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Abstract
Encompassing some of the major hotspots of biodiversity on Earth, large mountain 
systems have long held the attention of evolutionary biologists. The region of the 
Qinghai-Tibet Plateau (QTP) is considered a biogeographic source for multiple colo-
nization events into adjacent areas including the northern Palearctic. The faunal ex-
change between the QTP and adjacent regions could thus represent a one-way street 
(“out of” the QTP). However, immigration into the QTP region has so far received only 
little attention, despite its potential to shape faunal and floral communities of the 
QTP. In this study, we investigated centers of origin and dispersal routes between the 
QTP, its forested margins and adjacent regions for five clades of alpine and montane 
birds of the passerine superfamily Passeroidea. We performed an ancestral area re-
construction using BioGeoBEARS and inferred a time-calibrated backbone phylog-
eny for 279 taxa of Passeroidea. The oldest endemic species of the QTP was dated 
to the early Miocene (ca. 20 Ma). Several additional QTP endemics evolved in the mid 
to late Miocene (12–7 Ma). The inferred centers of origin and diversification for some 
of our target clades matched the “out of Tibet hypothesis’ or the “out of Himalayas 
hypothesis” for others they matched the “into Tibet hypothesis.” Three radiations 
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1  | INTRODUC TION

Many of the World's biodiversity hotspots are located in large 
mountain systems, such as the Andes, the East African Arc or the 
Himalayas (Marchese, 2015) and the role of mountains in organ-
ismic evolutionary diversification is considered to be manifold 
(Fjeldså, Bowie, & Rahbeck, 2012; Hoorn, Perrigo, & Antonelli, 2018; 
Muellner-Riehl, 2019; Rahbek, Borregaard, Antonelli, et al., 2019; 
Rahbek, Borregaard, Colwell, et al., 2019). On the Eurasian continent, 
the Qinghai-Tibet Plateau (QTP) and its flanking mountain systems 
constitute the largest and probably most diverse area of montane 
species richness (Aliabadian, Sluys, Roselaar, & Nijman, 2008; 
Fjeldså et al., 2012). For example, passerine bird diversity follows 
a gradient from warm and humid forest ecosystems harboring 358 
species in the Eastern Himalayas (Price et al., 2014) and 441 in north-
ern Myanmar (Renner et al., 2015) toward less diverse avian commu-
nities in the colder and drier Western Himalayas (Price et al., 2011). 
Alpine avian communities on the QTP are generally less species rich 
than those of the Himalayan forest ecosystems (Fjeldså et al., 2012), 
however, they harbor a couple of wide-range and narrow-range en-
demics as well as widespread trans-Palearctic species (Figure 1).

The three major hotspots of diversity at the QTP fringes are the 
Mountains of Central Asia in the West, the Himalayas in the South, 

and the Mountains of Southwest China (i.e., the Hengduanshan and 
its northward extensions) in the East (Figure 2a; Favre et al., 2015). 
As the largest and highest plateau on Earth, the QTP extends across 
a surface area of about 2.3 million km2, comprising the largest con-
tinuous area of montane grasslands of the World (Olson et al., 2001). 
The alpine environments of the QTP and its flanking mountain sys-
tems have been declared as the “Third Pole” (Yao et al., 2012). As 
such, the QTP recently became famous as the source area of cold-
adapted organisms of the Eurasian fauna (e.g., the Pleistocene mam-
mal fauna: Wang et al., 2015) or the Holarctic alpine flora (Favre 
et al., 2016). However, the “out of Tibet hypothesis” for the montane 
and alpine fauna and flora of Eurasia is not a particularly new concept, 
dating back to the work of the German ornithologist Hugo Weigold 
in the early 20th century. He was the first to postulate a Tibetan 
center of diversification (“Entwicklungszentrum”) for Palearctic 
terrestrial vertebrates, and earliest emergences of Tibetan faunal 
elements already during the Early Tertiary (Weigold, 1935, 1949, 
2005). Weigold's ideas fell into oblivion, until the out of Tibet hy-
pothesis was reanimated in the discussion on the Tibetan origin 
of Palearctic cold-adapted mammals inferred from fossil evidence 
(Deng et al., 2011; Tseng, Li, & Wang, 2013; Tseng et al., 2014; Wang, 
Li, & Takeuchi, 2016; Wang, Tseng, Li, Takeuchi, & Xie, 2014). Some 
of these studies suggested a “Himalayan origin” (Wang et al., 2014) 

included multiple independent Pleistocene colonization events to regions as distant 
as the Western Palearctic and the Nearctic. We conclude that faunal exchange be-
tween the QTP and adjacent regions was bidirectional through time, and the QTP 
region has thus harbored both centers of diversification and centers of immigration.

K E Y W O R D S

ancestral ranges, center of origin, immigration, in situ diversification, Qinghai-Tibet Plateau, 
Sinohimalayas

F I G U R E  1   Passerine bird species of 
the Qinghai-Tibet Plateau (QTP); QTP 
endemics, wide distribution range on the 
plateau: (a) streaked rosefinch, Carpodacus 
rubicilloides; (b) robin accentor, Prunella 
rubeculoides; (c) rock sparrow, Petronia 
petronia, widespread trans-Palearctic 
distribution; (d) Tibetan bunting, Emberiza 
koslowi, narrow-range endemic of the 
QTP; all photos: M.P., Qinghai, China, June 
2013

(a) (b)

(c) (d)
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or “Central Asian origin” (Tseng et al., 2013) of their study organisms, 
but all these examples were later reviewed in the context of an “out 
of Tibet” colonization of the adjacent regions in the North (e.g., Qiu, 
2014; Wang et al., 2015). Besides this terminological inaccuracy, the 
emerging view from analysis of the QTP fossil record was therefore a 
“one-way view” of faunal interchange between the QTP (including its 
margins; Figure 2a) and adjacent bioregions, excluding any reverse 
movement into Tibet (Tseng et al., 2014; Wang et al., 2014, 2016).

Recent phylogenetic studies have suggested or presumed 
a one-directional “out of Tibet” or a “out of Himalayas” disper-
sal pathway, too, but these were typically focusing on single spe-
cies or a single, species-poor clade (e.g., Fuentes-Hurtado, Hof, & 
Jansson, 2016; Liu et al., 2017; Voelker, Semenov, Fadeev, Blick, & 
Drovetski, 2015; and other examples in Table S1). However, work 
on a larger taxonomic group (e.g., speciose alpine taxa like Saxifraga, 
Ebersbach et al., 2017) suggested that both in situ speciation and 
immigration played a key role in the evolution of alpine faunal and 
floral assemblages of the QTP (e.g., Hauenschild et al., 2017) or of 
the Himalayas (Johansson et al., 2007; compare Table S1).

