for analysis. 
Soil samples were collected systematically and scientifically around the BCM where the mine wastewater was used for irrigation 
(Fig. 1). To create a representative and homogeneous composite sample, duplicate soil samples were methodically selected and 
carefully stored in airtight plastic bags, each appropriately labelled for identification. Initially, the collected samples were dried 
overnight in an oven at 60–70 ◦C and carefully crushed into powder. Visible roots and shell fragments were methodically removed 
while making powder. To remove moisture content, the powdered material (<60 μm) was dried in the oven overnight again. Following 
the preparation steps, the powdered material was transferred to aluminum rings (30 mm) and shaped into pellets using two tungsten 
carbide pellets. The elemental composition of these pellets were determined using energy-dispersive X-ray fluorescence spectrometry 
in Cartesian geometry (EDXL 300, Rigaku, Japan) at Shinshu University, Japan. The specific elements analyzed included aluminum 
(Al), arsenic (As), calcium (Ca), chlorine (Cl), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel 
(Ni), vitrium (V), phosphorus (P), potassium (K), silicon (Si), strontium (Sr), sulfur (S), thorium (Th), titanium (Ti), uranium (U), and 
zinc (Zn), providing a comprehensive overview of the soil composition of the study area. The relative standard deviation (<3 %) was 
determined by using standard reference samples before the soil samples were analyzed. Analytical precession was measured for each of 
the eight samples by performing multiple analyses, obtaining a result of ±2.8 %. 

3.2. Environmental and ecological risk indices 

Ecological and environmental risks of soil have been assessed using both individual and synergistic indices (Supplementary 
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Table 1 
Statistical summary of elemental composition of soil along BCM.  

Sample ID Mg Al Si P TS K Ca Ti Fe Cl Mn V Cr Co Ni Cu Zn As Sr Pb Th U 
In % mg/kg 

MIN 0.92 6.47 34.20 0.06 0.07 1.43 0.22 0.44 1.33 58 152 85 74 63 29 41 55 2 48 29 28 3 
MAX 1.42 10.20 40.40 0.09 0.55 1.93 0.49 0.64 2.93 181 672 128 128 111 79 78 131 6 86 39 38 8 
AVG 1.25 8.28 37.91 0.07 0.20 1.73 0.31 0.55 1.95 98 284 101 99 80 44 56 86 3 63 33 33 6 
SD 0.13 1.06 2.09 0.01 0.13 0.16 0.07 0.05 0.48 43 155 12 13 16 14 11 20 1 12 3 3 1 
CV (%) 10.6 12.8 5.5 13.1 67.5 9.4 22.5 9.0 24.9 43.2 54.5 12.2 13.1 19.8 32.0 19.4 22.9 33.0 19.6 8.4 7.8 19.2 
ASV 1.3 8.04 30.1 0.07 0.14 2.88 2.21 0.46 4.67 180 775 60 92 10 10 28 67 4.5 – 10 12 3.7 
BGV 2.09 8.13 27.72 0.11 0.03 2.59 3.63 0.44 5 130 950 135 100 25 75 55 70 1.8 375 13 7.2 1.8 
SQGs                       
TEC             26  18 16 123 6  31   
PEC             90  36 197 315 17  91   
SEC             110  75 110 820 33  250   

ASV: Average shale volume [63]. 
BV: Background value [64]. 
SQGs (mg/kg): sediment quality guidelines [42]. 
TEC: threshold effect concentration; PEC: probable effect concentration; SEC: severe effect concentration. 
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Table 1). Individual indices, including enrichment factor (EF), contamination factor (Ci
f

)
, geo-accumulation index 

(
Igeo

)
, modified 

hazard quotient (mHQ), and ecological risk factor 
(
Ei

r
)

have been employed to assess the influence of a single pollutant ([39–42]; 
Müller, 1981; [43]), while synergistic indices, including ecological risk index (ERI), toxic risk index (TRI), pollution load index (PLI), 
nemerow risk index (NRI), and nemerow pollution index (NPI), are used for considering multiple pollutants and their combined effects 
([41,42,44–46]; Ustaoğlu et al., 2022; [47]). The formulas that were used to compute these indices and classify the level of 
contamination are shown in Supplementary Table 1. 

