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ABSTRACT Recreational boating can impact benthic ecosystems in coastal waters.
Reduced height and cover of aquatic vegetation in shallow Baltic Sea inlets with high
boat traffic have raised concerns about cascading effects on benthic communities in
these ecosystems. Here, we characterized the diversity and composition of sediment-
associated microbial and meiofaunal communities across five bays subjected to low
and high degrees of boating activity and examined the community-environment rela-
tionships and association with bay morphometry. We found that recreational boating
activity altered meiofauna alpha diversity and the composition of both micro- and
meiobenthic communities, and there were strong correlations between community
structure and morphometric variables like topographic openness, wave exposure,
water surface area, and total phosphorous concentrations. Inlets with high boat traffic
showed an increase of bacterial taxa like Hydrogenophilaceae and Burkholderiaceae.
Several meiofauna taxa previously reported to respond positively to high levels of sus-
pended organic matter were found in higher relative abundances in the bays with
high boat traffic. Overall, our results show that morphometric characteristics of inlets
are the strongest drivers of benthic diversity in shallow coastal environments.
However, while the effects were small, we found significant effects of recreational
boating on benthic community structure that should be considered when evaluating
the new mooring projects.

IMPORTANCE With the increase of recreational boating activity and development of
boating infrastructure in shallow, wave-protected areas, there is growing concern for
their impact on coastal ecosystems. In order to properly assess the effects and con-
sider the potential for recovery, it is important to investigate microbial and meiofau-
nal communities that underpin the functioning of these ecosystems. Here, we pres-
ent the first study that uses DNA metabarcoding to assess how benthic biodiversity
in shallow coastal areas is impacted by recreational boating. Our study shows a rela-
tively small, but significant, effect of recreational boating both on meiofauna alpha
diversity and meiofauna and bacterial community composition. However, both meio-
fauna and bacterial community composition in shallow benthic habitats is mediated
to a higher degree by abiotic variables, such as topographic openness, area or size
of the inlets, and wave exposure. Despite the fact that the effects were small, such
impacts on benthic biodiversity should be considered in the management of coastal
shallow habitats.

KEYWORDS Baltic Sea, benthic community composition, coastal ecosystems,
macrophytes, microbial ecology, recreational boating, shoreline development

Coastal ecosystems have received substantial attention in the field of aquatic ecol-
ogy, as these habitats are subjected to progressively increased anthropogenic dis-

turbances (1, 2). They serve as important ecological buffers between the distinct terres-
trial and deeper marine environments through, e.g., flow-driven sedimentation and
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the exchange of salt water and freshwater (3, 4). Human activities such as land use and
coastal development result in the runoff of pollutants and nutrients into coastal waters
(reference 5 and references therein) and thereby increase hypoxia and sediment flux in
benthic habitats (6). In comparison with open waters, soft sediment bottoms in coastal
marine environments are greatly impacted by multiple anthropogenic stressors in
terms of habitat degradation and biodiversity loss (7, 8). A growing body of literature
shows a decrease in macrophytes, macroinvertebrates, and fish communities in the
degraded habitats (such as low resilience and reduced ecosystem services) (9–11).

The effects of large-scale disturbances such as eutrophication and fishing on coastal
ecosystems have become a major focus of research during the last decades (12–14).
However, small-scale disturbances induced by shoreline development and recreational
boat traffic are emerging but considerably less studied concerns (15). Given the slow re-
covery of some benthic organisms from disturbance (16, 17), press disturbances (long-
term disturbances that have long-term effects on an ecosystem) from shoreline construc-
tion and recreating boating may exert extensive and long-lasting effects on sediment
habitats. A number of studies have shown both a reduction in species richness and
altered composition of aquatic macrophytes in shallow inlets due to intense recreational
boat activities associated with expansion of infrastructure (10, 18, 19). For example,
changes in diversity and composition of macrophytes, together with abiotic factors such
as boat-generated waves and dredge spoil disposal, have been shown to alter assemb-
lages of fish and macroinvertebrates (19–21). From a broad ecological perspective, the
direct effect of recreational boating on aquatic vegetation can result in a cascading effect
on biodiversity (22), stability of physiochemical variables such as water turbidity (23), and
organic matter content (24). It is clear that maritime traffic imposes a series of environmental
challenges or disturbances with a wide range of consequences for marine life (5).

Microbial communities drive biogeochemical processes, sustain the bases of food webs,
and recycle elementary nutrients within every ecosystem (25). Because of their fundamental
roles in driving important ecosystem processes, understanding how microbial communities
respond to press disturbance can provide insights into the potential for ecosystems to
recover. However, to the best of our knowledge, no existing studies have assessed the eco-
logical consequences of boating-induced disturbances on microbial and microeukaryotic
communities. With the damage to aquatic vegetation from mechanical shearing, boat hulls,
anchors, and sediment disturbance, the rhizosphere in these coastal ecosystems is likely to
be affected. Rhizosphere communities are known to underpin crucial geochemical processes
in sediment layers like sulfide oxidation and nitrate reduction (26, 27) as they are ideal habi-
tats for important microbial taxa like cable bacteria (28). Moreover, as aquatic vegetation
helps stabilize the sediment structure and supplies the rhizosphere with oxygen in the
deeper layers of the sediment (29), the reduction of, and damage to, aquatic macrophytes is
likely to affect these root-associated microbial communities and large microeukaryotes that
feed or depend on these interactions. A long-term field experiment demonstrated that
disturbance of seagrass meadows in coastal ecosystems led to substantial changes in
meiobenthic community composition, especially the trophic structure of the nematode
community (30). Given the known effects of boat-induced disturbances on aquatic vege-
tation and the potential of cascading effects, a better understanding of microbial and
meiofaunal responses to press disturbances is necessary to move toward the goal of bio-
diversity monitoring managements using bioindicator species (31, 32).