In this study, we compare patterns of biogeographic history 
among five subclades of Passeroidea, a superfamily of passerine 
birds (Johansson, Fjeldså, & Bowie, 2008; Selvatti, Gonzaga, & de 
Morales Russo, 2015). These subclades represent five independent 
passerine radiations (Figure 2b), representing ideal model groups for 
the study of biogeographic history of QTP faunal assemblages: the 
studied species are montane and alpine birds distributed across all 
mountain systems of the Holarctic (Figure 3) and include 29 endem-
ics to the QTP region. For these five passerine clades, biogeographic 
analyses and ancestral area reconstructions are either missing, in-
complete, or provide contradictory results (Drovetski et al., 2013; 
Liu et al., 2017; Tietze, Päckert, Martens, Lehmann, & Sun, 2013).

Our five studied passerine clades encompass characteristic fau-
nal elements of the QTP region and include several lineages con-
sidered as flagship species by Weigold (2005) for the high alpine 
grasslands and rocky hillslopes of the QTP: (a) Old World sparrows 

(Passeridae) comprising snowfinches (Montifringilla and allies; two 
genera Onychostruthus and Pyrgilauda are endemic to this region). 
The area of high Passeridae species richness at the eastern margin 
of the QTP is certainly due to the high snowfinch diversity in this 
region (Figure 3a; a second hotspot in East Africa is characterized 
by a high diversity of Passer species), (b) the mountain finches (genus 
Leucosticte), with three species in the QTP region and further three 
in the Nearctic. This genus along with bullfinches and other allies be-
long to tribe Pyrrhulini (clade 6 in Zuccon, Prŷs-Jones, Rasmussen, & 
Ericson, 2012). With another group, (c) the rosefinches (Carpodacini: 
clade 5 in Zuccon et al., 2012), both tribes of finches (Fringillidae) 
have areas of highest species richness in the Sinohimalayas 
(Pyrrhulini also north of the QTP; Figure 3b,c). Weigold (2005) hy-
pothesized that all extant rosefinches originated from a Tibetan 
ancestor but later diversified in peripheral refuges at the southern 
and the eastern QTP margin when forest habitats vanished from the 
central plateau region. Furthermore, we investigate (d) Old World 
buntings (Emberzidae). Although the hotspot of highest bunting spe-
cies richness is located in the Eastern Palearctic, a few taxa form a 
secondary hotspot of species richness at the eastern QTP margin 
(Figure 3d). According to Weigold (2005) the endemic Tibetan bun-
ting, Emberiza koslowi (Figure 1d) represents an “autochtonous faunal 
element” of the QTP (i.e., he assumed that this species originated in 
situ on the QTP), whereas the crested bunting (Emberiza lathami) had 
originated from a tropical ancestor southwest of the QTP. Finally, (e) 
accentors, in the Palearctic family Prunellidae, are most speciose at 
the northeastern and southeastern QTP margin (Figure 3e).

Our five target clades encompassed 132 Holarctic species, in-
cluding 29 endemics of the QTP and its forested margins (compare 
“Material and Methods,” “Species distributions”). Assuming an in situ 
origin of all QTP endemics that was associated with the supposedly 
recent formation of the plateau region (Liu, Gao, Chen, & Lu, 2002 
and references therein), recent orogenetic processes should have 
promoted the rise of species-level lineages endemic to the QTP from 
the Middle Miocene on (Shang et al., 2015). However, such a tight 

F I G U R E  2   (a) Target region, the Qinghai-Tibet Plateau (area 1) and the biodiversity hotspots along its forested margins (areas 2–5), 
modified from Favre et al. (2015); (b) phylogeny for 279 species of Passeroidea, five target clades representing five independent radiations 
involving QTP species marked in bold
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coupling of young evolutionary events (species splits, adaptive ra-
diations in the QTP region) with orogenetic post-Miocene events 
(“young Tibet hypothesis”) has recently been critically challenged by 
Renner (2016). Indeed, there is evidence of ancient QTP species that 
evolved prior to the Miocene (Baker, Pereira, & Paton, 2007; Päckert, 
Sun, et al., 2015). Furthermore, some ancient Tibetan and Himalayan 
faunal elements already emerged during the Eocene and later diver-
sified in situ on the QTP over a long period of time (Martens, 2015; 
Mosbrugger, Favre, Muellner-Riehl, Päckert, & Mulch, 2018 and ref-
erences therein). These findings are in accordance with Weigold’s 
(2005) theory of an early Tertiary origin of the endemic fauna of 
Tibet, though he was originally driven by the idea that diversification 
of the Tibetan fauna was firmly associated with the uplift of the QTP.

In accordance with Weigold's theories and with more com-
plex biogeographic patterns derived from large phylogenies and 

comparison across clades, we searched for evidence of ancestral 
areas of origin for our target groups on the QTP itself and along its 
margins (Figure 2a), and also in adjacent regions beyond the QTP 
region. We therefore provide one of very few case studies that com-
pare patterns of biogeographical history across different clades from 
a speciose monophyletic group of organisms.

2  | MATERIAL S AND METHODS

2.1 | Sampling strategy

Biogeographic inferences for our five target clades needed to be an-
chored within a broader biogeographic scenario, including a broad 
selection of closely related as well as distant clades. We therefore 

F I G U R E  3   Spatial distribution of species richness and diversity hotspots for all five target clades of Passeroidea; diversity heat maps 
were compiled with QGIS using shape files inferred from BirdLife International and NatureServe (2015) and from the IUCN Red List (2019); 
colors indicate regional species richness (high = red; low = dark blue)
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assembled a DNA sequence dataset for Passeroidea, a highly speciose 
crown clade of Passeriformes that comprises 25 avian families (see 
Figure S1; Table S2). For all our target clades, our taxon sampling was 
100% or near 100% (missing only Montifringilla theresae from Central 
Asia and Carpodacus sillemi from the QTP). We furthermore included 
a few subspecific taxa that are currently not accepted as “good spe-
cies” but nevertheless represent distinct resident lineages (Table S2). 
These subspecies-level taxa represented vicariants occurring in dif-
ferent regions of a species’ range (in Eurasia our areas B–H) and in 
some species, distinct subspecific lineages correspond to distinct phe-
notypes, like in the common bullfinch (Pyrrhula pyrrhula: Töpfer et al., 
2010). Divergence times between all these subspecific taxa equal or 
even exceed the minimum divergence times estimated for a good spe-
cies pair of the target clade they are nested in. These species pairs 
are as follows: (a) for snowfinches Pyrgilauda davidiana/P. blanfordi 
(Delgado, Bettega, Martens, & Päckert, 2019); (b) for Carpodacini 
Carpodacus rubicilloides (Figure 1a)/C. rubicilla and C. thura/C. dubius 
(Tietze et al., 2013); (c) for Pyrrhulini Leucosticte tephrocotis/L. austra
lis/L. atrata (Drovetski, Zink, & Mode, 2009); (d) for buntings: Emberiza 
hortulana/E. caesia and E. citrinella/E. leucocephalos (Päckert, Sun, et al., 
2015); (e) Prunellidae: Prunella ocularis/P. fagani (Liu et al., 2017).