3.3. Health risk assessment 

Hazard quotients (HQ) for both oral intake and dermal absorption pathways are commonly used to assess the possible non- 
carcinogenic effects of HM exposure on human health. The equations used for HQ are given below: 

HQingestion =
ADDingestion

Rf Dingestion  

HQdermal =
ADDdermal

RfDdermal  

Rf Ddermal =Rf Dingestion × ABsg  

where Rf Dingestion and Rf Ddermal are single-component reference doses (g/kg/day). The following equation can be used to anticipate the 
overall probable non-carcinogenic risk (NCR) based on the hazard index (HI). 

HI=
∑n

i=1
HQingestion + HQdermal 

Only if the HQ and HI results are more than 1 (one) the non-carcinogenic health concerns be taken into account carcinogenic risk, 
on the other hand, has no unit, and is the cumulative likelihood of developing a single cancer for a lifetime due to carcinogenic 
exposure [48–52]. The carcinogenic risk (CR) for each component is calculated using the following equation: 

CR=ADD × CSF  

3.4. APCS-MLR model 

The APCS-MLR model has been used to identify possible sources and percentages of the contribution of each elemental that would 
contribute to the total pollution. In this model, absolute principal component scores (APCS) are combined with multiple linear 
regression (MLR) [27,28,31,33,53]. APCS has been used as an independent variable for MLR analysis [53,54]. MLR could potentially 
applied to determine the relevant sources that are adding to each metal’s concentration (Cj) [54,55]: 

Cj = bjo +
∑n

h=1
rhj × APCShj  

where n is the number of sources, rhj denotes the multiple regression coefficients of source h concerning metal j, and bjo denotes a 
multiple regression constant for metal j; APCShj is the scaled value of the rotation h for the sample under consideration, and rhj× APCShj 

is the source has contribution to Cj. The APCS-MLR model has negative contributions throughout the computation phase. This 
compromises the accuracy of source apportionment by making it difficult to interpret and analyze the various pollution sources’ 
contributions. To avoid this problem, all contribution rates have been calculated as absolute numbers ([55]; Liu et al., 2020). 

4. Results and discussion 

4.1. Elemental composition of soil 

The elemental composition of soil samples reveal that, the ranges and average concentration of major elements are (0.92–1.42 %), 
1.25 % for Mg; (6.47–10.20), 8.28 % for Al; (34.20–40.40 %), 37.91 % for Si; (0.06–0.09 %), 0.07 % for P; (0.07–0.55 %), 0.20 % for S; 
(1.43–1.93 %), 1.73 % for K; (0.22–0.49 %), 0.31 % for Ca; (0.44–0.64 %), 0.55 % for Ti; (0.02–0.07 %), 0.03 % for Mn; and 
(1.33–2.93 %), 1.95 % for Fe (Table 1). However, the range and average concentration of minor/trace elements are (58–181 mg/kg), 
98 mg/kg for Cl; (152–672 mg/kg), 284 mg/kg for Mn; (85–128 mg/kg), 101 mg/kg for V; (74–128 mg/kg), and 99 mg/kg for Cr; 
(63–111 mg/kg), 80 mg/kg for Co; (29–79 mg/kg), 44 mg/kg for Ni; (41–78 mg/kg), 56 mg/kg for Cu; (55–131 mg/kg), 86 mg/kg for 
Zn, (2–6 mg/kg), 3 mg/kg for As, (48–86 mg/kg), and 63 mg/kg for Sr, (29–39 mg/kg), 33 mg/kg for Pb, (28–38 mg/kg), 33 mg/kg for 
Th; and (3–8 mg/kg), 6 mg/kg for U (Table 1). Besides, the coefficient of variance (CV) ranges from 8.42 % to 54.28 %, and higher 
values were shown in U (19.2 %), Cu (19.4 %), Sr (19.6 %), Co (19.8 %), Zn (22.9 %), Fe (24.9 %), Ni (32.0 %), As (33 %), Cl (43.2 %), 
Mn (54.3 %), and S (67.5 %). The mean concentrations of Zn, Pb, V, Cu, U, Ni, Co, and Th are 20.10 %, 39.39 %, 40.59 %, 41.07 %, 
62.16 %, 72.27 %, 87.50 %, and 175 %, higher than the average shale volume (Table 1). The presence of a higher CV for elements in 
soil along a coal mine area can be attributed to various factors related to both natural geological processes and anthropogenic activities 
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associated with coal mining. The underlying geological formations in the vicinity of a coal mine area can be naturally diverse, resulting 
in variations in the concentration of HM [10,56]. The coal seam has a rich source of humic acid, which absorbs a significant amount of 
metals like As, Cr, Co, Cu, Mn, Pb, Th, U, and Zn, as well as nonmetals like S, Cl, and P [57,58]. The exposure of rocks and soils during 
mining activities can accelerate weathering processes in aerobic conditions, leading to the release of HM into the soil [59]. Sulfur is 
commonly found in organic matter, such as plant material. When plants accumulate in swampy environments and undergo partial 
decay, sulfur-containing organic compounds become incorporated into the peat, which later transforms into coal [60]. In swampy 
environments, variations in water salinity can lead to the accumulation of chlorine in the plant material, which is later preserved in 
coal. The paleoenvironmental conditions during the accumulation of plant material in swampy and brackish environments can in-
fluence the concentrations of sulfur, phosphorus, and chlorine in the precursor peat and subsequently in the coal [61,62]. During 
paddy production, certain elements tend to accumulate or become enriched in the soil, particularly as a result of agricultural practices, 
crop residues, and nutrient inputs. Phosphorus, K, Zn, and S are essential nutrients that are often supplied to paddy fields through 
fertilizers. 

