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Multiparametric flow cytometry (MFC) represents a rapid, highly reproducible, and

sensitive diagnostic technology for primary immunodeficiencies (PIDs), which are

characterized by a wide range of T cell perturbations and a broad clinical and genetic

heterogeneity. MFC data from CD4+ and CD8+ T cell subsets were examined in 100

patients referred for Primary Immunodeficiencies to our center. Naïve, central memory,

effector memory, and terminal effector memory cell differentiation stages were defined by

the combined expression CD45RA/CD27 for CD4 and CD45RA/CCR7 for CD8. Principal

component analysis (PCA), a non-hypothesis driven statistical analysis, was applied to

analyze MFC data in order to distinguish the diverse PIDs. Among severe lymphopenic

patients, those affected by severe combined and combined immunodeficiency (SCID and

CID) segregated in a specific area, reflecting a homogenous, and a more severe T cell

impairment, compared to other lymphopenic PID, such as thymectomized and partial

DiGeorge syndrome patients. PID patients with predominantly antibody defects were

distributed in a heterogeneous pattern, but unexpectedly PCA was able to cluster some

patients’ resembling CID, hence warning for additional and more extensive diagnostic

tests and a diverse clinical management. In conclusion, PCA applied to T cell MFC data

might help the physician to estimate the severity of specific PID and to diversify the clinical

and diagnostic approach of the patients.

Keywords: flow cytometric immunophenotyping, T cell subsets, primary immunodeficiencies, multivariate data

analysis, diagnostic markers

INTRODUCTION

Primary Immunodeficiencies Disorders (PIDs) are a heterogeneous group of congenital disorders,
caused by defects in development and/or function of the immune system, associated with an
increased susceptibility to infections, immune-dysregulation, and a higher risk of malignancy (1, 2).
Currently, about 340 genetic disorders responsible for defects in the immune system have been
identified (3). The T cell compartment plays a key role in coordinating innate and adaptive immune
responses upon antigen stimulation. Its impairment leads to a broad spectrum of immune diseases,
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which require rapid and defined diagnosis in order to
adopt the targeted therapeutic management. Severe combined
immunodeficiency (SCID) are caused by a severe defect in T
cells differentiation, variably associated with B cell, natural killer
(NK) cell, and/or myeloid lineage impairment, with the first
symptoms usually manifesting within the first year of life and
the only curative therapy is represented by haematopoietic stem
cell transplantation and/or gene therapy for defined diseases
(4, 5). Conversely, CID manifest later with a more heterogeneous
clinical picture, often associated with immune-dysregulation
manifestations (6, 7). Although few observational studies on CID
are in progress, a commonly accepted clinical and diagnostic
management for these patients has not been defined yet, and
it often relies on the local center expertise, rather than on
evidence based systematic experiences (8, 9). Moreover, humoral
defects, classified as a predominantly antibody defects and
common variable immunodeficiency (CVID) are characterized
by recurrent infections, hypogammaglobulinemia, poor response
to vaccines, and can be associated to diverse T cell abnormalities
(10). Currently, the most accepted T cell maturation model
suggests a progressive differentiation from naïve T cells to
the memory phenotype, ending with the generation of T
effector cells (11, 12). Multiparametric flow cytometry (MFC)
allows an extensive and detailed characterization of lymphocytes
subsets (13, 14). In this study, we analyzed by MFC the
T cell immunophenotypes in a large group of PID patients,
clinically classified according to ESID (European Society for
Immunodeficiencies) criteria (15). T cell subsets frequencies were
then investigated by principal component analysis (PCA) in
order to test if this analysis could estimate the relative disease
severity and could possibly support the clinical and diagnostic
approach (16, 17).

MATERIALS AND METHODS

Study Population
Study cohort is composed of 100 patients affected by PID and
30 healthy donors followed at Bambino Gesù Childrens’ Hospital
between 2013 and 2017 and diagnosed for PID by ESID criteria
(15). Patients’ data were collected retrospectively and the study
groups are described in Table 1while their clinical and molecular
characteristics are reported in Supplementary Tables 1a–c.