2.2 | DNA extraction, PCR, and sequencing

To complete taxon sampling and coverage of loci for our target 
clades, we used samples and DNA extracts available from previ-
ous analyses (Päckert, Sun, et al., 2015; Päckert, Martens, Sun, & 
Strutzenberger, 2016; Tietze et al., 2013; Töpfer et al., 2011; for newly 
generated sequences see Table S2). We extracted DNA from new 
samples using Qiagen blood and tissue kits according to the manu-
facturer's instructions. Our sequence data set included four loci: the 
mitochondrial cytochrome-b (cytb) and NADH dehydrogenase subunit 
2 (ND2), as well as the nuclear introns ornithine decarboxylase (ODC) 
intron 7, and myoglobin (myo) intron 2. Overall, we used general and 
previously published primers (for PCR and sequencing primer combi-
nations and PCR settings see Table S3). However, we utilized taxon-
specific primer pairs for PCR and sequencing of ND2 for Passeridae by 
Belkacem et al. (2016) and of ODC for rosefinch and bunting samples 
(Table S3). We purified PCR products using ExoSap-IT (GE Healthcare; 
adding 0.1 ml ExoSap-IT solution in 4 ml H2O to each sample; PCR 
settings: 37°C for 30 min, 94°C for 15 min) and sequenced the pu-
rified PCR products, which was performed with BigDyeTM 3.1 Dye 
Terminator Cycle Sequencing Kits (Applied Biosystems), according to 
the manufacturers’ instructions. Sequencing products were purified 
by salt/ethanol precipitation or by using Sephadex (GE Healthcare), 
and sequenced in both directions on an ABI 3130xl DNA sequencer.

2.3 | Data assembly

Sequences for core target taxa were compiled from previous stud-
ies (n = 101 species analyzed in Päckert et al., 2016; further taxa 

added from Tietze et al., 2013 and Päckert, Sun, et al., 2015). We 
added missing species and filled gaps in sequence coverage with 
newly generated sequences. To have all families of Passeroidea 
represented by at least one species, we included further sequences 
from GenBank. This is in accordance with Cai et al. (2018) who em-
phasized that estimates of ancestral range for ingroups (i.e., our 
target clades) are strongly affected by the ranges of outgroups (i.e., 
sister clades of our target clades). We added two passerine out-
group species: Bombycilla garrulus (Bombycilloidea as the sister clade 
of Passerida) and Acanthisitta chloris (Acanthisittidae as the earli-
est offshoot of the Passeriformes) and three further nonpasserine 
outgroup taxa (Table S2). Newly generated sequences were joined 
with sequences obtained from previous studies and sorted using 
the R package “ape” (Paradis, Claude, & Strimmer, 2004; Paradis & 
Schliep, 2019). Sequences were assembled using custom scrips in R 
(R Development Core Team, 2016) and aligned with the stand-alone 
version of MAFFT 7.273 (Katoh & Standley, 2013) with automatic se-
lection of the appropriate alignment strategy, the scoring matrix set 
to “200PAM/κ = 2,” and the gap opening penalty set to 1.53 (with a 
gap extension penalty of 0.123). The obtained sequence alignments 
were manually checked for errors. The total sequence alignment had 
a length of 4,813 bp and totaled 281 taxa.

All newly generated sequences have been deposited at GenBank 
under the following accession numbers: MT210104–M210119 
(cytb), MT210120–MT210147 (ND2), MT277429–MT277443 (myo), 
and MT336176–MT336215 (ODC).

2.4 | Phylogenetic reconstruction and divergence-
time estimation

Phylogenetic inference and divergence-time estimation were 
performed with BEAST v1.8.2 (Drummond, Suchard, Xie, & 
Rambaut, 2012). We partitioned our dataset in accordance with the 
best-fitting partitioning scheme that resulted from PartitionFinder 
v1.1.1 (Lanfear, Calcott, Ho, & Guindon, 2012) with all site models 
unlinked and one clock model for each gene resulting in a total of 
eight sites and four clock models. The search for the best strategy 
relied on the “beast” model-set and heuristic search. We linked all 
tree models to one tree model and a birth–death tree prior was ap-
plied. As initial condition for the BEAST run, we supplied a starting 
tree calculated with RAxML v8.2.0 (Stamatakis, 2014). Search for 
the best-known likelihood tree was performed with 100 replicates, 
bootstrap values obtained from a thorough bootstrap run using 
the autoMRE option (Pattengale, Alipour, Bininda-Emonds, More, 
& Stamatakis, 2010) were annotated onto the best-known likeli-
hood tree. All analyses were performed using the same partitioning 
scheme as applied for BEAST analyses with the GTRGAMMA model 
applied to all partitions. The BEAST run was performed using the 
BEAGLE v2.3 library with a chain length of 1.1 × 108 generations 
with trees being sampled every 10,000 generations. The chain was 
inspected for convergence and sufficient ESS values (>200) with 
Tracer v1.6 (Rambaut & Drummond, 2007). Trees were summarized 
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with TreeAnnotator v1.8.2, where median heights were annotated 
to the maximum clade credibility (MCC) tree.

We used eight calibration points in order to obtain estimates 
for node ages (modified from Päckert et al., 2016; see Table S4). 
Additionally, we applied a normal prior to the root age to avoid the oc-
currence of implausibly old root ages. Instead of using hard boundaries, 
we adopted a “soft boundary” strategy where the desired calibration 
is achieved by setting priors in such a way that 97.5% of the probabil-
ity density lie within the desired minimum and maximum boundaries 
(Benton, Donoghue, & Asher, 2009). All calibrated nodes were forced 
to be monophyletic. Sequence alignments and tree files are deposited 
at Dryad under https://doi.org/10.5061/dryad.xksn0 2vd0.

