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The study of the intestinal microbiome is an evolving field of research that includes
comprehensive analysis of the vast array of microbes – bacterial, archaeal, fungal, and
viral. Various gastrointestinal (GI) diseases, such as Crohn’s disease and ulcerative colitis,
have been associated with instability of the gut microbiota. Many studies have focused on
importance of bacterial communities with relation to health and disease in humans. The
role of viruses, specifically bacteriophages, have recently begin to emerge and have
profound impact on the host. Here, we comprehensively review the importance of viruses
in GI diseases and summarize their influence in the complex intestinal environment,
including their biochemical and genetic activities. We also discuss the distribution of the
gut virome as it relates with treatment and immunological advantages. In conclusion, we
suggest the need for further studies on this critical component of the intestinal microbiome
to decipher the role of the gut virome in human health and disease.
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INTRODUCTION

The human gut virome consists of the total population of viruses and their genomes that are found
throughout the gastrointestinal tract. It is estimated that the human intestines harbor about 35 –
2800 active bacterial viruses in 1g of feces (Kim et al., 2011; Manrique et al., 2016). The intestinal
virome includes both bacteriophages (hereafter referred to as phages) and eukaryotic viruses.
Maintaining homeostasis in the complex intestinal microbial environment plays a significant role in
improving the health status of the host which could otherwise contribute to the development of
disease conditions (Weinbauer, 2004). Major clinical conditions such as diabetes and Crohn’s
diseases have been associated with the disruption in the composition of commensal flora of the gut
(dysbiosis) (Frank et al., 2007; Larsen et al., 2010; Perez-Brocal et al., 2013). Dysbiosis leads to
dynamic changes in the gut community as well as phage activities (Flores et al., 2011; Ogilvie and
Jones, 2015). Bacterial populations in the gut are controlled by various factors ranging from the host
dietary content to the immune system and the predatory effects of phages. For example, 10-80% of
total bacterial death in nature can be attributed to phage attack, hence signifying their roles in
microbial community (Weinbauer and Rassoulzadegan, 2004). Further, phages are involved in the
lateral transfer of genes between bacteria and serve as a determinant for genetic variability
(Canchaya et al., 2003). Several recent studies have reported the role the virome, particularly
phages, plays in the development of certain clinical conditions, including bowel disorders and
cancer (Frank et al., 2007; Tong et al., 2013; Brooks and Watson, 2015). In this review, we provide a
comprehensive compilation of the role that the virome plays in GI health and diseases.
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GRAPHICAL ABSTRACT |

Spencer et al. Human Intestinal Viral Communities
THE VIROME DEVELOPMENT

Microbiome (virome inclusive) composition varies with age,
dietary intake, host immunological status, drug intake, and
environmental factors. Major bacterial phyla that dominate the
gut at the early stage of infancy include, Firmicutes, Bacteroidetes,
Actinobacteria, Verrucomicrobia, Proteobacteria and Fusobacteria.
Phage-bacteria relationship at this stage is inversely related where
an increase in phage density is observed with low bacterial
population and vice-versa. This relationship indicates that the
prey (bacteria) distribution influences the predator’s (phage’s)
diversities (reversed predator-prey dynamics) (Lim et al., 2015).
The Global Virome Database indicates that 97.7% of the human
gut virome are phages, 2.1% are eukaryotic viruses, and 0.1% are
archaeal viruses; 88% of these phages have yet to be classified by
the International Committee on Taxonomy of Viruses (Gregory
et al., 2020).

The dynamism of human virome progresses from childhood
to adulthood. The colonization of the human intestine by
microbes starts right after delivery with usually very low
populations of microorganisms consisting mainly of bacteria
(Jimenez et al., 2008). Gregory et al. determined that infants (0-3
years) and adults (18-65 years) show higher viral richness, with
decreases for children (3-18 years) and the elderly (65+ years).
Bacteriophage richness followed this trend whereas eukaryotic
virus richness was high in infants and steadily decreased
throughout life (Figure 1) (Gregory et al., 2020).