The amounts of a few HM in the soil samples from the BCM region of this study are compared to those in other coal mines and coal- 
fired power plants across the world in Table 2 [9,10,23]. The average concentrations of Mn, Fe, Pb, and Zn in the present study were 
much lower than those found in earlier investigations in Bangladeshi coal mines. Since 2006, the effluent from the BCM-based power 
station and coal mine have both gone down the same drain. The power plant was shut down on July 22, 2018, though, as a result of 
management issues. This causes decreased levels of HM in the soil samples used in the current investigation. The average concen-
trations of heavy and potentially toxic elements surrounding the irrigation soils along coal mine areas, such as BCM [9,10]; Tinsukia 
coal mine, India [65]; Jharia and Beijing coal mine, China [17,66]; and Oltu coal mine, Turkey [67], are comparable and found to be 
higher than those of coal-based power plants, such as the Nicola Tesla coal-fired power plant in Siberia [68] and Santa Catarina 
coal-fired power plant, Brazil (Rodriguez-Irur-etagoiena et al., 2015) (Table 2). 

4.2. Environmental and ecological risk assessment 

The average EF of Co, Pb, As, Zn, Cu, Cr, K, and Ni in soil are 8.37, 6.78, 5.02, 3.22, 2.71, 1.80, and 1.50, respectively, whereas the 
enrichment values of TS, Cl, and P values are 21.01, 2.05, and 1.86, respectively (Table 3). The study shows 100 % K, Mg, P, V, Ni, and 
80 % Cr soil samples have small enrichment; 33 % Cu, 27 % Al, 20 % Cl, 60 % Ti, and 60 % Zn have medium enrichment; 7 % Si, 100 % 
Co, 53 % As, and 100 % Pb have medium to high enrichment; and 80 % Th and 47 % U have high enrichment (Table 3). Since an 
element’s EF value is between 0.05 and 1.5, it indicates a natural process—that is, the crustal materials are the only source of met-
al—while values above 1.5 suggest that certain elements could be hazardous to the environment. Human activities such as mining, 
industrial processes, or waste disposal lead to high concentrations of specific elements [70,71]. 