Moreover, the study cohort includes 10 patients affected,
respectively, by: selective IgM deficiency, NEMO (NF-
kappa-B essential modulator) deficiency, not determined
agammaglobulinemia, undefined T-defect, DOCK8-deficiency

Abbreviations: SCID, severe combined immunodeficiency; CID, combined
immunodeficiency; TE, thymic excision; DGS, DiGeorge syndrome; LOF STAT3
(AD-HIES), loss of function STAT3 (autosomal dominant hyper-IgE syndrome);
CVID, common variable immunodeficiency; CGD, chronic granulomatous
disease; XLA, X-linked agammaglobulinemia; SIgAD, selective IgA deficiency;
NEMO deficiency, nuclear factor-kappa B essential modulator deficiency; DOCK8
(AR-HIES) deficiency, dedicator Of cytokinesis 8 (autosomal recessive hyper-
IgE syndrome) deficiency; XL-HIGM1, X-linked HyperIgM type1; SAVI, STING-
associated vasculopathy with onset in infancy; XIAP, X-linked inhibitor of
apoptosis protein; TACI, transmembrane activator and calcium-modulator
and cyclophilin-ligand lnteractor, CTLA4, cytotoxic T-lymphocyte-associated
protein 4.

TABLE 1 | Demographics of the study groups.

PID groups Number Age (years)

median—interquartile range

Male:Female

SCID 5 0.8 (0.35–1.6) 5:0

CID 15 12.6 (3–8) 8:7

TE 5 4 (2.5–7) 2:3

DGS 12 12 (9–16) 9:3

LOF STAT3

(AD–HIES)

5 15 (6.7–27.7) 3:2

CGD 13 16 (7–23) 13:0

CVID 16 15.5 (6–18.5) 9:7

Selective IgM

Deficiency

1 19 1:0

NEMO

Deficiency

2 13 (10–16) 2:0

XLA 5 16 (6–23.5) 5:0

Not determined

Agammablobulinemia

1 28 0:1

SIgAD 14 5.5 (3–8.5) 9:5

DOCK8

(AR–HIES)

Deficiency

1 2 0:1

SAVI 1 1 0:1

XL–HIGM1 2 12.5 (6–19) 2:0

XIAP Deficiency 1 7 1:0

Undefined

T–Defect

1 4 1:0

Healthy Donors 30 6.1 (2.2–12.6) 21:9

Total 130

SCID, Severe Combined Immunodeficiency; CID, Combined Immunodeficiency;

TE, Thymic Excision; DGS, DiGeorge Syndrome; LOF STAT3 (AD–HIES), Loss

Of Function STAT3 (Autosomal Dominat Hyper–IgE Syndrome); CVID, Common

Variable Immunodeficiency; CGD, Chronic Granulomatous Disease; XLA, X–linked

Agammaglobulinemia; SigAD, Selective IgA deficiency; NEMO Deficiency, Nuclear

factor–kappa B Essential Modulator Deficiency; DOCK8 (AR–HIES), Dedicator Of

Cytokinesis 8 (Autosomal Recessive Hyper–IgE Syndrome) Deficiency; XL-HIGM1,

X-Linked Hyper IgM type 1; SAVI, STING–Associated Vasculopathy with onset in Infancy;

XIAP Deficiency, X–Linked Inhibitor of Apoptosis Protein Deficiency.

(dedicator of cytokinesis 8 gene), XIAP deficiency (X-linked
inhibitor of apoptosis), XL-HIGM1 (X-linked Hyper IgM
type 1), STING (STimulator of INterferon Genes) associated
vasculopathy with onset in infancy (SAVI). Patients did not
receive any corticosteroid treatment or immunosuppressive
therapy at enrollment. Patients’ median age was 10 years (range
3,6 months−36 years) while healthy donors’ median age was
6,1 years (range 5 months−30 years). Healthy donors were
immunocompetent individuals. The work was conducted
in accordance with the ethical standards of the institutional
research committee and with the 1964 Helsinki declaration and
its later amendments or comparable ethical standards. Informed
consent, approved by the Ethical Committee of the Children’s
Hospital Bambino Gesù and Policlinico Tor Vergata, was
obtained from either patients or their parents/legal guardians,
if minors.