Gut virome in neonates initially is comprised of phages which
infect the pioneer bacteria, followed by eukaryotic virus
diversification associated with environmental exposures,
particularly breastmilk (Liang et al., 2020). The immediate
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
environment contributes to the diversity of the gut phage
among the neonates (Huurre et al., 2008; Lim et al., 2015).
Other studies in children (ages 0 to 3 years) have reported the
predominance of DNA phages from the Caudiovirales order,
mostly comprising of Myoviridae, Siphoviridae and Podoviridae
family (Reyes et al., 2015). High phage abundance of
Caudiovirales, and to a lesser extent of Microviridae, in this
age group is attributed to the early colonization of the gut by
Bacteroides, Proteobacteria and Actinobacteria bacteria (Reyes
et al., 2010; Lim et al., 2015). Less abundant DNA eukaryotic
viruses in the Anelloviridae and Herpesviridae families have also
been detected in infant stool (Breitbart et al., 2008). The single-
stranded (ss) DNA viruses of the Anelloviridae family
(particularly Torque Teno Virus species) has been shown to be
the most abundant in the few months after birth (Lim et al.,
2015). Prevalence of Anelloviridae is directly associated with host
immunosuppression, and pediatric febrile illness (McElvania
TeKippe et al., 2012; De Vlaminck et al., 2013). This early
onset of DNA viruses is attributed to immature host immune
system, and its subsequent reduced load correlates to
development of a fully competent immune response (Fulci
et al., 2021).

Recently, highly divergent phages have been identified among
healthy children, for instance, CrAssphage which are associated
with Bacteroides (Dutilh et al., 2014). CrAssphages richness
showed an overall upward trend with age; are abundant and
persistent in the human gut virome, and functions to maintain a
stable population of both resistant and sensitive bacterial hosts
(Figure 1) (Gregory et al., 2020; Shkoporov et al., 2021).
Metagenomic analysis of the eukaryotic viruses revealed that
the diversities of the viral population are influenced by the
March 2022 | Volume 12 | Article 836706
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geographical location and the health status of the host. A study
on Amazonian children demonstrated the abundance of
Picornaviriridae and Caliciviridae families (Siqueira et al.,
2018). Other eukaryotic viruses recovered in the healthy
human gut include Circoviridae, Anelloviridae, Reoviridae and
Astroviridae (Altan et al., 2018). Although Breibart et al. claimed
that vertical transmission of the ssDNA eukaryotic viruses,
particularly Anelloviridae, occur during vaginal delivery from
mother to child; factors that promote their increased abundance
following first few months after delivery are unknown (Breitbart
et al., 2008). Further investigations are required to identify the
mechanism involved in this colonization. Furthermore, the role
of internal factors such as peristalsis, immunity, drug regimen
etc., on virome composition need further assessment due to their
importance in gut diversity (Mackie et al., 1999).

Progressively, the microbial community in the infant gut
undergoes a series of developmental shifts following the dietary
change from liquid to solid (Sharon et al., 2013). These
developmental shifts lead to the emergence of a balanced
microbiome that is stable compositionally and functionally
(Mackie et al., 1999; Minot et al., 2013). At this stage, the most
commonly identified bacteria in healthy adult subjects are
Bacteroidetes and Firmicutes (Mackie et al., 1999) and their
dominance subsequently affects the virome composition (Minot
et al., 2013). The heterogeneity in gut virome is also attributed to
phages with single-stranded DNA, specificallyMicroviridae due to
high mutations rates (Minot et al., 2013). Manrique et al. analyzed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
DNA phage in healthy adult stool and reported that the gut
composition is made up of Podoviridae, Siphoviridae, Myoviridae,
andMicroviridae families. Additionally, Zhang et al., reported the
abundance of Virgaviridae viruses of plant origin as the common
eukaryotic RNA virus in the gut of the healthy adults suggesting
dietary influence (Zhang et al., 2006). Pepper mild mottle virus
(PPMV) was predominantly detected among these families
whereas less common RNA viruses identified included maize
chlorotic mottle virus (Tombusviridae), oat chlorotic stunt virus
(Tombusviridae), grapevine asteroid mosaic virus (Tymoviridae),
and panicum mosaic virus (Tombusviridae) (Zhang et al., 2006).
The stability of the virome in the adult could contribute to the
positive health status of the human host, however, a disturbance of
the viral community may result in gut microbiome dysbiosis
(Flores et al., 2011).
THE VIROME AND THE HUMAN
HOST INTERACTION