The maximum Ci
f of Co in the studied soil is 4.44; As is 3.44; Pb is 3.00; Zn is 1.87; Cu is 1.42; Cr is 1.28; Ni is 1.05; whereas S and Cl 

concentrations are 21.19 and 1.39, respectively (Table 3). The results indicated that 100 % of soil samples have low contamination by 
Mg, P, K, Ca, V, Mn, Fe, and Sr; 100 % Si, Ti, As, and Pb; 47 % Al, 27 % Cl, 53 % Cr, 7 % Ni, 53 % Cu, and 73 % Zn show moderate 
contamination; 47 % Co, 100 % Th, and 73 % U of the studied samples show considerable contamination. The moderately contam-
inated contamination factor indicates that the underground coal mining activities have led to an increased concentration of a specific 
element in the sampled area. Elements commonly associated with coal mining include HM (e.g., arsenic, lead, zinc, and cobalt), 
metalloids, and other elements present in coal seams or associated rocks. The results of Igeo indicated that 100 % of the soil samples are 
particularly uncontaminated by Mg, Al, Si, P, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Sr; 7 % of Zn; 73 % of As; and 100 % of Pb show 
uncontaminated to moderately polluted; and 47 % of Co, 73 % of U, and 100 % of Th in samples show moderately polluted (Table 3; 
Fig. 2). The moderately polluted Igeo value indicates that the underground coal mining activities have led to an increased concentration 
of a specific element in the sampled area. The element in question could be associated with coal seams, mining processes, or waste 
materials [3,8]. 

The Ei
r of Zn in the studied soil is 0.79–1.89, As is 11.11–33.33, Cu is 3.73–7.09, Ni is 11.36–31.60, Cr is 1.48–2.56, and Pb is 

11.15–15.00 (Table 3). The metals are categorized based on the ratios of their mean Ei
r values to the RI as follows: As > Ni > Pb > Cu >

Cr > Zn. The results of Ei
r of 100 % of soil samples for Cr, Ni, Cu, Zn, As, and Pb showed low potential ecological risk (Er < 40). The 

Table 2 
An analytical comparison of result of heavy metals (mg/kg) of this study and other coal mines and power plants in Bangladesh and worldwide.  

Location Cr Mn Fe Ni Cu Zn Pb Reference 

Barapukuria coal mine 99 ± 13 284 ± 155 19477 ± 4838 44 ± 14 56 ± 11 86 ± 20 33 ± 3 This Study 
Barapukuria coal mine 85 ± 0.8 555 ± 5 35488 ± 167 35 ± 0.3 33 ± 0.5 82 ± 0.7 26 ± 0.2 [23] 
Barapukuria coal mine 82 ± 38 226 ± 34 18874 ± 8724 57 ± 26 32 ± 10 102 ± 5 ND [10] 
Barapukuria coal mine 107 ± 10 1048 ± 194 27774 ± 9831 99 ± 38 30 ± 13 160 ± 56 189 ± 10 [9] 
Tinsukia coal mine (India) 112 ± 27 ND ND 88 ± 32 ND ND 183 ± 70 [65] 
Beijing coal mine (China) 49 ± 15 737 ± 248 ND 31 ± 12 39 ± 34 87 ± 25 55 ± 40 [66] 
Jharia coal mine (China) 43 ± 19 634 ± 126 39,662 ± 8226 64 ± 13 66 ± 13.1 127 ± 21 28 ± 9 [17] 
Oltu coal mine (Turkey) 136 ± 17 ND ND 60 ± 16 23 ± 10 35 ± 9 31 ± 12 [67] 
Santa Catarina coal-fired power plant 

(Brazil) 
12 ± 10 310 ± 170 24238 ±

11780 
6 ± 5 20 ± 9 81 ± 37 14 ± 11 [69]  
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Table 3 
Obtained results of individual pollution indices of soil.  