2.5 | Species distributions

As basis of our biogeographic analysis, we delineated eight regions 
(see maps in Figures 3–7 with the New World as region A). Those 
areas, located outside the QTP region, were designed to loosely 

follow the classic biogeographic realms and zoogeographical bound-
aries (Ficetola, Mazel, & Thuiller, 2017), as done in other studies (e.g., 
Favre et al., 2016). We divided our target region into the high alpine 
Tibetan plateau (area E; Figure 2a: region 1) and two major flank-
ing mountain systems: (a) the Central Asian Mountains in the West 
(area D; Figure 2a: region 2) and (b) the Sinohimalayas comprising the 
Himalayas (Figure 2a: region 3) and the Hengduanshan (Figure 2a: 
region 4) in the South and Southeast (area F). The Sinohimalayas 
represent one of three major global hotspots of avian diversity (e.g., 
Cai et al., 2018) with a high richness of both ancient and recent 
species (together with the Andes and the mountains of the African 
Arc; Fjeldså et al., 2012). Among 29 species endemic to the QTP re-
gion, ten species were present in only one area: four on the Tibetan 
Plateau [Figure 2a: area 1], three in the Himalayas [Figure 2a: area 3], 
two in the Hengduanshan [Figure 2a: area 4] and one in the Central 
Asian Mountains [Figure 2a: area 2]. Furthermore, our target groups 
comprise nineteen endemic species present in two or more areas 
of the QTP region (Figure 2a), among them four species which are 
endemic to the Sinohimalayas.

F I G U R E  4   “Out of Tibet” dispersal of snowfinches (Montifringilla, Onychostruthus, Pyrgilauda) and rock sparrows (Petronia), only the 
respective clade of the time-calibrated Passeroidea MCC tree is shown; node support from Bayesian inference of phylogeny (BI) and 
Maximum Likelihood (ML) indicated by symbols explained above the tree (no symbol for support values below 0.95/80); biogeographical 
reconstruction based on a dispersal–extinction–cladogenesis (DEC) model; letters at nodes show best states, pie charts show per-area 
probabilities inferred from ARR2 (nine areas); main dispersal events sketched on the map including area codes (right); color codes for 
most frequent ancestral area combinations below map (right); extant patterns of sympatry on the QTP shown on maps below for (a) small 
snowfinches, three Pyrgilauda species and one Onychostruthus species (BirdLife International and NatureServe, 2015); (b) large species of 
Montifringilla (Asian distributions of M. nivalis and M. henrici according to Gebauer et al., 2006)
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We used QGIS v2.4 (QGIS Development Team, 2014) to draw 
shapefiles representing the maximum nine geographic regions in 
our analysis. We established a workflow for automated extraction 
of bird distributional ranges, using bird distribution data provided 
by BirdLife International and NatureServe (2015) in ESRI shapefile 
format. Geographic ranges encoded in BirdLife International (BLI) 
shapefiles were filtered to only represent year-round and breed-
ing ranges of natively occurring species according to three types of 
distribution encoded in the attribute table of a shapefile. A species’ 
range was therefore reduced to those polygons corresponding to the 
following categories: type presence: extant; type origin: native; type 
seasonality: resident and breeding season. Subsequently, a dissolve 
operation was applied in QGIS to join all separate features for each 
species resulting in each species being represented by a single poly-
gon feature. The intersection function (QGIS) was then used to ob-
tain a list of all intersections between the geographic area polygons 

and the bird distribution polygons. The resulting list was converted 
to a matrix using the “xtabs” function (Rbase) and the “as.matrix.
xtabs” command (DescTools).

In a second step, we made manual corrections to the area ma-
trix for a couple of reasons. First, our data set included two spe-
cies recognized by Clements et al. (2015) but not by BLI (i.e., their 
distributions were included in shape files of other species). These 
were as follows: Montifringilla henrici [listed as subspecies of M. niva-
lis by BLI; distribution corrected according to Gebauer, Eck, Kaiser, 
Lei, and Martens (2006) and Martens and Eck (2003) see Figure 4b]; 
C. formosanus [listed as ssp. of C. vinaceus by BLI]; this species oc-
curs only on Taiwan [included in our area H]; for distinctiveness of 
C. formosanus according to an integrative taxonomic approach com-
pare Wu et al., 2011). Second, based on modeled species distribu-
tions Ramesh, Gopalakrishna, Barve, and Melnick (2017) has raised 
the concern that for narrow-range endemics, BirdLife International 

F I G U R E  5   “Out of Himalaya” dispersal of rosefinches (Carpodacus; only the respective clade of the time-calibrated Passeroidea MCC 
tree is shown); node support from Bayesian inference of phylogeny (BI) and Maximum Likelihood (ML) indicated by symbols explained above 
the tree (no symbol for support values below 0.95/80); biogeographical reconstruction based on a dispersal–extinction–cladogenesis model 
(DEC); letters at nodes show best states, pie charts show per-area probabilities inferred from ARR2 (nine areas); main dispersal events 
sketched on the map including area codes (right); color codes for most frequent ancestral area combinations below map (right)
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shape files might overestimate the true extent of distribution 
range. However, their study was limited to the regional avifauna 
of the Western Ghats and we consider these deviations between 
projected BLI distributions and modeled distributions (Ramesh 
et al., 2017) of minor importance for our transcontinental study 
(even our two smallest areas the Himalayas and the Hengduanshan 
are 1.7–3.7 times larger than the Western Ghats). Furthermore, 
other studies suggested a good accordance of potential distribution 
models (PDMs) and BLI distributions for several Mexican bird spe-
cies (Ortega-Huerta & Vega-Rivera, 2017). Nevertheless, we took 
into account that automatic extraction of species ranges from BLI 
shape files might cause false-positive occurrence of a species in an 
area with only marginal overlap at the very margins of its breeding 
range (examples of Carpodacus rosefinches are shown in Figure S2). 
Because we consider this a potential bias of our automatic extraction 
of bird ranges from BirdLife shapefiles, we deleted these marginal 
areas from the area matrix. We cross-checked our area classification 
with published range maps in the Atlas of Palearctic Breeding Birds 
(for example for rosefinches, Carpodacini, in Martens & Sun, 2008) 

as was done in previous studies (e.g., Drovetski et al., 2013) (fur-
ther atlas volumes consulted: Dathe & Loskot, 1992; Stresemann 
& Portenko, 1960, 1976, 1977, 1978, 1980, 1981; Stresemann, 
Portenko, & Mauersberger, 1971; Stresemann, Portenko, Dathe, & 
Mauersberger, 1974). Our final area matrix is included in our data 
package deposited at Dryad under https://doi.org/10.5061/dryad.
xksn0 2vd0.