The human body serves as a reservoir of many microorganisms
including viral communities (Weinbauer and Rassoulzadegan,
2004; Pride et al., 2012; Tremaroli and Backhed, 2012).
Metagenomic shotgun sequencing provides a platform to
investigate the genetic potentials of indigenous viral
community and aid in the identification of distinct new phages
(Dinsdale et al., 2008; Perez-Brocal et al., 2013; Bibby,
A B

C D

FIGURE 1 | Viral richness changes with age in healthy humans across four age categories: Infant (0-3 years), Child (3-18 years), Adult (18-65 years) and Elderly (65+
years). (A) All viruses by age, (B) bacteriophages by age, (C) eukaryotic viruses by age, (D) CrAssphages by age. Viral richness quantified as the median number of
viral populations per base-pair sequenced for each age category based on results from Gregory et al., 2020.
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2014).The most common human gut phages are grouped into
three main families based on their tail structure: a complex
extensive-tailed Myoviridae, long non-extensive tailed
Siphoviridae, and short non-extensive tailed Podoviridae
(Veesler and Cambillau, 2011). These are double-stranded
DNA phages that belong to Caudovirales order and account
for approximately 95% of the bacteriophages (Maniloff and
Ackermann, 1998). Single-stranded DNA phage families
including Microviridae and Inoviridae have also been described
(Kim et al., 2011; Szekely and Breitbart, 2016; Creasy et al., 2018).
However, metagenomic studies that focus on the RNA phages in
the human gut are relatively few (Zhang et al., 2006; Manrique
et al., 2017). Additional studies on the human gut virome have
revealed that diverse genotypes of phages stably reside and play a
distinct role in maintaining the host health (Minot et al., 2012;
Abeles and Pride, 2014). Heterogeneity in the viral composition
in other body sites such as the phages detected in skin surfaces,
have also been described (Oh et al., 2016). Human microbiome
compositions, including virome, are reportedly influenced by
various factors such as gender, age, environmental reservoir, diet,
human-to-human contact, immune status, and the health of the
hosts (Breitbart et al., 2008; Arthur et al., 2009; Azad et al., 2013;
Abeles et al., 2014; Hodyra-Stefaniak et al., 2015; Creasy et al.,
2018). Host sex was found to be associated with changes in
composition and diversity of the viral community, particularly in
the oral virome, likely due to hormonal effects on the bacterial
community (Abeles and Pride, 2014). Further, a comparative
study involving the analysis of lactococcal virus in infant and
adult stool samples shows an increased abundance ofMyoviridae
family probably due to change in diet (Deveau et al., 2006).
THE PHAGE IMPACTS ON ENTERIC
BACTERIA VIRULENCE

Phages play a major role in bacterial evolution and exhibit viral
tropism, which is influenced by bacterial rigidity, phage competence
and other environmental conditions (Weinbauer, 2004; Rohwer
et al., 2009; Lee et al., 2016). Phage infection may either be
deleterious or beneficial to the bacteria as a result of lateral gene
transfer within the bacteria community (Canchaya et al., 2003).
Phages may encode toxin genes which are important in the
pathogenicity of many bacteria (Gyles, 2007). The virulence effect
produced by toxin-inducing prophage is best described in the role
they play in Shiga toxin-producing Escherichia coli (STEC)
virulence. STEC is a clinically significant foodborne pathogen
which produces complications like hemolytic uremic syndrome
and may be fatal in severe cases, due to the conferred effects of
lambdoid phage encoded shiga-toxin (stx) genes (Riley et al., 1983;
Gyles, 2007). The use of antibiotics (e.g., norfloxacin) may induce
lytic cycle of stx-prophage, which can ultimately lead to fatal
morbidity in the infected individuals (Zhang et al., 2000). A
similar toxin-producing mechanism is observed in bacteria such
as Staphylococcus aureus and Vibrio cholera with toxic shock
syndrome toxin (tst) and accessory cholera exotoxin (ace),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
respectively (Trucksis et al., 1993; Ruzin et al., 2001). Phages can
also encode for virulence factors within host bacterial cells, for
instance, the temperate phage, Sopj, encodes for sopE effector
protein production which facilitates the entry of Salmonella spp.
into the host intestinal epithelium (Wood et al., 1996; Hardt et al.,
1998). Phages may also increase the pathogenicity of bacteria
directly through the virion particle structures (e.g., hyaluronidase
tightly bound to the phage) (Benchetrit et al., 1977), or by
replication and transcription of phage-encoded genes as in the
case of diphtheria toxin produced by Corynebacterium diphtheriae
(Wagner and Waldor, 2002). Faruque et al. reported a change of a
non-virulent strain of Vibrio cholera to a virulent type following
CTXPhi (filamentous) phage induction (Faruque et al., 1998). Apart
from horizontal transfer of virulence genes to non-pathogenic
strains, several studies have demonstrated that virulence genes can
also be transduced within bacterial community members. Examples
include the transfer of stx genes among the Enterobacteriacae family
members and an opportunistic bacteria,Acinetobacter haemolyticus,
via transduction (James et al., 2001; Gamage et al., 2004; Grotiuz
et al., 2006; Gorski et al., 2016). Both these bacteria cause bloody
diarrhea (James et al., 2001; Grotiuz et al., 2006).