Elements EF CP Igeo Ecological Risk Factor mHQ 

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std 

S 6.51 66.64 21.01 16.34 2.75 21.19 7.59 5.12 0.87 3.82 2.09 0.84 – – – – – – – – 
K 1.15 2.30 1.80 0.41 0.55 0.75 0.67 0.06 − 1.44 − 1.00 − 1.17 0.14 – – – – – – – – 
Mn 0.45 1.35 0.75 0.30 0.16 0.71 0.30 0.16 − 3.23 − 1.08 − 2.49 0.70 – – – – – – – – 
Co 7.48 9.47 8.37 0.61 2.52 4.44 3.22 0.64 0.75 1.57 1.08 0.27 – – – – – – – – 
Cr 1.89 3.22 2.62 0.43 0.74 1.28 0.99 0.13 − 1.02 − 0.23 − 0.62 0.19 1.48 2.56 1.97 0.27 1.69 2.22 1.95 0.13 
Ni 1.07 2.05 1.50 0.30 0.39 1.05 0.58 0.19 − 1.96 − 0.51 − 1.43 0.41 11.60 31.60 17.17 5.71 1.29 2.10 1.55 0.23 
Cu 1.89 3.85 2.71 0.56 0.75 1.42 1.03 0.20 − 1.01 − 0.08 − 0.57 0.27 3.73 7.09 5.19 1.00 1.61 2.21 1.87 0.18 
Zn 2.17 4.56 3.22 0.69 0.79 1.87 1.22 0.28 − 0.93 0.32 − 0.33 0.32 0.79 1.87 1.23 0.29 0.67 1.03 0.83 0.09 
As 2.20 8.74 5.02 1.69 1.11 3.33 1.89 0.62 − 0.43 1.15 0.26 0.47 11.11 33.33 18.65 6.39 0.65 1.04 0.80 0.11 
Pb 4.86 8.39 6.78 1.23 2.23 3.00 2.54 0.21 0.57 1.00 0.75 0.12 11.15 15.00 12.80 1.02 0.97 1.13 1.04 0.04  
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mHQ is a measure used in environmental risk assessment to evaluate the potential health risks associated with exposure to multiple 
contaminants and shows a moderate level of potential health risk associated with exposure to contaminants [72]. The mHQ values of Cr 
are 1.69–2.22, Ni is 1.29–2.10, Cu is 1.61–2.21, Zn is 0.67–1.03, As is 0.65–1.04, and Pb is 0.97–1.13 (Table 3). In this study, 93 % of 
the mHQ values of Zn and As show very low severity of contamination; 87 % of Pb have low severity of contamination; 40 % of Ni and 
80 % of Cu have moderate severity of contamination; and 40 % of Cr have considerable severity of contamination. 

Synergistic indices in the context of an underground coal mine area typically refer to measure that assess the combined or 
interactive effects of multiple contaminants on the environment or human health [73,74]. The ERI values of the soil samples range 
from 77 to 165 for measured metals, revealing that most of the studied samples have low ecological risk. The pollution load index 
estimated from CF ranges from 0.82 to 1.23, referring to 40 % of the studied samples being highly contaminated metal (PLI >1), where 
values below 1 (one) refer to no pollution (Fig. 3). The results of the ERI for measured metals (Cr, Ni, Cu, Zn, As, and Pb) reveal that 93 
% of soil samples have low ecological risk. The results of TRI for measured metals (Cr, Ni, Cu, Zn, As, and Pb) range from 6.82 to 11.76, 
revealing that 93 % of the soil samples have a low toxic risk (Fig. 3). The NPI value for As and Pb shows moderate pollution; for Cr, Cu, 
and Zn, it shows low pollution; and for Ni, it shows a warning line of pollution. The NRI value for measured metals (Cr, Ni, Cu, Zn, As, 
and Pb) revealed that the soil samples are at low risk. The causes of moderate pollution in synergistic indices along an underground 
coal mine area can be attributed to a combination of factors related to coal mining activities and the interactions of various con-
taminants present in the environment. Underground coal mining involves various processes such as excavation, blasting, and trans-
portation, which can contribute to the release of particulate matter, dust, and potentially harmful substances. 

4.3. Health risk assessment 

In the study area soils were polluted by toxic elements, and people might be exposed to these elements through direct ingestion of 
foods which is grown in polluted sites, as a result, people in this area face several health problems including inhalation and dermal 

Fig. 2. Geoaccumulation index of studied soil sample.  

Fig. 3. The results of synergistic indices used for environmental risk assessment.  
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exposure. Numerous techniques have been used to assess the HRA with soil samples, including the calculation of cancer risk by 
carcinogenic elements, the average daily dose, the non-carcinogenic risk/hazard index for all elements, and counting the daily dose of 
elements that are entering the human body. The results of HQingestion, and HQdermal and HI for soil samples are shown in Suplimentary 
Tables 2 and 4. 