2.6 | Ancestral-range reconstruction (ARR)

We used R package BioGeoBEARS (Matzke, 2013) for ancestral-
range reconstruction (ARR). The maximum clade credibility tree ob-
tained from BEAST was used as input tree (we kept the waxwing, 
B. garrulus, as the closest outgroup of Passeroidea and pruned all 
further outgroups used for fossil calibration from the input tree 
shown in Figure S1). We fitted the dispersal, extinction, and clad-
ogenesis (DEC) model to the time-calibrated Passeroidea tree (for 
further details, see Appendix S5). We used a “dispersal multipliers” 

F I G U R E  6   “Out of Himalaya” dispersal of mountain finches (Leucosticte) and allies (only the respective clade of the time-calibrated 
Passeroidea MCC tree is shown); node support from Bayesian inference of phylogeny (BI) and Maximum Likelihood (ML) indicated by 
symbols explained above the tree (no symbol for support values below 0.95/80); biogeographical reconstruction based on a dispersal–
extinction–cladogenesis model (DEC); letters at nodes show best states, pie charts show per-area probabilities inferred from ARR2 (nine 
areas); main dispersal events sketched on the map including area codes (right); color codes for most frequent ancestral area combinations 
below map (right)
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F I G U R E  7   “Into Tibet” dispersal of Old World buntings (Emberiza, four clades I-IV indicated in gray boxes; only the respective clade of 
the time-calibrated Passeroidea MCC tree is shown); node support from Bayesian inference of phylogeny (BI) and Maximum Likelihood 
(ML) indicated by symbols explained above the tree (no symbol for support values below 0.95/80); biogeographical reconstruction based 
on a dispersal–extinction–cladogenesis model (DEC); letters at nodes show best states, pie charts show per-area probabilities inferred from 
ARR2 (nine areas); main dispersal events sketched on the map including area codes (right); color codes for most frequent ancestral area 
combinations below map (right)

E. rustica
E. pusilla
E. aureola
E. rutila
E. sulphurata
E. s. personata
E. s. spodocephala
E. chrysophrys
E. tristrami
E. variabilis
E. yessoensis
E. schoeniclus
E. pallasi
E. e. elegans
E. e. elegantula
E. siemsseni
E. affinis
E. lathami
E. melanocephala
E. bruniceps
E. caesia
E. hortulana
E. cineracea
E. buchanani
E. citrinella
E. leucocephalos
E. stewarti
E. cirlus
E. jankowskii
E. c. cia
E. c. flemingorum
E. godlewskii South
E. godlewskii North
E. cioides
E. koslowi
E. fucata
E. calandra
E. capensis
E. impetuani
E. goslingi
E. tahapisi
E. striolata
E. sahari
E. socotrana
E. flaviventris
E. poliopleura
E. cabanisi

10 0 Ma

BG

BG

BG

G

G
G

F   GH

G

G

G

G

BDG

G
G

F  H

F  H

C

F    H

BD

D

B
BDG

B
BDG
BG

DEG

DG

B

G
BD

DF

EF  H

DG

DEF  GH

E

F     GH

BD

C

C

C

C

CD

C

C

C

C

C

15 5

I

II

III

IV

C

Old World

GE
>4

1,2

2

2

1

1,2

2

2

2

Old World

F1

F2

Himalayas
Hengduanshan

F    H1,2 (Sino-)Himalayas + S China
Northern Palearctic

BD W Palearctic + C Asia
BG

DF1 C Asia + Himalayas

G

node support BI/ML
* = 1.0/100

# = >0.95/>65

F

B

C

G

H
D E

F

B

C

G

H
D E

#

#
#

#

**

*
*

* *

° = 1.0/>45

°

°

°

*
*

*

*
*

#

#
#

#

#

°
°

#

# *

*
#

#

#
#

>4>4

New World Buntings
Passerellidae

A

C

C
C

C

C

C

C

B
B

B

B
G

G

DG

G

G
#

G

G

G

G

G
G

B

F2GH

F2
F2GHH

CD
D

DF1

G
BG

C

F Sinohimalayas

AG



9292  |     PÄCKERT ET al.

matrix, allowing dispersal between all areas, favoring adjacent ones 
(1.0), but penalizing slightly (0.5) dispersal between nonadjacent 
areas interconnected by a third one (in a land continuum), and pe-
nalizing strongly (0.01) long distance dispersal between very distant 
continents (e.g., Europe and the New World; see Tables S5a,b).

We performed two alternative runs with BioGeoBEARS: one 
with the Sinohimalayas classified as a single area F (ARR1; Figure S3) 
and a second run with the Himalayas and the Hengduanshan as two 
separate areas (F1, F2; ARR2) with the Mekong-Salween divide as one 
of the main geographic barriers (compare Liu et al., 2016; Päckert 
et al., 2012). Separate treatment of these two mountain regions also 
takes into consideration the different orogenetic histories and the 
younger age of the Hengduanshan (Favre et al., 2015; and references 
therein). Dispersal multipliers were adjusted to the latter analyses 
with eight and nine areas, respectively (Tables S5a,b). Our final dis-
persal multiplier matrices were included in our data package depos-
ited at Dryad under https://doi.org/10.5061/dryad.xksn0 2vd0.

3  | RESULTS

3.1 | Phylogeny and origin of Passeroidea

Phylogenetic analyses with BEAST and RAxML resulted in largely 
congruent topologies for the major families of Passeroidea 
(Figure S1; autoMRE bootstrap converged after 200 replicates). 
Among all Passeroidea, Przevalski's finch, Urocynchramus pylzowi, 
represented the oldest species-level lineage endemic to the QTP 
(Figure S3). The split from its sister group (Ploceidae) was dated to a 
mean age of 20 Ma [16.4–24.7 Ma], which corresponds to the onset 
of the diversification for all our five target clades (see below). All 
fourteen endemic species of the QTP region (that occurred in a sin-
gle area, including four Sinohimalayan endemics) emerged during the 
late Miocene (e.g., Tibetan bunting, E. koslowi) or early Pleistocene 
(e.g., Tibetan Snowfinch, M. henrici).

In ARR1 and ARR2, area uncertainty was high at the basal nodes 
of the Passeroidea tree, however, best states suggested a Holarctic 
ancestral range of Passeroidea (Afrotropics and Oriental region 
were not included in the ancestral range; Figure S3). In contrast, for 
several suprageneric clades, ancestral ranges were limited to one 
region only, for example, a Nearctic origin of “Emberizoidea” sensu 
Barker, Burns, Klicka, Lanyon, and Lovette (2013) (see Figure S1) and 
Fringillidae (see Figure S3).