Phages can contribute to pathogenicity in bacteria by
encoding genes which serve as disease factors. Phages of
Staphylococcus aureus, sakfC and sak42D, encode for the
immune regulator staphylokinase (sak) which can counteract
host immune responses by neutralizing antimicrobial peptides
(Nguyen and Vogel, 2016) and cause host tissue death (van
Wamel et al., 2006). Other phage-encoded substances, such as
complement inhibitors (SCIN), protein inhibitors (CHIP)
including superantigens are known to be associated with lethal
outcome of S. aureus infection (de Jong et al., 2018). Phages have
been reported to promote establishment of diseases by mediating
biofilm formation, thus increasing adhesion and resistance to
antibiotics and desiccation, of bacteria like Pseudomonas
aeruginosa and E. coli in humans with cystic fibrosis (Secor
et al., 2015). In mice, Waldor and Mekalanos demonstrated that
filamentous phage (CTXF) is involved in the entry of V. cholera
into the host’s epithelial tissue through the binding of toxin co-
regulated pili (TCP) receptor (Waldor and Mekalanos, 1996).

Another mechanism by which phages increase enteric
bacterial pathogenicity is through the transfer of genes
encoding antibiotics resistance or genes that evade the immune
system (Colomer-Lluch et al., 2011). For instance, Marta et al.,
reported that b-lactamase genes, blaTEM and blaCTX-M9 in the
S. aureus phage can be laterally transferred into environmental
isolates conferring ampicillin resistance to new S. aureus strains.
Temperate phages have also been implicated as major carriers of
transducing multi antibiotic-resistant genes among Salmonella
Typhimurium strains (Colomer-Lluch et al., 2011). A study on
the role of virome in bacterial adaptation, after antibiotic-
induced stress in animal models revealed that phage genes
undergo robust enrichment following antibiotic treatment.
Such gene enrichment could promote the production of
resistant gene against the administered drug in phages and
their subsequent transfer to the bacterial community, thereby
acting as a reservoir for resistant strains (Modi et al., 2013).
March 2022 | Volume 12 | Article 836706

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Spencer et al. Human Intestinal Viral Communities
THE VIROME AND ENTERIC DISEASES

The eukaryotic viruses that are involved in enteric infections are
known as enteric viruses. In infected subjects, about 106 – 108

VLPs of eukaryotic viruses are usually shed in each gram of stool
(Farthing, 1989). The most frequently detected eukaryotic viruses
in acute gastroenteritis are Reoviridae (rotavirus), Picornaviridae
(enterovirus, echovirus etc.), Adenoviridae (adenovirus) and
Caliciviridae (norovirus) (Wilhelmi et al., 2003; Finkbeiner et al.,
2008a). Phages also play a significant role in the study of intestinal
diseases in several ways by: (1) acting as a major determinant of
virulence in enteric infections (2) associating with dysbiosis in gut
during mild and chronic inflammatory bowel disease (IBD) (3)
being employed as a therapeutic regimen for many human
infections including intestinal disease. The human GI tract
harbors abundant of diverse microbial populations that are
involved in shaping human health. It is estimated that human
fecal samples carry up to 105 phage per gram dry feces that
specifically attack different strains of E. coli, Salmonella spp. and B.
fragilis bacteria (Havelaar et al., 1990; Calci et al., 1998). The
diversity of the gut virome is evolving as a major subject for host
health, and its disruption has been shown to be related with
disease conditions in both human and animal models (Turnbaugh
et al., 2006; Tong et al., 2013; Kim and Bae, 2018). Apart from
promoting virulence of the pathogens, the distribution of phages
in the gut are also attributed to different disease progression,
immune system functions and gut homeostasis (Gorski et al.,
2016; Zhao et al., 2017; Metzger et al., 2018). The role of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
virome has been implicated in intestinal conditions and even
related diseases such as Crohn’s disease (Dejea et al., 2014; Gorski
et al., 2016; Nakatsu et al., 2018) and ulcerative colitis (Frank et al.,
2007; Brooks andWatson, 2015; Sheehan et al., 2015; Gorski et al.,
2016). In this section below, we elaborate on the role of gut virome
in enteric infections (Table 1).