4.4. Non-carcinogenic health risk for soil 

Supplementary Table 2 provides a summary of the results of HQ, and HI of HM for soil samples from the adjacent area of the BCM. 
The elements included in the table are Pb, Cr, Fe, Mn, Zn, Cu, Ni, Co, and As. The values represent the HQ for ingestion, inhalation, and 
dermal contact, as well as the total HQ for children and adults. The table also includes the minimum, maximum, and mean values for 
each element and exposure pathway (Supplementary Table 2). The HQ values indicate the potential non-carcinogenic risk associated 
with the exposure to these HM in the soil. The HI values, which are the sum of the HQ values, provide an overall assessment of the non- 
carcinogenic health risk associated with exposure to multiple HM through various pathways. According to the estimated average HI for 
adults and children, the following order of HM has been observed: Zn > Co > Mn > Pb > Ni > Cr > Cu > As > Fe. Among the HM, Zn 
has the highest HQ value for both children and adults, followed by Co. Fe has the lowest HQ, and HI values for both children and adults. 
The analyses suggest that children may be more vulnerable than adults due to harmful toxic elements through the consumption of food 
and inhalation of soil particles. This order is based on the summation of the HQ values for each metal, representing the non- 
carcinogenic risk associated with the exposure to these HM in the soil of BCM. 

4.5. Carcinogenic health risk for soil 

Table 4 provides a detailed overview of the carcinogenic risks associated with four major health-concerning HM in the soil samples 
collected from the Barapukuria Coal Mine area in Dinajpur. The HM analyzed include Cr, Ni, Co, and As. The table presents the 
carcinogenic risks for both adults and children associated with each HM, offering insights into the potential health hazards posed by 
these contaminants. The values are expressed in scientific notation (E-notation), which represents the number as a coefficient 
multiplied by 10 raised to a power. The carcinogenic risks are measured in terms of the chance of having cancer over their lifetime due 
to contact of toxic elements. It is crucial to note that the higher the values, the greater the potential risk. Understanding the impli-
cations of these findings requires consideration of established guidelines. According to the United States Environmental Protection 
Agency (USEPA) standards, values of carcinogenic risk (CR) and total carcinogenic risk (TCR) less than 1 × 10− 6 are generally 
considered critical values. Values between 1 × 10− 6 and 1 × 10− 4 fall in the acceptable range, while values exceeding 1 × 10− 4 are 
considered potentially damaging to the human body [75]. The HM included are Cr, Ni, Co, and As. The CR values are provided for both 
adults and children, and they are calculated based on the cancer slope factor (CSF) for each metal. The descending order of mean CR 
values for both children and adults are as follows: As > Cr > Co > Ni. This indicates that As has the highest mean carcinogenic risk 
value for both children and adults, followed by Cr, Co, and Ni. The values in Table 4 suggest that the exposure to these HM in the soil 
samples, may pose a significant carcinogenic risk to both children and adults. The study raises concerns about the potential health risks 
associated with HM exposure in the area and highlights the need for effective risk management strategies to protect public health. 

4.6. Sources of potentially toxic elements in soil using multivariate statistical analysis 

The APCS-MLR model provides a comprehensive approach to analyzing and identifying the sources of heavy metals in soil. It 
combines the strengths of Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) to effectively handle complex 

Table 4 
Carcinogenic risks of four major health concerning heavy metals in the soil samples.  

