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Abstract: Human Cytochrome P450 (CYP) enzymes constitute a superfamily of membrane-bound
hemoproteins that are responsible for the metabolism of a wide variety of clinically, physiologically,
and toxicologically important compounds. These heme-thiolate monooxygenases play a pivotal role
in the detoxification of xenobiotics, participating in the metabolism of many structurally diverge
compounds. This short-review is intended to provide a summary on the major roles of CYPs in
Phase I xenobiotic metabolism. The manuscript is focused on eight main topics that include the
most relevant aspects of past and current CYP research. Initially, (I) a general overview of the
main aspects of absorption, distribution, metabolism, and excretion (ADME) of xenobiotics are
presented. This is followed by (II) a background overview on major achievements in the past of
the CYP research field. (III) Classification and nomenclature of CYPs is briefly reviewed, followed
by (IV) a summary description on CYP’s location and function in mammals. Subsequently, (V) the
physiological relevance of CYP as the cornerstone of Phase I xenobiotic metabolism is highlighted,
followed by (VI) reviewing both genetic determinants and (VI) nongenetic factors in CYP function
and activity. The last topic of the review (VIII) is focused on the current challenges of the CYP
research field.

Keywords: Cytochrome P450 (CYP); drug-metabolizing enzymes (DMEs); xenobiotic; metabolism;
toxicology; carcinogens; adverse drug reactions (ADRs)

1. Xenobiotics Disposition and Excretion

Humans are continuously exposed to a wide variety of chemicals. An important
portion of these compounds is not essential for maintenance of normal homeostasis. They
are neither nutrients nor intermediate metabolites, produced from nutritional metabolism.
Drugs, environmental pollutants, cosmetics, and even components present in our diet,
such as food additives, form this extended group of xenobiotics in general harmless,
but potentially toxic [1–4]. In a human lifetime, one might be exposed to 1–3 million
different foreign compounds, which can accumulate within a variety of different organs
and tissues [4]. Storage of xenobiotics can function as either a protective mechanism or
as a mean by which bioaccumulation can trigger toxic effects. This potential toxic route
depends on the physiologic relationship between the storage depot and the target tissues
for a specific toxicant [1,3].

Xenobiotics are metabolized and ultimately eliminated through the urine, bile, and
feces, with minor routes through expiration and sweat. However, without effective detoxi-
fication and subsequent excretion, many compounds may reach toxic levels and interfere
with cellular homeostasis, leading to cellular and tissue damage, with detrimental effects
on health [1,2,4]. Harmful cellular and tissue concentrations can be prevented by direct
elimination of xenobiotics, whose mechanisms are dependent on the physico-chemical
proprieties of the compounds. Yet, the vast majority undergo biotransformation by com-
plex metabolic mechanisms, resulting in the formation of numerous metabolites, some of
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which have the potential to cause unintendedly, more toxic effects, i.e., bioactivation [1,4–6].
Detoxification routes comprise enzymatic functionalization and/or conjugation reactions
that facilitate elimination and excretion. All combined, these pathways act jointly to
detoxify xenobiotics and remove them from cells and tissues [1,3,4,6–9]. In chemical toxi-
cology, it is therefore of great interest to have comprehensive and integrated knowledge of
in vivo xenobiotic metabolism, to understand, predict and prevent potential health hazards
through bioavailability, bioaccumulation, or generation of harmful reactive metabolites,
after chemical exposure.

Four stages can be distinguished in the processes of absortion, metabolism and cellu-
lar excretion of xenobiotics, namely (i) influx by transporter enzymes, biotransformation
in (ii) Phases I and (iii) II, mediated by drug-metabolizing enzymes (DMEs), followed
by (iv) Phase III, the excretion mediated mostly through transporter enzymes [1,6,9–12]
(Figure 1). Organic anion transporting polypeptides (OATP), organic anion transporters
(OAT) and sodium taurocholate cotransporting polypeptide (NTCP), are involved in the in-
flux of the xenobiotics (reviewed in Murray M, Zhou F, 2017) [12]. Phase I enzymes, which
include the cytochrome P450s (CYPs) superfamily—the major contributer— but also flavin-
containing monooxygenases (FMOs), NAD(P)H:quinone oxidoreductases (NQOs), amine
oxidases, alcohol dehydrogenases, esterases and peroxidases (reviewed in Gan J, et al.,
2016) catalyze the oxidation, reduction or hydrolyses of primarily lipophilic xenobiotics
into more polar molecules [7,13–16]. The introduction of polar groups by Phase I reactions
provides sites that enable conjugation reactions, mediated by Phase II enzymes [5,7,17,18].
Although Phase II enzymes can directly act on the parent compound [19], typically Phase
I-metabolites are conjugated with charged species, such as glucuronic acid, glutathione,
sulfate, amino acids (glycine, taurine, glutamic acid), methyl or acetyl groups. Addition of
these large anionic groups, which may detoxify reactive electrophiles (either parent com-
pound or Phase I metabolite), produce Phase II metabolites, with increased hydrophilicity
and molecular weight, which in larger part are not able to diffuse across phospholipid mem-
brane barrier (reviewed in Jančová P, Šiller M, 2012) [6,10,11,13,19,20]. Phase III xenobiotic
transporters excrete hydrophilic conjugates, with the anionic groups acting as affinity tags
for a variety of membrane carriers belonging to two main clusters: ATP binding cassette
(ABC), including the multidrug resistance protein (MRP) family, and solute carrier (SLC)
transporters (reviewed in Döring B, Petzinger E, 2014) [21–23].