Diarrhea
Globally, acute diarrhea is one of the health conditions with
highest mortality rate, particularly among children, and viruses
are identified to be one of the causative agents. In about 40% of
reported diarrheal disease cases etiological agents are
unidentified, however the use of metagenomics sequencing
technique has enabled detection of novel viruses that may be
responsible for acute infections (Finkbeiner et al., 2008b).
Finkbeiner et al, studied the viral community of the fecal
samples from patients with acute diarrhea and detected phages
as well as common eukaryotic viruses such as, anellovirus,
adenovirus, calicivirus, astrovirus and rotavirus, which belong
to Anelloviridae, Adenoviridae, Caliciviridae: Astroviridae, and
Reoviridae families respectively. Putative novel DNA viruses
identified here, shared homology with picobirnavirus,
norovirus, Torque Teno virus, and enterovirus genus, while the
detected RNA virus was related to Nodaviridae family
(Finkbeiner et al., 2008b). In addition to these, van Leeuwen
et al., reported the identification of Picornarviridae, Retroviridae,
and a novel picobirnavirus variant with distinct phylogenetic
relatedness in patients with diarrhea, indicating the involvement
TABLE 1 | Increased viral loads associated with GI diseases (* indicates novel virus).

Bacteriophage Eukaryotic Virus References

Diarrhea N/A Anellovirus
Adenovirus
Calicivirus
Astrovirus
Rotavirus
Picobirnavirus*
Norovirus
Torque Tenovirus
Enterovirus
Dependovirus
Sapovirus
Bufavirus*
Bocavirus*

(Finkbeiner et al., 2008; van Leeuwen et al., 2010; Phan et al., 2012; Holtz et al., 2014)

Ulcerative Colitis Caudiovirales Virgaviridae
Anelloviridae
Circoviridae
Picobirnaviridae

(Norman et al., 2015; Conceicao- Neto et al., 2018)

Crohn's Disease Caudiovirales
Siphoviridae
Myoviridae
Podoviridae

N/A (Lepage et al., 2008; Norman et al., 2015)

Gastric & Colorectal
Cancer

Inovirus
Tunalikevirus

Herpesviridae
Cytomegalovirus
Epstein-Bar virus
Human papilloma virus
Polyomavirus
Orthobunyavirus

(Moritani et al., 1996; Rollison, 2010; Damin et al., 2013; Abedon et al., 2017; Nakatsu et al., 2018;
Emlet et al., 2020)
N/A stands for not applicable.
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of new emerging viruses (van Leeuwen et al., 2010). The
distribution of viruses in diarrhea have been attributed to
factors including population, age, etiological agent and other
environmental conditions. For example, a study at two
geographical locations in Australia in pediatric patients,
exhibited abundance of Adenoviridae and Picornaviridae
families with varying proportion (Holtz et al., 2014). In
another study, Phan et al., observed that anelloviruses and
dependovirus were most prevalent in West African children
with acute diarrhea closely followed by sapoviruses,
enteroviruses and bocaviruses (Phan et al., 2012). It is
noteworthy that both anelloviruses and dependoviruses are
themselves not pathogenic but have been detected by several
studies and are presumably markers of infection. The
mechanisms by which these viruses induce diarrhea are not
well understood, however, rotavirus and adenovirus infections
within enterocytes of the small intestine result in atrophy of the
villi and crypt cell hyperplasia leading to fluid malabsorption
(Wilhelmi et al., 2003). Novel viruses such as bufavirus and
bocavirus share homology with Parvoviridae family have also
been recovered in the feces of patient with diarrhea. The
detection of these novel viruses depict diversity in Parvoviruses,
however their possible role in this clinical condition is unknown
(Arthur et al., 2009; Phan et al., 2012).