Heavy metals Carcinogenic risks 

Adults Children 

Cr 
Min 6.26E-07 1.11E-06 
Max 1.08E-06 1.92E-06 
Mean 8.35E-07 1.48E-06 
Ni 
Min 4.91E-09 8.70E-09 
Max 1.34E-08 2.37E-08 
Mean 7.37E-09 1.31E-08 
Co 
Min 2.21E-07 1.24E-07 
Max 3.89E-07 2.19E-07 
Mean 2.82E-07 1.59E-07 
As 
Min 3.88E-05 4.18E-06 
Max 1.17E-04 1.25E-05 
Mean 6.60E-05 7.11E-06  
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datasets with multiple correlated variables. The APCS-MLR model was used to locate potentially toxic elemental sources in the soil 
along the study area. The results of the source have been verified by the square correlation coefficients (R2) for all metals from the 
APCS-MLR model, with a value greater than 0.5 (Table 5). The PCs and clusters extracted by the APCS-MLR model allowed the main 
sources to be identified and allowed to be identified sources using this model (Figs. 4 and 5). The source profile and its contribution to 
the metal are shown in Figs. 4 and 5. Ni (33.52 %), Mn (32.12 %), Zn (28.37 %), and Fe (26.21 %) loadings were observed highest in 
the first PC, which accounted for 52.20 % of the total contribution (Table 5). The contribution rate for PC2 was 28.65 % and had the 
highest loading on K (31.81 %), Th (30.86 %), Al (29.84 %), V (23.96 %), and Cr (26.57 %). The largest loadings of Ca (43.06 %), U 
(36.74 %), S (33 %), Cl (32.20 %), and Ti (29.73 %) were found in PC3, which had a contribution rate of 9.88 %. With a contribution 
rate of 6.30 %, the PC4 was loaded on P (35.92 %), Zn (35.76 %), U (34.17 %), Si (31.17 %), and As (28.31 %). PC5 had a contribution 
rate of 2.977 % and the highest loading of Cu (54.45 %), P (36.88 %), Zn (35.28 %), and Co (25.43 %). Multivariate statistical models 
such as MLR or PC analyses are typically used to identify and quantify potentially toxic elements in soil samples [76,77]. By examining 
the statistical relationships, the model can identify sources or factors contributing to the observed patterns in the data. PC1 is 
considered to be the geogenic origin of preexisting rock; elements of PC2 and PC3 come from both geogenic and mining activities; and 
PC4 and PC5 are contributors from geogenic and agricultural activity (Fig. 5; Table 5). 

Interelement correlations within the elemental composition of soil provide information about the origins and pathways of HM in 
the geoenvironment. According to the results of the Spearman correlation, there is a substantial positive association between Fe and Cr, 
Mn, and As. Fe, Ni, Zn, and Sr all have a substantial correlation with Mn. Potassium demonstrated significant negative associations 
with Zn and Fe when the metal concentrations were considered. Fe, Zn, and Co have a significant positive connection among them 
(Fig. 4). Additionally, there is a significant positive association between Cr and Mn, Ni, Sr, and Pb. Phylogenetic circular dendrogram 
analysis extracted using the APCS-MLR model shows five clusters. Mn and Ni made up Cluster 1 (C1); Ti, Cl, Sr, V, Th, K, and S 
comprised Cluster 2; U and Ca made up Cluster 3; Fe, Co, Al, As, Si, and Pb comprised Cluster 4; and Zn, P, and Cu included PC5. 
Considering these analyses, elements C1 and C2 would be the natural sources; C3 and C4 came from geogenic and mining sources; and 
C5 came from agricultural sources (Fig. 4). 

The elemental composition and statistical, PC, Spearman correlation and dendrogram cluster analyses of soil refer to the fact that 
both natural and anthropogenic sources contribute to the elemental composition of the soil. Anthropogenic activity, including mining 
and agriculture, contributes to the degradation of soil quality. According to the results, Fe, Ni, K, Sr, Al, Cl, Ti, and Mn, were derived 
from geogenic sources, whereas Cr, Co, Cu, U, V, Zn, As, Pb, Th, and S from coal mine effluents. In addition, P, Zn, and S came from 
agricultural activity in the area (Fig. 6). Furthermore, individual indices show the enrichment of S, Co, As, Pb, Zn, P, and U refer to the 
influences of anthropogenic factors. Human activities such as mining and agriculture have significantly polluted the natural resources 
of the area (Fig. 6). 