Multiparametric Flow Cytometric Analysis
T cell development can be phenotypically assessed by the
combined cell surface expression of CD45RA, CD31, CCR7, and
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CD27 molecules. CD4 subsets are identified as naïve (CD4+
TN: CD45RA+CD27+), central memory (CD4+TCM: CD45RA-
CD27+), effector memory (CD4+ TEM: CD45RA-CD27–) and
terminally differentiated (CD4+ TEMRA: CD45RA+CD27-).
Moreover, CD4+ naïve T cells coexpressing CD31+ are highly
enriched in recent thymic emigrants (RTE), a naïve T CD4+
cell subpopulation that have just egressed the thymus and
characterized by higher signal joint T-cell receptor excision
circle (sjTREC) content (18, 19). Similarly CD8 subsets are
defined by the expression of lymph node homing receptor
CCR7 in naïve (CD8+ TN: CD45RA+CCR7+), central memory
(CD8+ TCM: CD45RA-CCR7+), effector memory (CD8+ TEM:
CD45RA-CCR7-), and terminally differentiated (CD8+ TEMRA:
CD45RA+CCR7-). All flow cytometric analysis were performed
on ethylenediamine tetraacetic acid (EDTA) blood samples
within 24 h of venipuncture. After red blood cells lysis with
ammonium chloride the lymphocytes were stained with the
following previously titrated monoclonal Abs: CD3 PerCP (clone
BW264/56, Miltenyi Biotec), CD45RA APC-H7 (clone T6D11,
Miltenyi Biotec), CCR7 PE (clone 3D12, Ebioscience), CD4 APC
(clone OKT4, Becton Dickinson), CD8 PE-Cy7 (clone RPA-
T8, Becton Dickinson), CD19 PE-CY7 (clone SJ25C1, Becton
Dickinson), CD16 PE (clone 3G8), CD56 (clone NCAM16.2)
PE, CD27 FITC (clone M-T271, Becton Dickinson), TCR alpha-
beta APC (clone T10B9, Becton Dickinson), TCR gamma-delta
FITC (11F3, Miltenyi Biotec). Cells were incubated with the
appropriate antibody cocktail for 30min at 4◦C, washed with PBS
and suspended in PBS. At least 50,000 events in the lymphocyte
live gate were acquired for each sample. Samples were acquired
on FACSCANTO II (BD Biosciences, San Diego, CA, USA) and
analyzed with FlowJo software (Tree Star Inc, version 8.8.6,
Ashland, Ore). Some patients of our cohort presented with severe
lymphopenia and to avoid this bias, we have considered the cell
subsets frequencies, instead of absolute counts. Details of the
gating strategy are shown in Supplementary Figure 1.

Statistical Analysis
Unpaired t-test was used to compare the patients and controls for
variables with normal distribution. For non-parametric variables,
the unpaired two-tailed non-parametric Mann-Whitney test
was used. All graphical representations and statistical analyses
were performed using Prism 6.0 (GraphPad). The relative T
subsets frequencies were subjected to PCA analysis, using PAST
(PAleontological STatistics, version 3.22, University of Oslo) to
visualize and to estimate the correlation among variables.

RESULTS

T subsets frequencies were diversely perturbed in most
PIDs in univariate analysis, while those of STAT3, XLA,
and SIgAD patients were all comparable to healthy donors.
Moreover, no significant differences were evident between
all lymphopenic groups (CID, DGS, TE) (Figure 1). T
cell subsets frequencies were then interrogated by PCA:
STAT3, XLA, and SIgAD groups did not show any evident
alteration (Supplementary Figures S4A,B), with the exception
of one SIgAD patient with severe autoimmune cytopenia
clustering far from the SIgAD group (A13) and two XLA

patients (X2 and X4) with TEM/EMRA CD8+ cell expansion
(Supplementary Figure 4B).

Most of the CID patients clearly segregated far from
healthy donors, similarly to SCID (Figures 2A,B and
Supplementary Figures 2, 5A) and the main discriminating
variables were the TCM CD4+ and TEM CD8+ and to a lesser
extent TEMRA CD8+ cell subsets, as clearly evident in the CID
patients (C9, C13, C14, C15) diagnosed as APDS (activated
PI3K delta syndrome) (Figure 2B). While 13 patients out of
15 segregated uniformly, two patients (C3 and C7) classified
as CID, with recurrent respiratory infections but in absence
of immune dysregulation phenomena, segregated differently:
C7 lied inside the HD area and C3 was skewed toward naive
cells and low memory subsets in PCA (Figure 2B). Indeed,
patient C3 had normal TREC levels, despite a reduction
in CD4+CD31+CD45RA+ T cells and an increase in the
CD4+CD31-CD27+CD45RA+ (>20%), suggesting a defective
T cell maturation. Some other patients were clearly identifiable,
like the DOCK8 (AR-HIES) deficiency patient (K1) showing
a trend vs. TEMRA CD8+ expansion and the patient (R1)
with an undefined T cell defect clustering toward TEM CD4+
differentiation. Conversely, the immunophenotype of the two
XL-HIGM1 patients (L1, L2) and XIAP deficiency patient
(P1) segregated more closely to HD, although their clinical
picture mimicked a CID (Figure 2B). In patient S1, admitted
at 14 months of age for a severe dermatitis, chronic diarrhea,
and anemia associated with a profound alteration in T cell
distribution, PCA showed clearly a peculiar localization near
HD area and far from CID group, excluding a combined
immunodeficiency. Later targeted next generation sequencing
(NGS) analysis revealed a STING (STimulator of INterferon
Genes) mutation, justifying her severe course due to a deficiency
in the interferon pathway (20).

