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Abstract
Microglia are the resident immune cells and professional phagocytes of the central nervous system. However, little is known about
the contribution of their phagocytic signaling to the neuropathology and pathophysiology of epilepsy. Here, we summarize and
discuss the implications of recent evidence supporting that aberrant microglia phagocytic activity and alterations in phagocytosis
signaling molecules occur in association with microglia–neuronal contacts, neuronal/synaptic loss, and spontaneous recurrent
seizures in human and preclinical models of epilepsy. This body of evidence provides strong support that the microglial contri-
bution to epileptogenic networks goes beyond inflammation, and suggests that phagocytic signaling molecules may be novel
therapeutic targets for epilepsy.
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Introduction

Microglia are the macrophages and professional phagocytes of

the central nervous system (CNS). Under physiological con-

ditions, microglia are typically highly ramified cells with

dynamic processes that actively monitor their local environ-

ment to safeguard neural homeostasis.1 Under pathological

conditions, including seizures and epilepsy, microglia

become reactive, develop amoeboid shapes, and produce

inflammatory mediators such as cytokines, chemokines, and

complement proteins.2 Depending on their intensity and dura-

tion, these inflammatory signals can have beneficial or detri-

mental effects on the plasticity and survival of nearby cells.3

For example, short-lasting inflammation can promote neuro-

protection by attracting microglia to remove (phagocytose)

dead/apoptotic cells, a process that suppresses production of

pro-inflammatory cytokines, stimulates release of anti-

inflammatory mediators, and promotes tissue repair.3,4 In

contrast, exacerbated long-lasting inflammation is linked to

pathological consequences including neurodegeneration, cog-

nitive decline, seizures, and epilepsy.2,3 Interestingly, new

findings support that in addition to inflammatory molecules,

signals regulating microglial phagocytic and proliferating

properties are altered in response to seizures and may play

important roles in epileptogenic processes. Here, we summar-

ize and discuss the implications of these new discoveries.

Phagocytic Signaling

Phagocytosis is the process in which phagocytes, such as

microglia, engulf and remove unwanted particles and dead

cells. Phagocytosis can be performed by ramified and amoe-

boid “reactive” microglia, and is orchestrated by an assortment

of molecules which regulate chemoattraction, engulfing,

and degradation, also known as “find-me,” “eat-me,” and

“digest-me” signals, each recognized by specialized receptors

(Figure 1).4,5 “Find-me” signals such as nucleotides (e.g., ATP)

are sensed by purinergic receptors (P2Y12) and guide micro-

glia to the location of altered neuronal homeostasis. “Eat-me”

signals include phosphatidylserine (PS), which is typically

externalized to the outer leaflet of the plasma membrane in

cells undergoing apoptosis; Protein S (ProS), an opsonin that
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binds to PS; and complements C1q and C3b. The receptor Mer

Tyrosine Kinase (MerTK) recognizes ProS, while complement

receptors 1 and 3 (CR1, CR3) recognize C1q and C3b, respec-

tively. These receptors along with the triggering receptor

expressed in myeloid cells 2 (Trem2) aid in engulfment and

phagocytosis through remodeling the actin cytoskeleton.4,5 An

additional set of signals referred to as “don’t-eat-me” signals

include the integrin associated protein CD47 and its receptor

Figure 1. Phagocytic signaling molecules altered in human and experimental epilepsy. “Find-me” signals CX3CL1/CX3CR1, ATP/P2Y12, and
UDP/P2Y6, shown in blue, are associated with increased neuroimmune interactions during seizures. Microglia clearance/phagocytic activity
controlled by PRC2 and mediated by “eat-me” signals PS (red), C3b/CR3, ProS/MerTK, and Trem2, shown in green, are associated with
neuronal/synapse loss, cognitive deficits, and spontaneous recurrent seizures (SRS). “Don’t-eat-me” signals, CD47 and SIRP-a, shown in green,
are reduced in human epilepsy. CSF1R-mTOR signaling activated by CSF1/interleuklin-34 (IL34), shown in yellow, regulate microglial survival,
proliferation, and phagocytic microglial properties, and are associated with synaptic loss, cognitive decline, and SRS. Arrows indicate the
direction of the changes reported in human and experimental models. This diagram was created with Biorender.com. CR indicates complement
receptor; CSF1R, colony stimulating factor 1 receptor; MerTK, Mer Tyrosine Kinase; mTOR, mechanistic target of rapamycin; P2Y12, purinergic
receptors; ProS, Protein S; PRC2, Polycomb repressive complex 2; PS, phosphatidylserine; SIRP-a, signal regulatory protein a; SRS, spontaneous
recurrent seizures; Trem2, triggering receptor expressed in myeloid cells 2.
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the signal regulatory protein a (SIRP-a). It is well-known that