Inflammatory Bowel Disease
IBD inclusive of ulcerative colitis (UC) and Crohn’s disease (CD)
is a chronic clinical condition that causes recurring inflammation
of the intestine (Abraham and Cho, 2009). A common feature of
CD includes a rough patch-like appearance of the inflamed tissues
of the intestine. This inflammation can cause perforation of the
intestinal wall and have a resultant effect on vital organs such as
kidneys and uterus. Development of UC is localized in the colon
where dysbiosis occurs (Nagalingam and Lynch, 2012). Intestinal
microbiome and virome are crucial for human health and have
been implicated to be significant factors in the IBD progression
(Lepage et al., 2008). Elevation of Caudiovirales phages was found
in IBD patients, particularly with CD, accompanied by a decrease
in bacterial diversity, thereby demonstrating the possible influence
of phages in these conditions (Lepage et al., 2008; Sheehan et al.,
2015). Comparative analysis of the Viral-like particles (VLP) from
the biopsy of CD patients exhibited an increase in Siphoviridae,
Myoviridae and Podoviridae in patients as compared to the
healthy control groups. Further, metagenomics studies revealed
mild disparity in the diversity and richness in the viral
composition of Caudiovirales taxa between UC and CD patients
(Norman et al., 2015). This suggests that the variation in the
virome may serve as a biomarker for classifying these clinical
conditions. Normal et al., reported that a converse relationship
exists between phage richness and bacteria diversity in CD where
the rate of growth of Bacteroidaceae is greatly reduced in presence
of Caudiovirales (i.e., negative phage-bacteria correlation).
However, Caudiovirales population in UC showed positive
correlation with the growth of Enterobacteriacae, Pastaurellacaea
and Prevotellaceae (Brooks andWatson, 2015; Gorski et al., 2016).

Eukaryotic viruses, particularly Anelloviridae, are also
reported to be higher in IBD patients as compared to the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
healthy individuals, although their role in IBD condition is not
known (Norman et al., 2015). Based on the observed viral
richness, diversity between UC patients undergoing fecal
microbial transplant (FMT) and healthy control group,
Conceicao et al., suggested that the eukaryotic viral richness
could serve as a potential biomarker in diagnosis of UC (Norman
et al., 2015; Conceicao-Neto et al., 2018). The four dominant
viral families reported in this study include, Virgaviridae,
Anelloviridae, Circoviridae, and Picobirnaviridae (Conceicao-
Neto et al., 2018). While these studies have increased our
knowledge about the distribution and possible involvement of
the viruses in IBD, future investigations are warranted to discuss
roles that diet, age, immunity plays in shaping IBD.

Gastric and Colorectal Cancer
In US alone, death due to cancer accounts for the second largest
cause with GI cancer being associated with high morbidity and
mortality rate (Siegel et al., 2015). Studies on the gut bacterial
distribution and pathogenesis have shown that dysbiosis leads to
development of colorectal cancer (CRC) (Baxter et al., 2016; Yu
et al., 2017). Additionally, 15-20% of cancer incidence worldwide
is associated with oncogenic virus infections (Chen et al., 2019).
Oncogenic DNA viruses can cause cancer by interfering with
cellular division or DNA repair mechanisms, while RNA viruses
do so through the production of reactive oxygen species or
chronic inflammation (McLaughlin-Drubin and Munger,
2008). Knowledge of the virome therefore provides useful
information in the CRC screening particularly in the early
stages (Zackular et al., 2014; Zeller et al., 2014; Yu et al., 2017).
The virome has been associated in the development of two major
GI cancer: gastric cancer and CRC (Moritani et al., 1996; Bull and
Plummer, 2014; Zackular et al., 2014). The eukaryotic virus,
Epstein-Bar virus (Herpesvirus), is a known etiological agent of
gastric cancer (Moritani et al., 1996). Nakatsu et al. revealed that
phage richness (due to the significant detection of distinctive
members of Inovirus and Tunalikevirus) is common in CRC
patients compared to the control group (Nakatsu et al., 2018).
Inovirus species are tiny filamentous phages that are associated
with regulating bacteria exopolysaccharide matrix synthesis, a
precursor for biofilm formation, an underlying factor in
colorectal tumor development (Dejea et al., 2014; Johnson
et al., 2015; Secor et al., 2015). Enteric phages that target
Bacteroides fragilis, Fusobacterium nucleatum and Escherichia
coli have been associated with CRC development; the speculative
mechanism of oncogenesis being phage ability to directly transfer
into colonic epithelial cells as well as phage encoding for
virulence genes, particularly genes regulating biofilm
production (Emlet et al., 2020).