CVID immunophenotypes did not segregate uniformly
(Figure 3), but when analyzed by age groups and compared to
CID (Figures 4A,B and Supplementary Figure 3), PCA showed
one 4-year-old patient (V1) with a CID-like clinical phenotype,
characterized by recurrent infections, bronchiectasis, and facial
dysmorfism that clustered far fromHDnear the CID agematched
patients’ area (Supplementary Figure 3). Furthermore, two 6–
16-year-old CVID patients (V4 and V8, Figure 4A) presented
a severe clinical course and could be distinguished by TEMRA

CD8+ expansion in V4, probably related to persistent viral
infections, and TCM CD4+ and TEM CD8+ in V8; patient V8
developed overtime a MAS (Macrophage Activated Syndrome),
leading eventually to death. On the other hand, in the same 6–16
year age range three CVID patients (V2, V5, V10) with increased
TN CD4+ clustered nearby but showed diverse molecular
diagnosis: in V2 was reported a dominant heterozygous mutation
c.2557CNT (p.Arg853∗) in theNFKB2 gene, in V5 was detected a
mutation in Transmembrane Activator and Calcium-Modulator
and Cyclophilin-Ligand Interactor (TACI), while V10 is still
without a definite diagnosis (Figure 4A).

The immunoprofile of twoNEMOdeficiency relatives patients
in age range 6–16 year (N1 and N2) (Figure 4A) and bearing a
splice site mutation in the 59 UTR of the NEMO transcript, was
skewed differently: N1 more vs. TCM CD4+ while N2 showed a
trend vs. TEM/EMRA CD8+.
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FIGURE 1 | (A) CD4+ and (B) CD8+ T cell subsets in patients with primary immunodeficiency diseases. Unpaired two-tailed non-parametric Mann-Whitney test was

used to compare the patients and controls. The columns and error bars indicate median and interquantile ranges (25◦–75◦). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P

≤ 0.0001. SCID and CID patients showed a severe reduction in frequency of TN CD4+ and CD8+ cells and a corresponding increase in TCM and TEM CD4+ and

CD8+, while in CVID patients the same reduction is reported only in CD4+ subsets. DGS and Thymic-excision patients present the same distributions pattern, except

for TCM and TEM CD8+. In CGD group there is a reduction in the frequency of TN CD4+ cells and an increase TEM CD4+ cells, while TN and TCM CD8+ T cell

compartment are significantly reduced accompanied by TEM CD8+ expansion. Symbol with a cross in the SIgAD groups represents the SIgAD patient with the severe

clinical presentation. SCID, Severe Combined Immunodeficiency; CID, Combined Immunodeficiency; TE, Thymic Excision; DGS, DiGeorge Syndrome; STAT3, Loss Of

Function STAT3 (Autosomal Dominat Hyper-IgE Syndrome); CVID, Common Variable Immunodeficiency; CGD, Chronic Granulomatous Disease; XLA, X-linked

Agammaglobulinemia; SIgAD, Selective IgA deficiency; HD, Healthy Donors.

The older than 16 year CVID patient (V16), mother of patient
V2 and bearing the sameNFKB2mutation of her child, outlied far
in the upper right quadrant, influenced by the highly increased
TN CD4+ frequencies (Figure 4B). In the same age range
two CVID patients (V11, V15), segregated according to their
relative TCM CD4+ expansion, maintaining normal TN CD8+
frequencies: V15 carried a Cytotoxic T-Lymphocyte-Associated
protein 4 deficiency (CTLA4) while patient V11 is still under
investigation (Figure 4B). The single selective IgM deficiency
patient (M1) was not characterized by a distinctive differentiation
pattern, although segregating outside HD area (Figure 4B).