The use of discharged water from underground coal mines for agriculture raises concerns about increased HM content, which can 
adversely affect both crops and the environment. Coal mining processes often bring HM to the surface or into the water due to the 
nature of the surrounding geological materials. Effluents from coal mines contain elevated levels of potentially toxic elements posing a 
significant risk to soil quality, crop health, and even human health if not properly managed. These can accumulate in the soil over time, 
making it toxic for plant growth and potentially contaminating the food chain if crops absorb toxic substances. The specific toxic 
elements and their concentrations in the soil would need to be determined through detailed soil testing and analysis in the BCM area to 

Table 5 
Mean contribution of sources to each metal extracted using APCS-MLR receptor model.  

Parameters R2 PC1 PC2 PC3 PC4 PC5 

Al 0.92 18.86 29.84 4.23 20.45 6.97 
Si 0.87 24.96 21.88 11.00 31.17 8.33 
P 0.61 19.41 20.12 9.89 35.92 36.88 
S 0.86 12.13 27.53 33.00 17.55 23.98 
Cl 0.97 19.00 25.98 32.3 9.32 3.56 
K 0.84 9.34 31.81 16.8 15.41 18.67 
Ca 0.8 22.29 8.16 43.06 15.27 25.61 
Ti 0.94 25.33 18.89 29.73 14.55 0.63 
V 0.55 11.80 23.96 14.07 6.63 11.92 
Cr 0.83 19.06 26.57 12.97 5.69 21.5 
Mn 0.95 32.12 6.93 19.51 2.73 11.71 
Fe 0.87 26.21 18.04 20.21 23.36 22.79 
Co 0.87 23.81 20.84 22.36 22.34 25.43 
Ni 0.96 33.52 2.98 11.82 10.35 2.15 
Cu 0.61 21.02 18.5 3.42 22.55 54.45 
Zn 0.67 28.37 3.88 1.73 35.76 35.28 
As 0.72 18.03 23.14 19.74 28.31 1.25 
Sr 0.94 23.92 24.11 18.31 6.69 7.6 
Pb 0.81 20.61 25.00 9.7 29.32 22.36 
Th 0.79 1.36 30.86 25.05 18.51 15.21 
U 0.74 20.61 14.34 36.74 34.17 3.63 
Proportion %  52.20 28.65 9.88 6.30 2.97 
Cumulative Proportion (%)  52.20 80.85 90.73 97.03 100  
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understand the extent and types of contamination present. 

5. Conclusions 

Individual and synergistic pollution indices and APCS-MLR receptor models have been used to assess the ecoenvironmental risk, 
health hazards, and sources of potentially toxic elements in soil along the BCM in this study. The mean concentrations of Zn, Pb, V, Cu, 

Fig. 4. (a) Cluster dendrogram and (b) Correlation matrix plot of elementals.  

Fig. 5. (a) Different contribution sources of each element (in %) and (b) average contribution of each source based on the receptor model.  

Fig. 6. Schematic diagram for probable sources of elements of agriculture soil over the study area.  
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U Ni, Co and Th are higher than those of ASV, and the CVs of U, Cu, Co, Zn, Fe, Ni, As, Cl, Mn, and S show higher values. The individual 
indices of the soil samples refer moderately contaminated and polluted by As, Co, S, Pb, Th, and U, whereas synergistic indices show 
low toxicity and moderate pollution. The health risk assessment reveals that inhaling Cr, Co, and As puts adults and children at 
intolerable risk of developing cancer. Correlation coefficients extracted by using the APCS-MLR model for every metal showed R2 

values of more than 0.5, indicating the reliability of the sources of origin. The possible sources are found by the APCS-MLR model and 
contributed 52.20 %, 28.65 %, 9.88 %, 6.30 %, and 2.97 % of elements to the studied soil. Considered as a whole, Fe, Ni, K, Sr, Al, Cl, 
Ti, Th, and Mn dominated natural sources of metals, while anthropogenic sources, Cr, Co, Cu, U, V, Zn, As, Pb, Th and S, are effluents 
through the BCM, and P, Zn, and S are contributed by agricultural activity. 

The findings of the current analysis should be useful to regional and national planners as they choose the best course of action for 
preventing and reducing the amount of potentially harmful material pollution in soil. A deeper comprehension of elemental exposures 
and their probability source identification can also aid in the development of methods for mitigation, prevention, and remediation. 
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