In this study, we aimed to assess the responses of microbial (i.e., bacteria) and meio-
faunal communities (i.e., benthic microscopic animals smaller than 1mm, but retained
in 0.04-mm sieve) to recreational boating using a field survey in shallow coastal bays in
the Baltic Sea. The Baltic Sea contains a high variety of coastal regions differing in their
geomorphology (33, 34), and shallow waters of most regions are covered by submerged
macrophytes. With the increase of recreational boating activity and development of boat-
ing infrastructure along the Baltic Sea coast, particularly in shallow, wave-protected areas
(35), there is growing concern for their impact on the coastal ecosystems. Recent work has
evidenced negative effects of recreational boating in the Baltic Sea on coastal vegetation
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and associated fish assemblages (10, 19, 36). A previous study using data from the same
field survey found that vegetation cover and height were lower in marinas (bays with a
high level of boating) than control bays (bays with a low level of boating), with potential
knock-on effects on associated fish assemblages (10). Here, we advance this work through
high-throughput sequencing of the prokaryotic 16S and eukaryotic 18S ribosomal subunit
rRNA genes to characterize the diversity and composition of meiofauna and microbial
communities along the bays with different intensity of boat activities (Fig. 1) and identify
the main environmental drivers of benthic diversity in shallow coastal areas. We hypothe-
sized the following. (i) Alpha diversity of meiofauna and bacteria is lower in bays exposed
to a high intensity of recreational boating traffic than in control bays with no or very low
intensity of boating. (ii) Bacterial and meiofauna community structure in bays with high
recreational boat traffic differs from that in control areas. (iii) Given the relatively fast prolif-
eration and high dispersal rate of bacteria compared to (larger) microeukaryotes (37), they
can rapidly colonize the open niches upon disturbances by boating. Thus, bacteria are
likely less affected by boating than the meiofauna communities.

FIG 1 Map of the Baltic Sea coastline. The locations of the 10 shallow bays are denoted with squares
(marina) and triangles (control). The map was created using QGIS v. 2.12.3 (37) and Google Earth Pro
v 7.3.2. The bay codes, together with the mooring berths per hectare in each bay, are listed in
Table 2.
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RESULTS
Amplicon sequencing output. After trimming and filtering, 11,402,274 reads were

obtained for the 16S rRNA data set and 11,087,582 reads for the 18S rRNA data set,
with an average sequence depth of 186,922 for 16S (range, 49,160 to 838,283) and
186,995 reads per sample for 18S (110,618 to 346,142). Taxonomy was assigned to
91,014 amplicon sequence variants (ASVs) from the 16S data set using the SILVA data-
base as a reference. After filtering out singletons, 67,330 ASVs remained. The 18S data
set yielded 25,003 ASVs assigned through the BLASTn database as described in previ-
ous studies (38, 39). We found that at the phylum level, the majority of bacterial ASVs
were affiliated with Proteobacteria (average 6 standard deviation, 50.63%6 3.46%),
Actinobacteria (13.65%6 0.84%), Bacteroidetes (9.22%6 0.81%), and Acidobacteria
(3.35%6 0.22%). For the 18S data set, we subset ASVs assigned to eukaryote and meta-
zoan taxa. Across all samples, the majority of metazoan ASVs were affiliated with to
Arthropoda (65.61%6 19.75%), Nematoda (10.89%6 2.84%), and Mollusca (Gastropod
and Bivalvia; 6.09%6 1.23%).

Alpha diversity. Alpha diversity indices for bacterial communities did not differ
between control and marina bays (analysis of variance [ANOVA], P = 0.16, Fig. 2A; see
also Table S2 in the supplemental material). In contrast, both Shannon and Chao1
alpha diversity estimates for metazoans, but not for observed number of ASVs, were
significantly higher in marinas than in controls (generalized linear mixed model
[GLMM], P = 0.034, 0.007, and 0.87, respectively, Fig. 2B; see Table S3 in supplemental
material for statistical details).

Community structure. Differences in bacterial and meiofauna community structure
between marina and control bays were minor, but statistically significant (Fig. 3A and
B, respectively; adonis, permutational multivariate analysis of variance [PERMANOVA],
P , 0.001 in both tests; Table S3). Bacterial communities were clustered strongly by
bay pairs compared to bay type (marinas versus control). The bacterial community
structure in three of the five paired bays overlapped with the C3/M3 and C4/M4 pairs
being clearly distinct. Again, while the difference between marina and control bays
was minor, it was significant (PERMANOVA, P = 0.001, R2 = 0.036 [Table S5]). The non-
metric multidimensional scaling (NMDS) plot on metazoan analysis (Fig. 3B) revealed a
clearer separation between bay types compared to that for bacteria. The majority of
the samples were clustered by geographical location (bay) or clustered by type (marina
or control) for each bay pair. Only the C6/M6 overlapped by type due to one replicate.