Orthobunyavirus, a eukaryotic virus,was uniquely abundant
in CRC patients and may be used as a marker for CRC diagnosis
(Nakatsu et al., 2018). Herpesviridae, eukaryote virus family,
were more predominant in CRC, particularly Cytomegalovirus
spp., which are usually implicated as an etiological agent (Dejea
et al., 2014). Human papillomavirus infections were found to be
associated with increased risk of CRC (Damin et al., 2013) by
integrating into the host genome, but the mechanism for
induction of cancer is not well understood (Emlet et al., 2020).
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Polyomaviruses can be oncogenic due to their encoding of T-
antigen which can inactivate the p53 and pRB tumor suppressor
proteins (Rollison, 2010) leading to unregulated tumor growth.
PROTECTIVE EFFECT OF THE VIROME

Health conditions such as cancer and neurodegenerative disorders
have been treated using phage therapy with promising outcomes.
For example, a study exhibited the binding potential ofM13 to both
b-amyloid and a-synuclein proteins, in the brain of non-human
primates (Macca mulatta) suggesting phage therapeutic use in
neurodegenerative disorders (Alzheimer’s and Parkinson’s
diseases) (Ksendzovsky et al., 2012). In the treatment of cancer
cells inmice tumormodels, deliveryphageshavebeenengineered to
transfer anticancer protein into the cancer cells either formalignant
tumor atrophy or cancer gene therapy, thereby facilitating the cell
death. In addition, phage can play a role in bolstering the immune
systembypreventing the reactive oxygen species (ROS) synthesis in
endotoxin induced oxidative stress (Dabrowska et al., 2004). The
use of phages as therapeutic agents has been extensively reviewed
(Abedon et al., 2017). In this section, we focus on the role of phages
in ameliorating GI tract (GIT) disorders and associated possible
drawbacks with their usage.

Treatment of Intestinal Diseases
Phages have been used to treat infectious diseases of the intestines
and skin in Eastern European and former Soviet Union countries
since the early 1900s (Morozova et al., 2018). The long history of
phage research spans many years in various countries; phages have
beenusedwithnotable success to treat bacterial dysentery in France
(1919), cholera in India (1927), acute colitis in Georgia (1936), and
bacterial dysentery, acute colitis and salmonellosis in Russia (1968-
1993) (El-Shibiny and El-Sahhar, 2017). Some prospective
lysogenic phages have been used in formulating therapeutic
cocktails because of their effectiveness in deleting virulence genes
and adding short chain genes necessary for fatty acidmetabolism in
certain pathogenic bacteria (Regeimbal et al., 2016). Protective
phage action was demonstrated in the evasion of Salmonella
colonization in anaerobically cultivated tissue culture and had
minimal or no effect on non-target bacteria (Hu et al., 2018).
Phage treatment can be adapted in managing enteric diseases
caused by bacterial pathogens like V. cholerae (Summers, 2001),
Salmonella spp. (Goode et al., 2003); S. aureus (Mann, 2008; Oh
et al., 2016),Clostridioides difficile; Listeria monocytogenes (Carlton
et al., 2005; Mai et al., 2010), Campylobacter jejuni (Goode et al.,
2003;Hwanget al., 2009;Gorski et al., 2016) andE. coli (Sarker et al.,
2016). Therapeutic use of phage products directly in humans is not
approved in most countries, including United States. However,
commercially approved phage-based formulations are produced in
a number of countries which can prevent food-borne intestinal
infections. These phage products control bacterial pathogen
contamination to increase food safety: E. coli O157:H7
(EcoShieldTM by Intralytix, USA), Listeria monocytogenes
(ListShieldTM by Intralytix, USA, and LISTEXTM P100 by EBI,
Netherlands) and Salmonella spp., from swine and poultry animals
(BioTector by CheilJedang Corporation, Korea) (Monk et al., 2010;
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Endersen et al., 2014; Nannapaneni and Soni, 2015). Commercially
available E. coli-targeting phages (PreforPro®) has been given
experimentally to humans reporting gastrointestinal distress,
showing no global disruption of the microbiota and positive
outcomes, specifically, increased butyrate-producing Eubacterium
and decreased bacteria closely related Clostridium perfringens
(Febvre et al., 2019). The CRISPR-Cas system of E. coli is being
researchedwith the goal of reducingdrug-resistant pathogens using
phages to insert the CRISPR-Cas program targeting bacterial
resistance genes (Yosef et al., 2015).