phagocytosis of apoptotic cells is anti-inflammatory and con-

tributes to the resolution of inflammation in injured tissues.4

However, molecules such as C1q, C3b, CR3, and Trem2 can

crosstalk with other receptors/pathways to also regulate micro-

glial inflammatory responses,4-7 suggesting that depending on

the target and context (healthy vs injured) these signals can

mediate production of pro- or anti-inflammatory cytokines.

Interestingly, a number of studies support that microglial pha-

gocytic signaling is essential for the establishment and matura-

tion of neural networks.1,7 Importantly, new evidence

indicates that dysregulation of these signaling cascades is

associated with the pathology of neurodegenerative disor-

ders1,7 and epilepsy.8 Recent histological and transcriptomic

immune profiling of microglia from patients with drug-

resistant seizures showed that microglia have high expression

of CR3, Trem2, and MerTK9-12 suggesting a robust phagocy-

tic phenotype. In human focal cortical dysplasia (FCD), we

found increases in C1q, C3b, and MerTK that paralleled

decreases in ProS and Trem2.13 In addition, decreased

levels of CD47 and SIRP-a were found in human FCD and

tuberous sclerosis complex (TSC).14 Taken together these

findings suggest that microglia may have altered phagocytic

functions in the human epileptic brain.

Activity-Dependent Microglia–Neuronal
Interactions

Microglia sense neuronal activity through the purinergic recep-

tor P2Y12R, which responds to microgradients of ATP.15

Under normal conditions, active neurons release ATP. How-

ever, following seizures ATP release increases.15 Conse-

quently, microglial–neuronal interactions occur in an

activity-dependent manner16-18 and have been observed in epi-

lepsy. In human epilepsy, microglial processes were found in

close proximity and apposed along cortical apical den-

drites.13,19 In experimental models, pronounced microglial

interactions with hippocampal CA1 dendrites were observed

during and after status epilepticus (SE).17,20,21 Studies using

2-photon live imaging of in vivo and ex vivo systems demon-

strated that microglial processes move rapidly toward dendrites

in response to seizures, a process that is dependent upon neu-

ronal NMDA receptor activation along with microglial

P2Y12R and fractalkine (CX3CL1-CX3CR1; “find-me” sig-

nal) signaling.17,22 These studies also reported that mice lack-

ing either P2Y12R or CX3CR1 exhibited higher seizure

severity during SE,17,22,23 thereby suggesting a potential role

for microglial–dendritic interactions in controlling neuronal

excitability. Although the functional impact of these contacts

in epilepsy is not definitively known, emerging evidence sug-

gests that microglial contacts can alter the structure of synaptic

sites. Live and electron microscope imaging of microglia in

cortex and hippocampus demonstrated that direct interactions

with synaptic structures can result in the disappearance or

growth of pre and postsynaptic elements.18,24-26 For example,

some microglia contacts were followed by the loss of spines,

axonal boutons, or spine head tips (by trogocytosis),18,24-26

while others stimulated filopodia growth on dendrites26 and

spine heads.24 Taken together, these findings suggest that

activity-dependent increases in physical microglia–dendritic/

synaptic interactions may contribute to circuit remodeling in

epilepsy. Thus, determining the functional impact of these neu-

roimmune interactions may lead to novel treatment strategies

to control neuronal hyperexcitability.