Differences in relative abundance of microbial and meiofauna taxa in marina
and control bays. Differences in relative abundances between control and marina bays
were visualized by a heat tree based on log2 median proportions up to the order level
(Fig. 4, up to the family level in Table 1), where a log2 median proportion of.0 indicates
higher abundance in control, anda log2 median proportion of ,0 indicates higher abun-
dance in marinas. Relative abundance data on bacterial communities showed an increase of
Betaproteobacteriales in marinas compared to controls (relative abundance in control:
29.18%6 5.37%; in marina: 38.31%6 8.82%, Wilcox P, 0.001, false discovery rate [FDR] cor-
rected). At the family level, higher relative abundance of Gallionellaceae (log2 median propor-
tion,210), Burkholderiaceae (controls [C], 8.67%6 3.87%; 12.45%6 4.14%; log2 median ratio,
20.8) and Hydrogenophilaceae (C, 11.78%6 7.17%; marinas [M], 15.86%6 4.52%; log2 me-
dian ratio, 20.9) found in marina than in control bays (Table 1). The higher abundance of
Gallionellaceae was based on a nearly complete absence in three of the five control bays
(;3%6 1.3% within the order Betaproteobacteriales).

Nematoda and Panarthropoda were the dominant metazoan groups across all samples
(10.36%6 5.41% and 62.08%6 17.10%, respectively). Looking at Nematoda, Chromadorea
dominated in the C5/M5, C6/M6, and C7/M7 bays (85.36%6 14.59%, within the Nematoda
phylum). Compared by bay type, there was a slight trend to a higher relative abundance of
Chromadorea in marina bays (C, 67.21%6 25.17%; M, 70.90%6 17.71%: Wilcox P = 0.08)
with Axonolaimoidea driving most of the difference (C, 1.81%6 1%; M, 3.19%6 4%; Wilcox
P , 0.03; log2 median ratio, 22.68), suggesting the difference was primarily driven by geo-
graphical location. The relative abundance of two Ostracoda families appeared to shift in
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FIG 2 Alpha diversity by bay type (observed richness, Chao1, and Shannon) for control and marina bays for
bacteria (A) and metazoa (B).
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FIG 3 NMDS of Bray-Curtis dissimilarities based on the relative abundance of all ASVs classified as bacteria (stress = 0.18) (A) and metazoa
(stress = 0.019) (B). Each data point represents a replicate in individual bays. Colored polygons cluster the samples collected from paired bays. Point
shapes and lines depict bay types and are labeled with suffixes (marina [M] and control [C]).
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opposite directions between marina and control, where Cypridoidea saw an increase in mar-
inas (Wilcox P , 0.001; log2 median ratio, 26.9) while Cytheroidea was higher in controls
(Wilcox P, 0.006; log2 median ratio, 2.45). There was a striking increase in abundance of
Acoelomorpha (C, 0.58%6 0.93%; M, 6.90%6 5.55%, Wilcox P , 0.04, FDR corrected) in
marina bays, except for M7 (0.05%6 0.06%, M7 replicates, Wilcox P. 0.07).

Environmental effects on community structure. The canonical correspondence
analysis (CCA) (Fig. 5) showed topographic openness (log10 of simplified topographic
openness [Log.Ea], F =1.94, P = 0.005, R2adj = 0. 11), wave exposure (surface wave ex-
posure [SWM], F=1.19, P = 0.005, adjusted R2 [R2adj] = 0. 20), and total phosphorus (TP)
(F = 1.18, P = 0.005, R2adj = 0. 25), number of berths per hectare (Berths.ha) (F=0.43,
P = 0.005, R2adj = 0. 17) to be the best predictors of bacterial community structure,
explaining 47.9% of the variability. Similarly, meiofauna community composition was
best explained by topographic openness (Log.Ea, F=4.4, P = 0.005, R2adj = 0.054), water
surface area of the bays (water surface of bay [Bay.area], F=2.1, P = 0.005, R2adj = 0.071),
number of berths per hectare (Berths.ha, F=1.9, P = 0.005, R2adj = 0.085), wave exposure
(log10 of simplified wave model [log SWM], F=1.5, P = 0.02, R2adj = 0.093) and total

FIG 4 Heat tree illustrating relative abundances for microbial communities (A) (from domain/phylum to order level) and metazoan communities (B) (from
phylum to family level) between control and marina bays across all bays. Nodes represent taxa used to classify ASVs, and subtaxa are depicted in their
branches. The node size indicates the number of unique ASVs within that taxon, and node colors correlate with the relative abundance of organisms. The
intensity of the colors is relative to the log2 ratio of difference in median proportions (green for control and purple for marina bays). Nodes that are
colored in shades of either purple or green represent significant differences in taxon abundances, which were obtained through a Wilcox rank sum test
(P , 0.05) followed by a Benjamini-Hochberg (FDR) correction for multiple comparisons.
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phosphorous (F=1.45, P = 0.035, R2adj = 0.1), accounting for 63.1% of the variability
(Fig. 5B and Table S6).