There are major inter- and intra-individual variations in the capacity to metabolize,
detoxify and extrude xenobiotics (see below). These are of genetic, epigenetic, environ-
mental, and physio- or pathophysiological origin, and vary during lifetime [9,13,21,24–29].
Most xenobiotics are detoxified and cleared through an intricate network of multiple en-
zymes and pathways. The relationship between xenobiotic local/cellular concentration,
specific enzymes affinity, tissue specific enzyme expression, stability, and cofactors avail-
ability, often determine which metabolic reactions dominate in a given individual, at one
precise moment [1,7,30].
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Figure 1. Xenobiotic metabolism in the hepatocyte and the central role of CYPs in biotransformation. 
Besides hydroxylation, exemplified here, CYPs catalyze a variety of other biotransformation reac-
tions (e.g., epoxidation, dealkylation, oxygenation, dehydrogenation, dehalogenation, among oth-
ers). Non-CYP mediated metabolism may also occur in Phase I via flavin-containing monooxygen-
ases (FMOs), NAD(P)H:quinone oxidoreductases (NQOs), amine oxidases, alcohol dehydrogen-
ases, esterases and peroxidases. ABC: ATP binding cassette (e.g., multidrug resistance protein fam-
ily—MRP); GA: glucuronic acid; GSH: glutathione; NTCP: sodium taurocholate cotransporting pol-
ypeptide; OAT: organic anion transporters; OATP: organic anion transporting polypeptides; OH: 
hydroxyl; PAPS: phosphoadenosine-phosphosulfate; SLC: solute carrier transporters; UDPGA: uri-
dine diphosphate-glucuronic acid. Transferases: glutathione S-transferases (GST), 
methyltransferases, glycine N-acyltransferase (GLYAT), N-acetyltransferases (NAT), 
sulfotransferases (SULT), UDP-glucuronosyltransferases (UGT). 
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ing the oxidative biotransformation of a vast majority of lipophilic xenobiotics and are the 
focus of research in areas such as clinical pharmacology and toxicology [5,18,25,31–33]. 
The early reports dealing with CYP, dated back to the 1940s and were related with in vitro 
studies on the metabolism of steroids and xenobiotics, including drugs and carcinogens 
[34]. 

Figure 1. Xenobiotic metabolism in the hepatocyte and the central role of CYPs in biotransformation. Besides hydroxylation,
exemplified here, CYPs catalyze a variety of other biotransformation reactions (e.g., epoxidation, dealkylation, oxygenation,
dehydrogenation, dehalogenation, among others). Non-CYP mediated metabolism may also occur in Phase I via flavin-
containing monooxygenases (FMOs), NAD(P)H:quinone oxidoreductases (NQOs), amine oxidases, alcohol dehydrogenases,
esterases and peroxidases. ABC: ATP binding cassette (e.g., multidrug resistance protein family—MRP); GA: glucuronic acid;
GSH: glutathione; NTCP: sodium taurocholate cotransporting polypeptide; OAT: organic anion transporters; OATP: organic
anion transporting polypeptides; OH: hydroxyl; PAPS: phosphoadenosine-phosphosulfate; SLC: solute carrier transporters;
UDPGA: uridine diphosphate-glucuronic acid. Transferases: glutathione S-transferases (GST), methyltransferases, glycine
N-acyltransferase (GLYAT), N-acetyltransferases (NAT), sulfotransferases (SULT), UDP-glucuronosyltransferases (UGT).

2. Historical Aspects of Cytochrome P450s Research

Cytochrome P450s comprise the major Phase I family of enzymes capable of catalyzing
the oxidative biotransformation of a vast majority of lipophilic xenobiotics and are the focus
of research in areas such as clinical pharmacology and toxicology [5,18,25,31–33]. The early
reports dealing with CYP, dated back to the 1940s and were related with in vitro studies on
the metabolism of steroids and xenobiotics, including drugs and carcinogens [34].