DGS and Thymic excision patients were distributed in a
broad area between controls and CID group (Figure 5 and
Supplementary Figure 5B)mirroring the reported variable T cell
defect severity and highlighting those with a CID-like phenotype
(D4 and D12). Consistently, patient D1, the only one affected by
complete DGS, resembling a SCID phenotype, clustered close to
SCID area.

Notably, CGD patients showed a trend vs. effector memory
subsets, more evident in older patients and in the younger ones
(G5 and G6) with a more severe clinical presentation (Figure 6).

DISCUSSION

Several attempts have been used to categorize PIDs based on
clinical manifestations, humoral immune defects and T cell

phenotypes. Standardized disease definitions are still lacking
in the current classification for PIDs, especially in pediatric
age (15, 21). Unsupervised clustering methods applied to
immunophenotype data might provide additional information
regarding the diagnostic and clinical criteria of PIDs, which
do not fulfill any classification. We particularly focused our
analysis on specific categories of patients, as well as CID
and CVID given their high clinical heterogeneity, which
increases the complexity of the diagnostic approach and the
clinical management. Indeed, according to PCA analysis,
most of CID patients clearly segregated from healthy donors
and the principal discriminating variables resulted the TCM

CD4+ and TEM CD8+ and to a lesser extent TEMRA CD8+
cell subsets, suggesting an imbalance between CD4+ helper
and CD8+ cytotoxic function in peripheral sites (22, 23).
Their expansion in the majority of CID patients is partially
explained by a lymphopenia-induced proliferation process
(24, 25), but also revealed a trend to an accelerated T cell
exhaustion leading to an inefficient immune response and
the risk to develop immunedysregulation phenomena (6).
This is particularly evident in APDS patients (C9, C13, C14,
C15) (Figure 2B), in which their T cell senescence leads to
a higher risk of chronic infection, such as EBV replication,
and therefore to lymphoproliferative disease/malignancy
susceptibility (26). At the same time PCA clearly identified
two CID patients (C3, C7) with milder clinical course
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FIGURE 2 | PCA Scatter plots of T cell subpopulations frequencies of (A) Severe Combined Immunodeficiency (SCID), (B) Combined Immunodeficiency (CID)

patients compared to healthy donors (HD). Each sample (subject) is represented by the combination of variables (T subsets) and allocated in a Cartesian space.

Samples are plotted, and similarities and differences can be visualized. The overlay of the 2D (2 Dimensional) plot of the scores (subjects) with the 2D plot of the

loadings (combination of T subsets) allows the identification of the variables that most contribute to the characterization of a specific subject, since they lie in the same

area of the graphs. PCA identifies directions, called principal components, along which the variation in the data is maximal, reported as percentages near the axis.

SCID patients are indicated by green dots and the letter S, CID patients by blue dots and the letter C and healthy donors (HD) are represented by gray dots. Individual

patients are represented as: C3 and C7 (blue dots) diagnosed as Combined Immunodeficiency patients (CID), K1 (dark green dot) is a DOCK8 Deficiency patient

(AR-HIES), L1 and L2 (fuchsia dots) are X-Linked HyperIgM type1 patients (XL-HIGM1), P1 (light blue) is a patient with X-Linked Inhibitor of Apoptosis Protein

deficiency (XIAP), S1 (magenta dot) is a SAVI patient (STING-Associated Vasculopathy with onset in Infancy: STING), R1 (purple dot) is a patient with a not determined

T cell defect.

segregating far from CID area and close to HD (Figure 4A),
distinguishing them from those at higher risk to develop
severe complications.

A highly heterogeneous pattern of T cell abnormalities
has been observed in CVID group (Figures 3, 4A,B and
Supplementary Figure 3) and PCA clustered some CVID
immunophenotypes in proximity to CID area, providing a clue
for a deeper monitoring in these patients. Recent ESID Registry-
Working Definitions for Clinical Diagnosis shows that some
patients, previously diagnosed as CVID, were reclassified as
CID and unclassified antibody deficiency (15, 27). Indeed, V8
patient, initially identified as CVID, showed a marked TCM
CD4+ and TEM CD8+ expansion (Figure 4A), suggesting that a
more aggressive treatment should have been considered, before
developing fatal complications. In patient V15 segregating far
from HD due to TCM CD4+ increase (Figure 4B) a CTLA4
haploinsufficiency responsible for a perturbed T CD4+ cell
homeostasis was eventually confirmed by NGS (28).