DISCUSSION

In this study, we investigated the effects of recreational boating activity and other
environmental predictors on micro- and meiobenthic communities. First, there was a
surprisingly higher metazoan Shannon alpha diversity in marinas than control bays,
suggesting a positive effect from recreational boating activity on this metric.
Differences in relative abundances of several meiofauna taxa between marina and con-
trols could be linked to lower cover of vegetation (10, 15) and higher suspended or-
ganic matter (40). Second, relative abundances of Betaproteobacteria were higher in
marina bays, in line with previous evidence of their prevalence in ecosystems exposed
to chemical pressure (41, 42). Third, compared to other variables, topographic open-
ness appeared to be a strong predictor of both metazoan and bacterial community
structure, which is in accordance with its clear effect on macrobiota in this system
(43–46). Further visualization and nested analysis of the CCA data showed significant
correlations in metazoan community structure compared to bacteria, with the number

FIG 4 (Continued)
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of berths, topographic openness, wave exposure, and total phosphorous concentration
driving the differences.

Contrasting alpha diversity between bacterial versus metazoan communities.
In contrast to our first hypothesis, high boat traffic had no significant impact on the
alpha diversity of the bacterial communities. Moreover, marinas had a higher total
number of metazoan taxa than the reference bays. Previous work has showed that dis-
turbed marine vegetation habitats (10, 30), chemical pollutants and sediment resus-
pensions after boating events (47, 48) had a negative impact on the diversity of
benthic meiofauna. For instance, the resuspension of sediment has been shown to
increase benthic oxygen consumption (49), negatively affecting nutrient cycling and
productivity in surface sediments and its microfauna (50, 51). Here, however, we found
a higher species richness of metazoan communities in the high traffic sites (marinas
than in control bays). Possibly, the “intermediate disturbance hypothesis” (52) could
help explain these trends; the level of multiple stressors induced in the marinas was
moderate, resulting in a reduction of the density of dominant metazoan taxa and thereby
favoring the coexistence of competitive and opportunistic taxa. In fact, we found a decrease

TABLE 1 Selection of bacterial and metazoan taxa of interest where relative abundances
differed between control and marina bays

Organism and taxa

Relative abundance (%) (mean± SD)a
Log2 median
ratioControl bays Marina bays

Bacteria: class, order, and family
Gammaproteobacteria
Betaproteobacteriales 29.186 5.37 38.316 8.82 20.72
Burkholderiaceae 8.676 3.87 12.456 4.14 20.8
Gallionellaceae 0.076 0.09 0.486 0.43 210
Hydrogenophilaceae 11.786 7.17 15.866 4.52 20.9
Methylophilaceae 0.236 0.14 0.106 0.11 0

Methylococcales
Methylomonaceae 0.146 0.16 0.436 0.29 210

Bacteroidetes
Flavobacteriales 20.756 10.27 15.856 4.24
Cryomorphaceae 0.176 0.34 0.346 0.38 210
Crocinitomicaceae 0.156 0.19 0.646 0.24 210

Ignavibacteriales 12.416 1.86 14.756 4.75 0
Sphingobacteriales 0.906 0.48 1.856 0.30 21.6

Meiofauna: phylum, order,
class or family

Panarthropoda 71.966 10 64.676 16
Copepoda
Podoplea 0.126 0.2 0.466 0.31 21.74

Ostracoda
Cypridoidea 1.526 1.2 15.266 4.8 26.9
Cytheroidea 44.66 14.9 16.036 6.4 2.45

Nematoda 8.676 3.9 13.16 7.4
Chromadorea
Xyalidae 1.46 2 2.696 0.8 22.12
Axonolaimoidea 1.816 1 3.196 4 22.68
Leptolaimoidea 0.566 0.4 0.816 1 10

Xenacoelomorpha
Acoelomorpha
Acoela 6.906 5.5 0.586 0.93 210

Mollusca
Gastropoda
Hydrobiidae 1.986 3 0.096 0.08 10

Gastrotricha
Chaetonotida
Chaetonotidae 1.796 1.1 3.826 0.7 22.12

aThe relative abundance for each type is given as a percentage (mean6 standard deviation) and amended with
the log2 median ratios used to highlight differences in Fig. 4.

Small Boats and Benthic Microbiota

September/October 2021 Volume 6 Issue 5 e00127-21 msphere.asm.org 9

https://msphere.asm.org


FIG 5 Canonical correspondence analysis (CCA) showing the relation of the bacterial (A) and metazoan (B) community structure to environmental
variables. Only the variables that had significant association with the communities (P # 0.05, Mantel test and stepwise variable selection to find

(Continued on next page)
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in the relative abundance of ostracods in the marina sites compared to the controls (see
Fig. S2 in the supplemental material). Ostracods often dominate meiofauna biomass in the
Baltic Sea sediments (53) and consume a large fraction of newly deposited organic matter
(54, 55). Moreover, the ability of ostracods to acquire food resources is sensitive to changes
in disturbance and intense interspecific competition (56). It is possible that similar mecha-
nisms explain the patterns observed in our study, where a reduction in relative abundance
of ostracods in marina bays may have allowed for the coexistence of a larger number of
meiofaunal taxa. However, we did not detect a significant difference in meiofauna evenness
between the marinas and controls. This diversity metric was on average lower in the marina
bays but with high variation (Fig. S3). Furthermore, high boating activity can lead to increased
input of organic matter derived from anthropogenic sources (e.g., from release of anti-fouling
compounds or fuel leakage) into the sediment along with the physical damage (57, 58). Also,
overall thinning of submerged macrophytes (59, 60) could create new niches for opportunistic
species to colonize and possibly populate these systems (61), thereby resulting in a significant
change in the alpha diversity of metazoan.