3.2 | Biogeographical history of montane and alpine 
target groups of Passeroidea

We found contrasting areas of diversification and dispersal routes 
between the QTP and adjacent regions for our five target clades. 
Generally, there was large congruence between reconstructions based 
on eight areas (ARR1) and nine areas (ARR2), respectively. Separate 
classification of the Himalayas and the Hengduanshan as two areas F1 

and F2 (ARR2) often resulted in ancestral ranges with highest per-area 
probabilities in either of the two regions (at nodes with an ancestral 
range in the Sinohimalayas in ARR1; Figures S3 and S4). In the follow-
ing, we present and discuss the results from ARR2 based on nine areas 
and refer to deviations among ARRs only in the one case that showed 
an effect of the total number of areas on area uncertainty.

A QTP origin (area E) was recovered for snowfinches and rock 
sparrows (Figure 4), with a mean root age estimate of 12.4 [9.9–15.3] 
Ma for the onset of their radiation. For their sister clade (Old World 
sparrows of genera Passer and Gymnoris) an African area of origin 
was estimated (best state and highest per-area probabilities). Genus 
Passer includes several widespread species whose ranges extend 
into the QTP region (Figures S3 and S4), however, none of these 
would represent a QTP endemic that had colonized the QTP from 
elsewhere. Two main clades of snowfinches (Pyrgilauda, small spe-
cies; Montifringilla, large species) separated at about 7.6 [6.0–9.6] 
Ma. Area E was the best state and had highest per-area probabil-
ities at most nodes of the snowfinch clade. Only for the ancestral 
range of small Pyrgilauda species, the Sinohimalayas had the high-
est per-area probabilities in ARR2 (two areas F1, F2, whereas from 
ARR1 again area E resulted as best state for the ancestral range of 
Pyrgilauda). The Montifringilla clade included the only snowfinch 
species that during the late Pleistocene dispersed as far as to the 
Western Palearctic (M. nivalis; Figure 4).

Areas of origin and diversification in the QTP region were also 
reconstructed for both our target clades of finches (Fringillidae). The 
onset of rosefinch (Carpodacini) radiation was dated to 11.2 [9.5–
13.3] Ma and involved major centers of diversification on the QTP 
(area E) and in the Sinohimalayas (areas F1 and F2; Figure 5). Their 
sister clade, the Hawaiian Honeycreepers (Drepanidini), represents a 
solely Nearctic group. Two larger rosefinch clades diversified in dif-
ferent areas of the QTP region: Clade I comprised 15 species that di-
versified in the Himalayas (highest or high per-area probabilities for 
area F1 at five nodes; Sinohimalayas best state; Figure 5, Figure S3). 
The Himalayan rosefinch radiation included one early dispersal 
event to Central Asia (area D) and a more recent dispersal event to 
southern China and Taiwan (area H; Figure 5). For the second major 
rosefinch clade II, comprising ten species, area E had the highest 
per-area probabilities at the two successively basal nodes (Figure 5). 
However, at several nodes of that second clade, the Hengduanshan 
(area F2) had highest (or high) per-area probabilities or was recovered 
as best state (Figure 5). Both groups included a terminal Pleistocene 
dispersal event to the Western Palearctic (area B; Figure 5: clade I, 
C. rubicilla; clade II: C. synoicus).

A Himalayan origin was reconstructed for another finch clade, 
Pyrrhulini, that comprised the mountain finches of genus Leucosticte, 
bullfinches of genus Pyrrhula and allies from five other genera 
(Figure 6; highest per-area probabilities for area F1, and best state F1 
at several clades). Pyrrhulini are sister to a diverse group of finches 
(tribe Carduelini) that among others includes several subclades re-
stricted to the New World or to the Afrotropics (Figure S3). The high 
per-area probability for a New World origin of Carduelini (Figure 6) 
is certainly due to the basal split leading to the Nearctic house 

https://doi.org/10.5061/dryad.xksn02vd0
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finch clade (genus Haemorhous; Figure S3). One Tibeto-Himalayan 
endemic, the Tibetan serin (Serinus thibetanus), emerged from the 
Carduelini clade, sister to a New World clade of siskins (Figure S3: 
the Eurasian siskin, Spinus spinus, belongs to this clade and has very 
likely colonized the Palearctic from the New World). Strikingly, this 
Tibeto-Himalayan endemic does not have any close phylogenetic 
relationship with other QTP species. The onset of Pyrrhulini diver-
sification was dated to a mean age of 12.3 [10.2–14.4] Ma and their 
radiation also included a very recent terminal dispersal event of 
mountain finches (Leucosticte) into the Nearctic (area A1; Figure 6). 
The entire Himalayan finch group belonged to a larger finch clade, 
for which a Central Asian ancestral range was inferred (highest per-
area probabilities for area D or DF).

In the buntings (Emberiza) several extant taxa from the QTP were 
nested within two larger clades that did not originate and diversify in 
the QTP region. Their sister group is represents a New World clade, 
the Passerellidae (Figure 7). An Eastern Palearctic center of origin 
and diversification was unanimously assigned to a clade compris-
ing sixteen species including the Chinese endemic E. siemsseni and 
further distinct subspecific lineages of East Asian species (Figure 7, 
clade IV). Breeding ranges of all QTP taxa of clade IV are mainly re-
stricted to the Hengduanshan (area F2 and parts of the adjacent QTP, 
area E; Figure 7). The ancestral area of clade II was equivocal (many 
combinations with low per-area probabilities at the two successively 
basal nodes; Figure 7). The Tibetan bunting (E. koslowi) was one of 
three early offshoots of clade II (mean split age 9.1 [7.5–10.9] Ma) 
and the QTP (area E) was recovered as the ancestral range at that 
node (highest per-area probabilities and best state; Figure 7).

The onset of accentor (Prunella) radiation was dated to 11.9 
[9.4–14.7] Ma. The area origin of accentors (Prunella) was highly 
equivocal (low per-area probabilities for any combination of regions); 
however, area E (high QTP) was recovered as best state in both ARRs 
(Figure 8). For the basal nodes, there was less area uncertainty, when 
the Sinohimalayas were coded as a single area (a total of eight areas 
in ARR1 instead of nine in ARR2). According to ARR2, the QTP (area 
E) was the ancestral range of the accentor crown clade with highest 
per-area probabilities (Figure 8).