Phagocytosis of Synapses

During synaptogenesis in the healthy brain, microglia

eliminate extranumerary synapses in an activity-dependent

manner to allow for stronger synapses to form functional

connections.7,18,27-29 Microglial synaptic pruning in

developing networks is mediated by “eat-me” signals C1q and

C3b27,28,30,31 and by receptors CR3,27,28 CX3CR1,29 and

Trem2.32 CX3CR1, Trem2, C3, or C1q knockout (KO) mice

display either reduced microglial engulfment of synaptic

material or higher densities of spines/synapses and excessive

innervation in cortical or hippocampal networks.27-29,32 Func-

tional implications of failed microglial synaptic pruning dur-

ing development include altered synaptic plasticity, neuronal

hyperexcitability, and seizures.7,30,31 For instance, insuffi-

cient synaptic pruning in C1q KO mice is associated with

increases in spine density, synaptic connectivity, excitability

in the somatosensory cortex, and absence seizures.30,31 How-

ever, higher levels of phagocytic signaling molecules are also

associated with synaptic dysfunction. For example, increases

in complement C1q and C3/CR3 in mature/adult systems are

linked to exacerbated synaptic pruning and cognitive decline,

including learning and memory impairments, in models of

neurodegenerative disorders.7 These findings are relevant

because increased levels of C1q and C3 are consistently found

in human and experimental models of epilepsy, thereby sug-

gesting a potential role for complement proteins in activity-

dependent microglial synaptic pruning in seizure disorders.

Elevated levels of C1q and C3 occur in human epilepsies with

drug-resistant seizures including temporal lobe epilepsy

(TLE),9,33 FCD,13 and TSC.34 Similarly, long-lasting

increases in the levels of C1q-C3 that correlate with seizure

severity occur in adult rodent models of SE and acquired

TLE.33,35,36 It is possible that a complement-dependent

microglial elimination of synapses may contribute to the exa-

cerbated synaptic loss, seizures, and memory impairments

that occur after SE and in epilepsy.35 The overall functional

impact of aberrant C1q-C3 signaling to epileptic networks

would depend on the proportion of excitatory or inhibitory

cells/synapses being phagocytosed—an idea that requires

further investigation.

Phagocytosis of Neurons

During neurogenesis in the healthy developing brain, a high

number of cells undergo apoptosis as neuronal networks

develop and mature, and microglia are tasked with their
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removal. Clearance of apoptotic newborn cells continues in the

mature hippocampus, where neurogenesis persists through

adulthood.37 In the adult hippocampal subventricular zone,

noninflammatory microglia help maintain homeostasis by rap-

idly removing excess newborn cells through apoptosis-coupled

phagocytosis.37 However, following SE-induced epilepsy,

microglia failed to remove newborn apoptotic cells allowing

their accumulation throughout the dentate gyrus (DG).16 Using

2-photon microscopy along with quantitative reverse

transcription-polymerase chain reaction of microglia, Abiega

et al showed that this phagocytic impairment paralleled

decreased motility, reduced levels of Trem2, MerTK, and

CR3, and increased levels of inflammatory cytokines.16

Despite the reduced phagocytosis of apoptotic cells, microglial

engulfment of nonapoptotic viable cells was observed in the

DG during epileptogenesis.16,38 In fact, inflammatory micro-

glia can engulf and “kill” stressed but otherwise healthy neu-

rons in proximity to injured/apoptotic cells.5 Phagoptosis of

viable cells occurs through the transient exposure of PS,5 which

could take place in association with seizures and exacerbate

cell loss in epilepsy. Although it is not known whether this

contributes to epilepsy, evidence that PS supplements are

linked to reduced seizure frequency in aged rats39 and epileptic

patients40 suggest a potential role. Nevertheless, in contrast to

Abiega’s findings, Koizumi et al reported that kainate-induced

seizure activity provoked an increase in UDP/P2Y6–dependent

microglial phagocytic activity in the hippocampal CA3

region.41 Because microglial immune properties including

clearance/phagocytic activity are region- and context-

specific,8,42 it is possible that these differences may be due to

a higher load of dead/dying cells in the CA3 as opposed to DG,

where neurogenesis occurs. Lastly, a recent study showed that

disinhibition of microglial clearance activity due to ablation of

the Polycomb repressive complex 2 resulted in decreased spine

density in cortical neurons and spontaneous recurrent seizures

(SRS) in aged mice,42 thereby suggesting that enhanced pha-

gocytic activity may be epileptogenic. Further research is

needed to determine how seizures alter the phagocytic profiles

of microglia in different brain areas and how these relate to

regional neuropathology.