In contrast to metazoan overall species richness, there was no significant difference
in alpha diversity of the bacteria between the marina and control bays. Considering
“size-plasticity” (62) compared to meiobenthic species, bacteria are likely to be more
metabolically plastic and therefore less influenced by shifting environmental condi-
tions (37). The idea that bacteria are more plastic than metazoans when confronted
with similar environmental disturbances has been supported by other studies. For
example, Montagna et al. (63) demonstrated that many bacterial taxa overlapped
across plant habitats subjected to different disturbance levels, while metazoa partially
overlapped in the habitat experiencing the lowest disturbance level. As such, bacterial
assemblages in each bay pair may be more tolerant to the levels of boat traffic studied
here than metazoa.

Bacterial and metazoan community structure. Our second hypothesis, that com-
munity composition would differ taxonomically between high and low boat trafficked
areas, was supported by our data in both bacterial and meiofauna communities.
Although bacterial community structure differed between marina and control bays, it
highlighted a stronger link between morphometric similarities of the bays and the
benthic metazoan communities as indicated by the community relationship with envi-
ronmental variables (Fig. 5). Differences in community composition between marina
and control bays were more pronounced for meiofauna than bacterial communities.
For meiofauna, community composition analyses showed slight clustering both by
type (control/marina [Fig. 3B]) and pairs (Table 2), which was reflected in the distribu-
tion of the relative abundance among nematode classes. A clearer separation in com-
munity structure between paired bays for metazoans, than for bacteria, suggests that
environmental filtering related to the boating disturbances strongly impacted metazo-
ans (64). A constrained CCA analysis showed that topographic openness, water surface
area, number of berths, and total phosphorus contributed to substantial variation in
the metazoan communities between the marina versus control bays (Fig. 5A; see also
Table S6 in the supplemental material).

In contrast to meiofauna, there was no clear trend in the community-environment
relationship for bacteria. Most of the variables measured in this study were related to
bay morphometry; this finding therefore further supported our early suggestion that
bacteria were more plastic than metazoa when confronted with recreational boating
traffic. The relationships between bacterial community and environmental conditions
are likely complex and depend on the spatial scale (65). Both local scale factors (abiotic

FIG 5 Legend (Continued)
the best explanatory variables) are displayed in the figure. Plotted points represent replicates for each bay and are colored by type (green for
control and purple for marina bays) and shaped by bay pairs. Arrows indicate the direction and magnitude of significant variables associated
with bacterial and metazoan community structure (see Table 2 and Table S6 in the supplemental material). Abbreviations: Bay.area, water surface
of bay (in hectares); Log.Ea, log10 of simplified topographic openness; Log.SWM, log10 of simplified wave model (in square meters per second);
Log.TP, log10 of total phosphorus (in micrograms per liter).
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and biotic interactions) and regional scale factors (dispersal-related processes) are im-
portant determinants for a taxon’s distribution and abundance (65–67). Thousands of
bacteria can be transported during boating events (68); presumably, such passive dis-
persal strongly influenced the assembly of bacterial communities to a greater extent
than the cumulative effects of environmental factors studied here. Given the short gen-
eration time of bacteria (69), their regrowth within hours to days after environmental
perturbation might have enabled them to recolonize the boating disturbed sites.

Differences in bacterial taxonomic composition between bays. Despite high re-
semblance in bacterial community composition between marinas versus controls, we
identified a number of taxa whose relative abundances were significantly higher in the
marinas than in the control bays. Across all marina bays, we detected an increase in
the abundance of bacteria affiliated with Hydrogenophilaceae and Burkholderiaceae
previously described to tolerate high concentrations of organic contaminants. Both
families have been associated with hydrocarbon pollution (41, 42, 70) and may have
been favored by an increase in organic pollutants released from recreational motor
boats. Similarly, Gemmatimonadetes, while showing only a total increase of 0.11% com-
pared to controls in our data, have been found to be present and persistent in areas
contaminated with polyaromatic hydrocarbons (PAHs) (71) and in bisphenol A (BPA)-
degrading sediments (72). Therefore, it is possible that these differences are related to
a potential higher input of organic content associated with boating (e.g., fuel leakage,
anti-fouling compounds, etc.), and/or the use by bacteria of micropollutants as carbon
sources (73–76). However, such potential effects of contaminant release related to
boating activities on microbial communities should be investigated in more-controlled
conditions in future studies.

Relative abundance of meiofauna in response to high boating activity. On per-
taxon abundances, there was a strikingly higher mean abundance of Acoela flatworms
(Convolutidae) in marina bays and a strikingly higher mean abundance of ostracods,
particularly family Cytheruridae, than in controls. These differences in relative abun-
dances can be linked to disturbance of preferred habitats. Marina bays in our study
have previously been shown to harbor less dense submerged macrophyte canopies
than control bays (10). Again, increased disturbance has the potential to reduce ostra-
cod’s capacity to acquire food resources (56) and diminishes the integrity of their pre-
ferred habitats (77, 78). However, one can expect different responses to perturbations
within ostracods. For instance, Cypridoidea were found in higher abundances in mari-
nas, while members of the same order of Podocopida, Cytheruridae, showed the oppo-
site trend. While Cytheruridae are indicators of oligo/mesotrophic and oxygenized con-
ditions, Cypridoidea (particularly Candonidae) has been found dominant under
sediment physical disturbance (56), it is possible that the physical disturbance as a
result of boating activity could favor Candonidae in marina bays. Conversely, the flat-
worm Acoelomorpha may be favored in marinas due to the resuspension of algae and