4  | DISCUSSION

4.1 | Phylogeny and biogeographic history of 
Passeroidea

Our Passeroidea tree is in good accordance with previously pub-
lished phylogenies, most of them based on a less dense taxon sam-
pling (Barker et al., 2013; Davis & Page, 2014; Johansson et al., 2008; 
Jønsson & Fjeldsa, 2006). The timing of lineage splits inferred from 
our fossil dating approach is in accordance with other dated phylog-
enies (Barker et al., 2013; Claramunt & Cracraft, 2015; Moyle et al., 
2016). Our ancestral-range reconstructions suggested a Holarctic or-
igin of Passeroidea, whereas previous studies have suggested either 
a Palearctic origin (Claramunt & Cracraft, 2015) or an Indomalayan 
origin (Moyle et al., 2016) of this group. The latter difference is strik-
ing, as both studies applied the same global area coding. For our data 
set, uncertainty of ancestral ranges increased with the number of 

F I G U R E  8   “Out of Tibet” dispersal of accentors (Prunella; only the respective clade of the time-calibrated Passeroidea MCC tree is 
shown); node support from Bayesian inference of phylogeny (BI) and Maximum Likelihood (ML) indicated by symbols explained above the 
tree (no symbol for support values below 0.95/80); biogeographical reconstruction based on a dispersal–extinction–cladogenesis model 
(DEC); letters at nodes show best states, pie charts show per-area probabilities inferred from ARR2 (nine areas; plus those from ARR1 with 
eight areas and less uncertainty at the three basal nodes); main dispersal events sketched on the map including area codes (right); color 
codes for most frequent ancestral area combinations below map (right)
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global areas classified (eight and nine) as illustrated for accentors, 
Prunellidae (Figure 8). Though previous studies on the biogeographi-
cal history of this family relied on even fewer areas (four and six), 
they predicted a rather broad ancestral range across the entire QTP 
region (Drovetski et al., 2013; Liu et al., 2017). Apart from different 
reconstruction methods, deviations between our results and those 
of the two latter studies might be due to different classifications of 
global areas on the one hand, and different delimitation of species 
distribution ranges on the other hand (e.g., inclusion or exclusion of 
the Himalayan nonbreeding range of Prunella himalayana). Thus, the 
outcome of ancestral area reconstructions might not only depend on 
the models applied (Clark et al., 2008; Pirie, Humphreys, Antonelli, 
Galley, & Linder, 2012) and different reconstruction methods 
(Johansson, Nylinder, Ohlson, & Tietze, 2018; Tietze et al., 2013), 
but also the area-coding approach. This has to be kept in mind for the 
discussion of the following evolutionary trajectories that we identi-
fied for our five Eurasian montane and alpine target clades.

4.2 | “Out of QTP”—in situ diversification on the 
QTP and along its forested fringes

Our results suggested a late Miocene origin (at about 8 Ma) and in 
situ diversification on the QTP and along its margins for snowfinches 
and for rosefinches of clade II. At the same time, ancestors of the 
major accentor clades dispersed “out of a Tibet” (area E) to a wide 
ancestral range including Central Asia and the Northern Palearctic 
(areas DEFG). There, ancestral lineages of accentors appear to have 
diversified from the late Miocene onward. In these three examples, 
that early phase of their radiation (8–5 Ma) coincides with a period 
of global climate cooling toward the end of the Miocene (reviews in 
Favre et al., 2015; Mosbrugger et al., 2018), with an intensification of 
Asian winter monsoon (Holbourn et al., 2018) and increasing aridifi-
cation of the QTP (Miao et al., 2019; but compare Nie et al., 2017 for 
a warmer and wetter Miocene climate in the QTP region). Along with 
a decrease of birch and oak forests and a continuous change toward 
steppe vegetation on the northern QTP from 8.5 Ma on (Chen & 
Yang, 2016; Hui et al., 2011), new semiopen plateau habitats could 
have represented an evolutionary opportunity for the ancestors of 
extant QTP rosefinches, snowfinches, and accentors.

Adaptive radiations on the QTP appear to have followed general 
ecogeographic rules. For example, smaller species of snowfinches 
(Pyrgilauda) diversified at the southern QTP margins, whereas larger 
species (Montifringilla) did so at higher latitudes, in the northern QTP 
margins. Similar accordance to Bergmann's rule (Bergmann, 1847) 
was found along a latitudinal gradient on the QTP in small mammals 
such as pikas (Lin, Ci, Zhang, & Su, 2008) and zokors (Zhang, Nevo, 
Tang, Su, & Lin, 2012).

In the final Holocene phase of alpine passerine radiations, post-
glacial range expansion resulted in patterns of wide-range sympatry 
on the QTP, where today extant endemics occupy different ecologi-
cal niches of the alpine meadows and grasslands. Snowfinch species 
of the QTP belong to two different ecological guilds with different 

habitat preferences for vertical or horizontal habitat complexity (Li 
et al., 2018). Similarly, all sympatric accentor (Prunella) species of the 
high alpine habitats on the QTP and its margins differ strikingly from 
each other in habitat preferences and in morphology (Drovetski 
et al., 2013; Liu et al., 2017). Only a few snowfinch and rosefinch spe-
cies have colonized alpine habitats of central and western Palearctic 
mountain systems according to the “out of Tibet” hypothesis (e.g., 
M. nivalis) during the Pleistocene. Likewise, the (Sino-)Himalayas 
have been considered a source area of Holarctic montane organisms 
(Favre et al., 2016; Matuszak, Muellner-Riehl, Sun, & Favre, 2016; 
Pisano et al., 2016; Wen, Zhang, Nie, Zhong, & Sun, 2014) and “out 
of Himalayas” colonization in our target groups was suggested for 
the transcontinental colonization of Nearctic mountain systems 
from a Himalayan area of origin in mountain finches (Leucosticte; 
this study). A single rosefinch species emerged from dispersal out 
of the Himalayas to a subtropical region, that is, C. formosanus on 
Taiwan. Though none of the five radiations of montane Passeroidea 
reached into tropical regions (except of one bullfinch species, 
Pyrrhula leucogenis, on the Philippines), other clades of Passeroidea 
encompass tropical radiations across Southeast Asia (including 
the Sinohimalayas) such as those of sunbirds and flowerpeckers 
(Nectariniidae, Aethopgya: Hosner, Nyári, & Moyle, 2013; Dicaeidae: 
Nyári, Peterson, Rice, & Moyle, 2009). The Sinohimalayas were also 
considered the area of origin and in situ diversification of babblers, 
a highly diverse passerine group that from the early Miocene on col-
onized the entire Old World including the Tropics where regions of 
great babbler diversity can be found today (Cai et al., 2020).

Moreover, biogeographic scenarios reconstructed for 
Passeroidea did not only include faunal interchange among the QTP 
and adjacent regions but also within the QTP region itself (e.g., ex-
change between areas D, E, and F).