Interestingly V2 (Figure 4A) and V16 patients (Figure 4B)
currently diagnosed as CVID clustered far from either HD

FIGURE 3 | PCA Scatter plot of T cell subpopulations frequencies of CVID

patients (shown as red dots and the letter V) and SIgMD patient (orange dot)

compared to healthy donors (HD gray dots) show overlapping areas except for

V3,V4, V8, V11, V15, V16 and M1.
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FIGURE 4 | (A) 6–16-year-old CVID patients (shown as red dots and with the letter V) compared to 6–16 year old CID patients (distinguished by blue dots and the

letter C) and age matched HDs (shown as gray dots). CVID patients (V2, V5, V10) showed immunoprofile with increased TN CD4+ although they do not have the

same diagnosis. N1 and N2 (light blue dots) patients bearing a splice site mutation NEMO transcript are differently identified: N1 more vs. TCM CD4+ while N2 showed

a trend vs. TEM/EMRA CD8+. (B) more than 16-year-old CVID patients (shown as red dots and the letter V) compared to more than 16-year CID patients (drawn as blue

dots and the letter C) and age matched HD (shown as gray dots). CID patients (C13, C14, C15) diagnosed as APDS (activated PI3K delta syndrome) and C12 cluster

together due to the main discriminating variables such as TCM CD4+ and TEM CD8+ and to TEMRA CD8+ cell subsets. M1 (orange dot) is a selective IgM deficiency

(SIgMD) patient with an immunoprofile showing a trend vs. late memory differentiation in both CD4+ and CD8+ subsets.

and CVID group reflecting their own peculiar NFKB2 driven
differentiation defect (TN cell expansion) (29, 30). NEMO
deficiency patients (N1, N2) (Figure 4A) showed a different trend
vs. TCM CD4+ and TEM/EMRA CD8+ respectively, confirming
the high variability in the clinical and immunological disease
expression (31). IgM deficiency patient (M1) (Figure 4B) showed
a trend vs. late memory differentiation in both CD4+ and CD8+
subsets that could influence B cell subset, as reported in a larger
cohort (32).

As largely described (33), immunoprofiles of patients
with partial DGS and Thymic excisions resulted extremely
heterogeneuos in PCA (Figure 5), as well as in their clinical
course. Patients who underwent to total thymic excision
during cardiac surgery in neonatal age show a clinical
improvement with age in terms of frequency/severity of
infections, suggesting a peripheral recovery of the T-cell
compartment (34). Interestingly two patients partial DGS (D4
and D12) with a more severe clinical phenotype (refractory
autoimmune cytopenia and recurrent bacterial infections)
clustered in CID area suggesting the need of a stricter
follow up.

Although CGD is primarily a phagocytes disorder, recent
evidence showed a defect in adaptive immunity in both T and
B cell compartment (35–37), as shown in PCA by an early
T cell senescence evident in older CGD patients (Figure 6),

probably related to chronic inflammation. PCA could be useful
to consider and to monitor an immunomodulating treatment
whenever necessary in CGD patients to reduce the T cell
exhaustion (38).

No evident alterations and specific segregation were detected
in XL-HIGM1, XIAP, LOF STAT3 (AD-HIES), and SIgAD
patients (Supplementary Figures 4A,B), except for one SIgAD
patient (A13) with a severe autoimmune cytopenia which
segregated outside the HD area (39–42). Although reduction
in CD4+ memory T cell subsets was previously reported in
XLA patients (43), this data was not confirmed in our limited
cohort and a longer follow up is necessary. Only two XLA
patients (X2 and X4) segregated accordingly to their TEM/EMRA

CD8+ cell expansion, likely associated to recent infections
(Supplementary Figure 4B).

In order to test the PCA potentiality, we applied it in three
patients (K1, R1, and S1) with a severe clinical presentation
not easily classifiable (Figure 2B and Table 1). Patient K1,
with a history of endocarditis, vasculitis and sepsis, apparently
normal T cell count, showed a high and evident terminal
effector CD8+ T cells expansion and later DOCK8 deletion
was detected using multiple genetic approaches (44, 45). Patient
R1, with a history of interstitial pneumonia and lymphocytes
lung infiltration, showed TEM CD4+ expansion, alerting us
for a severe but still undefined T cell defect. Finally, child S1
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FIGURE 5 | PCA Scatter plots of T cell subpopulations frequencies of DiGeorge Syndrome (DGS, yellow dots and letter D) patients, Thymic Excision patients (TE,

distinguished by purple dots and letter T), Combined Immunodeficiency (CID, represented by blue dots and the letter C) patients and healthy donors are shown as

gray dots. D1 is the complete DGS patient, D4 and D12 are partial DGS patients with a CID-like clinical presentation.