TABLE 2 Environmental predictorsa

Bay Type Pair Veg S.sub Bay.area Log.Ea Log.SWM Log.D Log.TP Log.TN Sal Berths.ha
C3 Control Pair 1 116.17 5.67 5.57 0.49 3.79 1.27 20.01 1.37 6.43 1.61
M3 Marina 46.67 3.83 8.52 0.28 3.27 1.24 20.27 1.28 7.3 45.92
C4 Control Pair 2 69.4 4.8 10.15 0.24 3.58 1.26 20.26 1.28 5.7 0.3
M4 Marina 63.57 3 9.74 0.32 3.3 1.17 20.42 1.27 5.4 16.42
C5 Control Pair 3 63.5 2.5 3.37 22.49 2.95 1.25 20.24 1.44 5.3 0.59
M5 Marina 28.83 2.5 2.07 21.54 3.14 1.12 0.24 1.5 5.5 18.84
C6 Control Pair 4 81.83 3 1.75 20.31 4.62 1.06 20.1 1.35 6.35 0
M6 Marina 59 2.8 3.4 20.3 4.63 1.12 0.02 1.33 6.1 13.25
C7 Control Pair 5 64.33 6 3.13 20.19 3.13 1.23 20.05 1.34 6.6 0
M7 Marina 78 4.8 3.02 20.35 3.06 1.15 20.16 1.29 6.6 8.27
aVariable abbreviations: Veg, percentage of cumulative vegetation; S.sub, total number of submerged vegetation species; Bay.area, water surface of bay (hectares); Log.Ea,
log10 of simplified topographic openness; Log.SWM, log10 of simplified wave model (square meter per second); Log.D, log10 of water depth (decimeter); Log.TP and Log.TN,
log10 of total phosphorus and total nitrogen (micrograms per liter); Sal, salinity (practical salinity units [PSU]); Berths.ha, number of berths per water surface area of a bay
(number per hectare).
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stimulated scavenging from perturbation (53). Among nematodes, three families
showed clear variations between the sampled bays: Xyalidae and Axonolaimidae abun-
dances were found to be higher in marina sediments, whereas Leptolaimidae were
notably lower than in controls. Leptolaimidae, while reported to be considerably toler-
ant to a variety of chemical stressors (79), has been reported to prefer vegetated sedi-
ments (80), as observed in this study. Xyalidae, however, has been linked to more
unstable conditions (e.g., high hydrodynamic conditions) (81). It appears that these
larger changes in diversity and composition of meiofauna in comparison to bacteria
between bays with high boating versus less boating support our third hypothesis.

DNA metabarcoding has been shown to be effective for characterizing the taxonomic
structure and distribution patterns of both microbial (82, 83) and (micro)eukaryotic assemb-
lages (38, 84–86). However, this widely used approach has its limitations (87). rRNA genes are
routinely used to identify the presence of micro- and macroorganisms in environmental sam-
ples, but DNA-inferred data does not distinguish between active, dormant, or dead (residual
DNA) organisms. Future work using both DNA and RNA approaches would provide better
insight here. Monitoring the dynamics and succession of active benthic metazoan commun-
ities could provide more accurate information to what extent the benthic organisms are
impacted in ecosystems subjected to boating.

Conclusions. We identified several main drivers of microbial and meiofauna diversity in
shallow coastal habitats of the Baltic Sea. While bays with high recreational boating showed a
minor but significant difference in benthic meiofauna and microbial community structure
compared to controls, other environmental predictors, like the openness, bay area, and wave
exposure, were driving most of the differences. Variability in community composition of bacte-
ria and meiofauna suggest that deterministic (i.e., environmental selection) and stochastic (i.e.,
passive dispersal) processes differently influenced the assembly of bacterial and meiofauna
communities in bays exposed to boating disturbances. While adding to previous reports that
showed negative impacts of boating activity on aquatic organisms (10, 11, 19), our results pro-
vide the first step toward understanding the responses of sediment bacteria and metazoan
communities to recreational boating. This could aid in guiding management efforts aimed at
protecting and managing biodiversity in coastal ecosystems and to consider overall openness
and wave exposure. Considering the vital role of bacteria and micromeiofauna in benthic eco-
system function (88–92), prolonged disturbances of shallow coastal habitats that change
benthic ecosystem structure are likely to impact the functioning of these ecosystems. Such
impacts should be considered when managing current and future mooring developments
and avoid further degradation of coastal shallow habitats.