4.3 | Faunal exchange between the plateau 
region and the QTP fringes

The discussion about processes fostering diversification within the 
QTP region has often been limited to phylogeographic patterns, 
that is, intraspecific genetic divergence as a result of Pleistocene 
range shifts to glacial refuges along its margins and successive 
Holocene range expansion (e.g., Lei, Qu, & Song, 2014; Yang, Dong, 
& Lei, 2009). This particular evolutionary scenario was recently sum-
marized in the “contraction/recolonization” hypothesis by Muellner-
Riehl (2019). However, for several of the Tibetan radiations during 
the Ice Ages also “platform refugia” and “microrefugia” (Muellner-
Riehl, 2019) might explain the current patterns of sympatry and 
parapatry, such as for rosefinches of the Carpodacus pulcherrimus 
complex (this study, Figure 5; Tietze et al., 2013). Moreover, faunal 
exchange between the plateau and its peripheral forested moun-
tain regions must have already occurred prior to the Pleistocene. 
The scenario of in situ diversification in the Himalayas for two finch 
clades (rosefinches: Figure 5; mountain finches and allies: Figure 6) 
suggested a major phase of diversification from 10 to 5 Ma that 
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coincides with a period of accelerated elevational niche divergence 
of Himalayan passerines that reached its peak in the late Pliocene 
(Price et al., 2014). Along with the establishment of elevational 
parapatry, the Carpodacus rosefinch radiation involved multiple in-
dependent “into Tibet” movements, that is, colonizations of the pla-
teau (area E) from its forested fringes (areas F1 and F2). These were 
associated with independent colonizations of semiopen and open al-
pine habitats from ancestral forest habitats (Päckert, Martens, Sun, 
& Tietze, 2015). In other alpine groups of organisms, there is evi-
dence of the reverse directionality of faunal exchange, that is, from 
the central plateau to its margins. Indeed, the ancestors of a few 
Himalayan faunal elements seem to have originated from a Tibetan 
source area. With increasing aridification and loss of mesophilic for-
ests on the QTP, these Tibetan stem populations dispersed south-
ward into the “Himalayan exile” (area F1) where they later diversified 
as documented for lazy toads (Hoffmann et al., 2017) and ground 
beetles (Schmidt, Opgenoorth, Höll, & Bastrop, 2012; further exam-
ples in Martens, 2015).

4.4 | Immigration into the QTP region from adjacent 
source regions

The alpine QTP fauna and flora includes some immigrants from dis-
tant regions like the Nearctic (alpine plants: Ebersbach et al., 2017) 
and the Mediterranean (Clewing, von Oheimb, Vinarski, Wilke, & 
Albrecht, 2014; Wen et al., 2014), whereas the Himalayan bird com-
munities were apparently shaped by immigration from adjacent 
subtropical areas in Southeast Asia (Johansson et al., 2007; Päckert 
et al., 2012).

Among our target groups, some Old World buntings (Emberiza) 
have colonized the eastern plateau margin from a center of origin 
and diversification northeast of the QTP (area G; similar scenario 
with higher area uncertainty for bullfinches). Weigold (2005) already 
supposed that those immigrants from the Northeast were already 
preadapted to cold and dry environments, given their presumed or-
igin in the arid belt of Central Asian steppes and deserts. Further 
examples of Eastern Palearctic taxa on the QTP are found in ro-
dents (Li & Wang, 2015). Also, depending on the perspective, the 
“Out of North China” hypothesis by Zhang et al. (2006) for Asian 
salamanders (Hynobiidae) can be regarded as an “into Tibet” disper-
sal. In northern China, successive cyclical vegetation shifts between 
steppe and forest (or grassland and desert) ecosystems during the 
Pliocene (Wang et al., 2006), might have furthermore promoted 
north–south faunal interchange at the eastern QTP margin (Päckert 
et al., 2012). Only a few of these Eastern Palearctic immigrants actu-
ally colonized the Himalayas (two bullfinch species for example; this 
study), thus these East Siberian/Mongolian taxa are characteristic 
for the montane and alpine ecosystems of the Hengduanshan (our 
area F2), that is, the eastern QTP margin.

Several authors hypothesized that, as opposed to “centers of 
origin,” an area can constitute a “center of accumulation,” that is, a 
region that obtained taxa through unidirectional immigration from 

different source areas (Goldberg, Roy, Lande, & Jablonski, 2005; 
Mora, Chittaro, Sale, Kritzer, & Ludsin, 2003). As an equivalent 
term, an “immigration center” in the Sinohimalayas was suggested 
by Liu et al. (2017), however, the authors pointed out that evolu-
tionary history of the regional avifauna was shaped by both in situ 
speciation and immigration. Also, Martens (2015) emphasized that 
biogeographic affinities of the Himalayas are manifold and during its 
long uplift history the Himalayan Arc and its extensions in the East 
did “not merely absorb” immigrant faunal elements from adjacent 
regions.

5  | CONCLUSION

Researchers of the early 20th century had already developed 
clear-sighted hypotheses on centers of origin and diversifica-
tion in the QTP region as well as on a Tibetan immigrant mam-
mal fauna from cold and arid environments north of the QTP 
(Weigold, 1949). This is all the more impressive, because these 
early biogeographic hypotheses were formulated in times prior 
to the application of cladistic methods or phylogenetic analysis 
of molecular data. Our analysis suggests that, in accordance with 
Weigold's predictions, centers of origin and (in situ) diversification 
of extant QTP passerine bird genera were not restricted the QTP 
platform, but also occurred along its southern and southeastern 
margins (in the Himalayas and the Hengduanshan), and northeast 
of the QTP in the Eastern Palearctic. Faunal interchange among 
the QTP, its flanking mountains, and the adjacent regions must 
therefore have been a bidirectional process rather than a one-way 
street (for birds: Cai et al., 2018; Liu et al., 2016; for alpine plants: 
Ebersbach et al., 2017).

Previous biogeographical studies already acknowledged the 
fact that faunal interchange between adjacent bioregions in other 
parts of the world is a “two-way traffic” (Cheetham, 1963), such as 
the Great American Biotic Interchange. Although it has been as-
sumed that faunal interchange across the Isthmus of Panama for 
birds went primarily from south to north (Weir, Bermingham, & 
Schluter, 2009), recent studies suggested that transcontinental dis-
persal and colonization of new habitat occurred in both directions 
(Pelegrin, Gamboa, Menéndez, & Hernández-Fernández, 2018; 
Woodburne, 2010). As a result, extant Neotropical faunal assem-
blages are composed by both native and immigrant taxa (Cione, 
Gasparini, Soibelzon, Soibelzon, & Tonni, 2015) and this is what 
Weigold (2005) suggested for the Tibetan avifauna, too. The same 
pattern of a bidirectional faunal interchange can be expected from 
future studies that are dedicated either to speciose families with 
large transcontinental distributions (Ebersbach et al., 2017) or to 
comparisons of independent radiations across clades of a speciose 
taxon such as Passeroidea in this study.
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