FIGURE 6 | PCA Scatter plots of T cell subpopulations frequencies of Chronic Granulomatous Disease (CGD) patients divided by age: younger CGD patients (G1, G2,

G3, G4, G5, G6, G7, G8 represented by green dots) are <16 year old; they cluster inside HD area with the exception of G5 and G6, that are two twin brothers with a

severe clinical presentation. The older than 16 year CGD patients (G9, G10, G11, G12, G13 drawn as fuchsia dots), show a CID-like immunoprofile.

with a picture mimicking a CID, in PCA segregated close to
healthy donors’ area, ruling out a severe immunodeficiency.
Mutation in STING gene was detected by NGS targeted panel
for autoinflammatory inborn error allowing the start of a specific
treatment (46).

CONCLUSIONS

The multivariate data processing techniques could be used as
a diagnostic and prognostic tool to identify peculiar immune
profiles, to screen atypical PID with higher risk for severe
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disease progression and monitor the response to personalized
therapeutic approaches.
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Supplementary Figure 1 | Naiv̈e and memory T-cell subsets gating strategy.

PBMC from lysed whole blood were gated on live lymphocytes and identified as

CD45+. Then after sequential gating on CD3+CD4+ subset, the naiv̈e (TN) cells

were distinguished as CD45RA+CD27+, central memory cells (TCM) as

CD45RA-CD27+, effector memory cells (TEM) as CD45RA-CD27-, and terminally

differentiated cells (TEMRA ) as CD45RA+CD27-. Among CD3+CD4+ T cells,

recent thymic emigrants (RTE) were identified as CD31++CD45RA+. Similarly

after gating on CD3+CD8+ subset, the naiv̈e (TN) cells were gated as

CD45RA+CCR7+, central memory cells (TCM) as CD45RA-CCR7+, effector

memory cells (TEM) as CD45RA-CCR7-, and terminally differentiated cells (TEMRA )

as CD45RA+CCR7-.

Supplementary Figure 2 | PCA Scatter plot of T cell subpopulations frequencies

in SCID patients and HD < 6-year-old. Healthy donors <6-year-old are

represented by gray dots and SCID patients by green dots and the letter S. PCA

identifies directions along which the variation in the data is maximal, in this analysis

represented by TCM CD4+ cells inversely correlated to TN CD4+ as variables that

most contribute to the characterization of different subjects.

Supplementary Figure 3 | Less than 6-year-old Common Variable

Immunodeficiency (CVID) aged patient (V1) indicated by red dot and the letter V

compared to aged matched Combined Immunodeficiency (CID) patients,

represented by blue dots and the letter C and age matched healthy donors (HD)

shown as gray dots.

Supplementary Figure 4 | PCA Scatter plot of T cell subpopulations frequencies

in (A) Loss of Function STAT3 (LOF STAT3) (Autosomal Dominant Hyper-IgE

Syndrome) (AD-HIES) patients represented by green dots and the letter E and

healthy donors by gray dots, showing the complete overlapping of the areas. (B)

X-linked Agammaglobulinemia (XLA) patients by light blue dots and the letter X,

Selective IgA deficiency (SIgAD) patients by yellow dots and the letter A, one not

defined Agammaglobulinemia patient (n.d) by brown dot and letter Y, healthy

donors are represented by gray dots. The X2 and X4 patients’ immunoprofiles

segregated outside HD area, accordingly to their TEM/EMRA CD8+ cell expansion.

Not defined Agammaglobulinemia (Y1) patient clustered in the HD area, not

revealing any peculiar pattern.

Supplementary Figure 5 | PCA Scatter plots of T cell subpopulations

frequencies of (A) Severe Combined Immunodeficiency (SCID) compared to

Combined Immunodeficiency (CID) patients. SCID patients are indicated by green

dots and the letter S and CID patients by blue dots and the letter C. (B) DiGeorge

Syndrome (DGS) patients (represented by yellow dots and letter D), Thymic

excision patients (TE) (by purple dots and letter T) compared to CID patients (by

blue dots and the letter C).

Supplementary Tables 1a–c | Clinical and molecular diagnosis of the patients.
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