MATERIALS ANDMETHODS
Study site and survey design. A field survey was conducted along the Swedish coast of the central

Baltic Sea in late summer (August and September) 2014, the period when aquatic vegetation reaches its maxi-
mum cover. From this survey (10), a selection of 10 coastal bays situated ;20 km apart along an ;200-km
stretch of the central Baltic Sea was made, covering small gradients in recreational boating activity, topographic
openness, and wave exposure as well as nutrient loading (Fig. 1). Five bays with high levels of boating activity
were selected (hereafter “marinas”). Marinas were defined as shallow inlets with a high number (.8) of berths
allocated for permanent mooring of small (below 12 m) boats in use during the boating season in Sweden
(spring to autumn). The number of berths was standardized to water surface area of the bay. Marinas were
paired with five “control” bays with low levels of boating activity (,2 mooring berths/ha) but matched the ma-
rina bay in its morphometry and abiotic conditions as closely as possible (10) (Table 2). The average number of
berths (moorings) per bay was used as a measure of anthropogenic pressure from recreational boat traffic. The
number of berths was obtained from counting during the field survey, as well as analyzing satellite images by
Google Earth Pro (v 7.1.5.1557) and the Swedish mapping, cadastral and land registration authority (METRIA,
Lantmäteriet; www.metria.se) for the year of field sampling (2014). All types of berths were counted, including
berths on jetties, piers, docks, boathouses, and permanent mooring buoys. The number of berths approximates
the actual boating pressure at the inlets, as the average boat size in the marinas was used to approximate the
size of a berth when it was empty and the size was uncertain (10). Actual boat traffic was not measured but is
here assumed to be closely positively related to increasing number of berths in bays.

The five marina bays were chosen to form a pressure gradient, from small boat harbors with few
berths, to extensive marinas with a high number of berths. Compared to the bay selection in the field survey,
with seven marina/control pairs, the twomost northern marina/control pairs were less morphometrically similar
and were thus excluded from this study. Within each bay, six or seven stations were sampled with one replicate
per station (n=61).
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Sediment samples were collected between August and early September 2014. At each station, sur-
face sediment was sampled by a snorkeler at 0.5- to 3-m water depth, using an open 20-ml syringe (2-
cm diameter) to a sediment depth of 2 cm. Samples were then kept on ice and in the dark for ca. 6 h
until arrival at laboratory where they were kept frozen at –20°C until DNA extraction. The percent cover
of aquatic vegetation species within a 5-m radius (;80 m2) was visually estimated, and the cumulative
percentage cover of all vegetation (“Veg” estimates can .100%) and total number of submerged vege-
tation species (“S.sub,” excluding filamentous algae) was calculated. At each station, water temperature
and salinity were measured using a Multi 340i voltmeter (WTW, Germany). Water samples were collected
at 0.5-m depth between 4 and 7 p.m., frozen, and analyzed for total nitrogen (TN) and total phosphorus
(TP) concentration measurements (in micrograms per liter) using segmented flow colorimetric analysis
with the Alpkem FlowSolution IV system from OI Analytical.

Water exchange was estimated as simple topographic openness (abbreviated as Ea), using the for-
mula: Ea= 100�At/a, where At is the smallest cross-section area of a bay connected to the open sea
and a is the water surface area of the bay (93). Water surface area of the bays (a) was estimated from sat-
ellite images in Google Earth Pro. Cross-section area (At) was calculated as L� d, where L is the length of
the bay opening (measured from satellite images in Google Earth Pro) and d is its depth (94). The topo-
graphic openness functions as a proxy for surface-water retention time (R2 = 0.97) (93, 95), which affects
abiotic variables such as water temperature, salinity, and particle sedimentation, and in turn the biologi-
cal communities (43–46). As some of the surveyed bays are incorporated in an array of bays and sounds,
the smallest values of At, facing the open sea, of these archipelago areas were used (23). Thus, the area
used to calculate the water exchange may be larger than the actual area sampled, and the value of At
facing the sea may be derived from water bodies just outside the actual bay sampled.

Surface wave exposure (here abbreviated as SWM) was estimated for each bay using the simplified
wave model (96, 97). SWM (square meter per second) for a central point in each bay was calculated
using a geographic information system (GIS)-based wave model, based on averages of fetch calculations
from 16 compass directions with wind conditions over a 5-year period and accounting for diffraction
effects (96, 97). Diffraction effects are simulated by a spreading algorithm, and fetch is an estimate of
the distance over which waves can collect wind energy before reaching a site.

Extraction of sediment eDNA. DNA from each sample (n= 61; 6 or 7 samples per bay) was directly
extracted from 8 to 9 g of sediment samples using DNEasy PowerMAX soil kits (Qiagen) following the
provided protocol but modified to allow for four simultaneous extractions on a single vortex. The quality
of extracted DNA yields was assessed using a Nanodrop spectrophotometer (Thermo Scientific) and
stored at220°C until library preparations.