On the other hand, the use of phage therapy has received many
critical reviews which has limited its use both commercially and
globally (Sulakvelidze et al., 2005; Kutter, 2008). Safety of the phage
(Meader et al., 2013; Abedon et al., 2017), pharmacodynamics
impact of phages (Carey-Smith et al., 2006), and host
immunological compatibility with the formulated phages are
major concerns (Hodyra-Stefaniak et al., 2015). Since, phage can
infect many bacteria, the challenge of stringent specificity for target
cells is hindering the use of phage regimen (Garcia et al., 2009;
Gorski et al., 2016). Another setback in the use of phage is the rapid
evolvement of mutant strains that are resistant to the phage
treatment (Garcia et al., 2009; Kocharunchitt et al., 2009).
Therefore, more studies are needed in this area before the phage
therapy can be globally acceptable.

The Virome Induced Immunogenicity
The importance of viruses and phages in conferring immunity are
well documented in studies involving mouse models as well as
human subjects. Experimental mouse studies have suggested that
enteric viruses can provide beneficial effects. For example, murine
norovirus (MNV) infection was shown to reverse bacterial
dysbiosis-induced GIT disease by repairing Paneth cell and
crypt-villi functionality in the small intestines by upregulating
the production of IFNg and IgA (Kernbauer et al., 2014). Other
investigators observed mice with latent murine gammaherpesvirus
68 or murine cytomegalovirus (mCMV) infections were protected
against infection by the bacterial pathogens, Yersinia pestis and
Listeria monocytogenes via persistent immune stimulation from
macrophage activity and antiviral IFNg (Barton et al., 2007). In
studies involving phage effects, patients with C. difficile infections
were treated with fecal filtrate showed clinical improvement and
significant changes in their intestinal phage community
resembling the fecal donor (Ott et al., 2017). In another study,
patients with various Staphylococcus spp. infections underwent
experimental phage treatment with a staphylococcal phage
cocktail (MS1) resulting in increased antibody stimulation
(mainly IgG and IgM) (Żaczek et al., 2016). Mucosal surfaces
can be entry points for invading pathogens; increased
concentrations of mucus-adherent phages have been shown to
provide host immune defense against bacterial infections (Barr
et al., 2013; Barr et al., 2015). Filamentous phages have
experimentally shown much potential for the development of
vaccines and can be engineered as therapeutic agents for managing
bacterial infections and chronic diseases, such as cancer,
Alzheimer’s disease, and Parkinson’s disease. These phage based
vaccines have capacity for displaying various surface antigens, like
bacterial LPS encoded on phage coat, to provoke various immune
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responses including innate immunity effectors, T cell independent
antibodies and cytotoxic T lymphocytes (Henry et al., 2015).
CONCLUSION

The impact of phages in influencing the overall wellbeing of
human hosts cannot be overemphasized due to their role in
impacting virulence and potential as therapeutic agents.
Therefore, phages offer a promising option in the treatment of
different GI diseases, particularly in conditions like CD and UC
(Abraham and Cho, 2009; Nagalingam and Lynch, 2012), where
phage dysbiosis has been implicated to be a developmental
factor. However, further studies are required for the phage
therapy to be universally accepted in clinical practice. In
addition, evolving fields such as CRISPR-Cas system (Yosef
et al., 2015) of bacteria provide another platform where drug
delivery to host tissue can be manipulated for cancer treatment
through phage-bacteria relationship. Currently, the biological
function of only 25% of viral genes have been preliminarily
determined (Nayfach et al., 2021). Future studies should focus on
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
understanding the biological relevance of the human virome
which can lend to better understanding of enteric disease
processes and to the development of phage therapies.
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