Microglial Proliferation

Microgliosis is the proliferation and accumulation of reactive

microglia. Microgliosis is widely observed in human epilepsy

as well as in experimental models.8 To determine how micro-

gliosis contributes to epileptogenesis and seizure generation,

it is necessary to examine the regulatory signaling pathways.

Activation of the colony stimulating factor 1 receptor

(CSF1R) signaling pathway in microglia, by CSF1 or

interleukin-34, leads to the downstream activation of a num-

ber of molecules including the mechanistic target of rapamy-

cin (mTOR) to regulate survival, proliferation, and

phagocytic properties.6,43 Because mTOR is ubiquitously

expressed in neurons and microglia, recent studies have spe-

cifically targeted mTOR hyperactivation in microglia44 as

well as CSF1R signaling.45-47 A microglia-specific TSC1

KO mouse model produced an mTOR hyperactivation pheno-

type that resulted in an increase in the number of microglia

with enhanced phagocytic activity in the hippocampus.44 In

these mice, the altered microglial properties correlated with

reduced densities of excitatory and inhibitory synapses, and

with the development of SRS.44 In a rat model of acquired

TLE, we found that at the peak of SE-induced hippocampal

microgliosis these cells had activated mTOR signaling and

were localized to areas with severe spine/dendritic loss.21,48,49

Treatment with the mTOR inhibitor rapamycin attenuated the

SE-induced microgliosis, dendritic/spine loss, and memory

deficits,21 suggesting that microgliosis contributes to the epi-

lepsy dendritic and cognitive pathology. Neuroprotective and

antiepileptic outcomes were also reported when inhibiting

CSF1R signaling in mouse models of SE.45,46 Blocking

CSF1R signaling with either CSF1 antibodies or the CSF1R

antagonist GW2580 attenuated microglial proliferation and

neuronal loss in hippocampi of mice that sustained kainate-

induced SE.46 Similarly, treatment with the CSF1R inhibitor

PLX3397 decreased both the number of IBA1-positive micro-

glial cells in the hippocampus and seizure frequency in a

mouse model of pilocarpine-induced SE.45 Although these

studies suggest that suppressing microgliosis during epilepto-

genesis is beneficial, recent studies also showed that total

ablation is detrimental,47,50 thereby suggesting that microglia

have multiple roles. Ablation of microglia with the CSF1R

inhibitor PLX5622 exacerbated the seizure phenotype and the

mortality rate in epileptic mice induced with the Theiler mur-

ine encephalomyelitis virus.47 Moreover, homozygous muta-

tions in the human CSF1R gene are associated with a drastic

loss of microglia and brain structural malformations.50 Of

two patients described in this study, one died prematurely at

age one and the other presented with developmental delay and

epilepsy.50 Taken together, these data put forward the idea

that the wide range of rapamycin-mediated outcomes

described in the epilepsy literature may also have do to with

the modulation of mTOR-dependent microglial proliferating

and phagocytic properties. In addition, these findings suggest

that inhibition of microgliosis through the CSF1R pathway

during epileptogenesis may be a novel approach to prevent

or reduce SRS.

Conclusion

Although microglia are the professional phagocytes of the

CNS, relatively little is known regarding their phagocytic pro-

files in epilepsy or their contribution to the neuropathology and

pathophysiology of this disorder. The studies described here

are the first to show that seizures promote alterations in

phagocytosis-associated signaling molecules that result in neu-

roimmune interactions,13,17,19-22 increases in “find-me”17,22,41

and “eat-me”9,13,33-36 signals, decreases in the phagocytosis of

newborn apoptotic cells,16 phagocytosis of viable newborn

cells,16,38 and increases in microglial phagocytic activity and/

or proliferation that parallel neuronal/synaptic loss, seizures,
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and cognitive decline.21,35,41,42,44-46 Thus, it is possible that

microglia may modulate synaptic circuitries in epilepsy by

improperly phagocytosing synaptic structures and neurons.

However, whether this is a pro- or anti-epileptogenic mechan-

ism, or if this is a cause or consequence of seizures and epilepsy

requires further investigation. Overall, this body of evidence

provides strong support that the microglial contribution to the

epileptogenic networks goes beyond inflammation, and sug-

gests that phagocytic signaling molecules may be novel ther-

apeutic targets for epilepsy.
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