Library preparations. Two libraries targeting the 16S and 18S rRNA genes were prepared, following
the dual-index amplification methods adapted from previous work (98, 99). The hypervariable region V3-V4
of the 16S rRNA gene was amplified using the 341F/805R primer pair (82) for bacteria, and the 18S rRNA
gene was amplified using the TAReuk454FWD1/TAReukREV3 primer pair (100) for eukaryotes (see Table S1
in the supplemental material). Briefly, the first round of PCR was carried out using primers amended with
Illumina Adapter sequences (Table S1) to amplify the targeted 16S and 18S genes. The thermal program for
both the 16S and 18S rRNA gene amplification in the first round used an initial denaturation at 98°C for 30 s,
followed by 12 cycles, with 1 cycle consisting of denaturation at 98°C for 10s, annealing at 50°C for 30 s, and
extension at 72°C for 30 s. All PCRs for the library preparation were carried out on a Bio-Rad T100 thermal
cycler (Bio-Rad Laboratories) using Q5 HS (high-sensitivity) High-Fidelity Master Mix (New England BioLabs),
following the manufacturer’s instructions. First-round amplicons were cleaned by adding 0.1 ml exonuclease
I (New England BioLabs) and 0.2 ml thermosensitive alkaline phosphatase (Promega), incubating for 15min
at 37°C, followed by 15min at 74°C to terminate the reaction. The second round of PCR was carried out using
indexing primers described in previous work (98) to equip each sample with a unique combination of for-
ward and reverse index sequences. The thermal profile for the second round was as follows: 3min at 95°C,
15 cycles with 1 cycle consisting of 30 s at 95°C, 30 s at 55°C, and 30 s at 72°C, and a final elongation of
5min at 72°C. The final amplification products were then cleaned using Agencourt AMPure XP magnetic
beads (Beckman Coulter). The concentrations of all amplicons were measured using a Qubit 2.0 Fluorometer
and the double-stranded DNA (dsDNA) BR assay kit (Invitrogen) before samples were standardized and
pooled. The 2� 300bp paired-end sequencing was conducted on an Illumina MiSeq V3 platform at the
National Genomics Infrastructure (NGI) in Stockholm, Sweden (SciLifeLab, Stockholm, Sweden).

Sequence processing. Quality filtering and chimera removal were done using the DADA2 pipeline
(101) in R (102). Forward and reverse paired-end reads for both data set (16S and 18S) were truncated
and trimmed using the following parameters: truncLen = c(290,210), maxEE = c(2), trimLeft = c(8),
minFoldParentOverAbundance=4 and allowoneoff = TRUE. Taxonomic assignment for 16S rRNA amplicon
sequence variants (ASVs) was carried out using the SILVA database (r.132) (103) and the DECIPHER package
(v 2.10.2) (104). Singletons (i.e., ASVs occurring only once across samples) were removed from both data set.
After taxonomy was assigned, the relative abundance of each taxon was calculated from the proportion of
that taxon relation to a total count of a particular sample.

For eukaryotic ASVs, sequences were aligned against the National Center for Biotechnology Information
(NCBI) NT database using BLAST. The output file was imported to MEGAN (v 6.14.2) (105), and hits for NCBI NT
association numbers were linked to taxonomic classifications. Sequences affiliated with Metazoa in the taxo-
nomic description were extracted from the 18S data set and analyzed further as relative abundances. The raw
sequences/data set can be found on the NCBI repository (BioProject accession no. PRJNA694832).

Data analyses. Alpha diversity of the 18S rRNA and 16S rRNA data sets was obtained as observed
richness (total count of ASVs observed), Chao1 (estimator of species richness based on abundance), and Shannon
diversity (estimator of both species richness and evenness) (106) as implemented in the phyloseq package
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(v1.24.2) (107). A dissimilarity matrix was generated on data sets using the proportional read counts with Bray-
Curtis distance, which was then used to create a nonmetric multidimensional scaling (NMDS) ordination plot.

As meiofauna are known to respond quickly to physical and chemical disturbance (108, 109) and to
degradation of macrophytes (30), we directed our focus to bacteria and meiofauna by filtering for metazoans in
the 18S data set. For both bacterial and meiofauna communities, differences in alpha diversity between marinas
and control bays were investigated with mixed effects models using the lme4 package (110). Marina/control type
was set as a fixed factor, and bays nested in marina-control pairs were set as random factor, using stations as rep-
licates. P values were calculated using the lmerTest package (111) and the Satterthwaite’s approximation for de-
nominator degrees of freedom. Pseudo-R2 was parsed into variance related to the fixed factors (marginal R2) and
variance related to the fixed and random factors (conditional R2) using theMuMIn package (112).

To visualize differences in metazoan and bacterial relative abundance between marina and control
bays, an NMDS ordination plot using Bray-Curtis distance dissimilarity matrix. This was complemented
by permutational multivariate analysis of variance (PERMANOVA), carried out to assess the effect of bay
types on the bacterial and meiofauna community structures, we used type (two levels, control and ma-
rina) as a fixed factor and pair as a nesting variable with the adonis function in the vegan package (113).

Differences in the relative abundances of taxa between marina and control bays were analyzed for
phylum, class, and order levels separately using the proportional read counts with the phyloseq (107) and
metacoder packages (114). A heat tree was used to illustrate taxonomic affiliation and the degree of abun-
dance difference. Within the heat trees, differences in relative abundance of taxa between control and ma-
rina bays were obtained from log2 median proportion values, and significant differences were tested with
a Wilcox test using the vegan package and highlighted after false discovery rate (FDR) corrections.

Multivariate relationships between the measured environmental predictors (Table 2) and meiofauna and
bacterial community composition were explored using canonical correspondence analysis (CCA) (115) with the
cca function from the vegan package (113), while constraining the permutation residuals of the bacterial and
meiofauna community data to comparisons between pairs of marina and control bays. Community composi-
tions were calculated using the Bray-Curtis dissimilarity on square root-transformed relative abundances, while
environmental predictors were log transformed before analysis. Environmental predictors significantly affecting
bacterial and meiofauna community composition were first selected based on forward selection with the func-
tion ordistep in vegan. We then used an analysis of variance (ANOVA) to assess the significance of constraints
with a linear model. Only significant variables (P, 0.05) were included in the CCA triplots.

Data availability. The FASTQ files and associated metadata are publicly available at the National
Center for Biotechnology Information under the accession number PRJNA694832.
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