The establishment of the CYP research field goes back to the late 50s/early 60s, when
several groups focused on a particular pigment in animal liver microsomes, which seemed
to be directly related with specific hepatic functions [35,36]. In 1962, a major breakthrough
was obtained by Drs. Tsuneo Omura and Ryo Sato, describing for the first time, the spectral
observation of CYP in liver microsomes [37]. In fact, the name of CYP (P450) is derived
from the characteristic absorption maximum at 450 nm, observed in differential spectra
of the reduced CO-bond enzyme complex. Initially, CYP was thought to be a single en-
zymatic entity, which was believed to exist almost exclusively in the liver, responsible
for the metabolism of drugs and other foreign chemicals [38–40]. Several seminal reports
described the inducibility of CYP activities, of clinical relevance in pharmacology and thera-
peutics [40–42]. Subsequently, other remarkable discoveries were made, namely: the role of
CYPs in steroid and fatty acid hydroxylation, both in adrenal cortex and liver (1963) [43,44];
protein separation of CYPs [45] and their purification [46,47]; identification and biochemical
characterization of multiple CYP forms—evidencing the existence of numerous isoenzymes
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(late 60s/early 70s) [39,47–50]; biophysical studies and biochemical characterization of
bacterial CYP (P450cam or CYP101A1)—of importance to establish template protein struc-
tures to be used in homology modeling (1968) [51]; and data supporting models on oxygen
activation, evidencing a stepwise process involving C-H bond breaking (1978) [52]. In
1983, the first complete analysis of a CYP gene (rat) was accomplished [53]. Thereafter, the
evolution of molecular genetic techniques led researchers to uncover the extensive inter-
and intra-species variability of the CYP genes superfamily. Genetic studies have shown the
considerable inter-individual differences in expression of CYP isoenzymes in the human
population (since the 80s) [30,54–59]. In the waking of the new millennium, 57 human
CYP genes (plus multiple pseudogenes) were identified by the human genome project
(2003) [26,60,61]. During this period other significant contributions were the develop-
ment of mammalian (including human) heterologous CYP expression, using recombinant
DNA technology (early 90s)—critical for crystallography and functional studies [62–65];
application of engineered bacterial strains expressing human CYP enzymes complex in
biotransformation and genotoxicity studies of xenobiotics (late 90s) [66,67]; the first CYP
proteins structures solved (bacterial P450cam and P450BM3) (early 80s and 90s) [68–70],
followed by the crystal structures of human CYPs—particularly high-resolution structures
(2000s) [71–74]; and the description of determinant protein-protein interactions within CYP
enzymes complex—impacting CYP activity (2000s and early 10s) [75–81].

3. Classification and Nomenclature of Human Cytochrome P450s

Back in the 80s, studies enabled by the big boom in molecular biology demonstrated
that CYP genes are ubiquitously present in almost all life forms, from prokaryotes to
humans, adding a new dimension to the complex repertoire of functions catalyzed by this
super enzyme family [53,54]. The genes encoding these heme-thiolate monooxygenases
capable of catalyzing the oxidative biotransformation of endogenous compounds and
xenobiotics, diverged from a single ancestor in an evolutionary process started 3 billion
years ago [82,83]. In contrast with “conventional” enzymes, which normally demonstrate
high substrate specificity and turnover rates, human CYP isoenzymes involved in drug
metabolism, evolved favoring low substrate specificity and turnover rates, characteristics
of DMEs in general [30].

Although the outcome of the CYP-mediated metabolism prevents bioaccumulation
by chemically transforming lipophilic compounds (readily absorbed) into hydrophilic
metabolites (readily excreted) (Figure 2), CYP mediated biotransformation as well as
other DMEs, evolved in a species-specific manner [54]. Historically, species of rodents,
dogs, rabbits and pigs were considered to be suitable organisms for comparative drug
metabolism studies. However, the variability in xenobiotic metabolism among species, in
particular CYP metabolism, is evidenced by the fact that mutagenicity profiles of chemicals
determined by the Ames test [84,85] when using human liver S9 fraction is significantly
different from the ones observed with the rat liver S9 fraction [86]. This raises an important
issue regarding the utility and reliability of results obtained from toxicological studies,
using animal materials and models for risk assessments of human exposure [87]. Several
factors must be carefully considered for the appropriate selection of an animal model which
adequately mimics the human metabolism of a particular xenobiotic. Species-specific ex-
pression, regulation and function of CYPs have to be taken into account to avoid significant
deviations. This inter-species variability is harshly exemplified by the case of thalidomide,
in the late 50s/early 60s. This drug was commercialized as a non-addictive, non-barbiturate
hypnotic and anti-emetic, and used for treatment of morning sickness of pregnant women.
Thalidomide was tested for potential teratogenicity in mice and considered to be safe,
however its use led to severe birth defects involving limb malformation. Teratogenicity is
thought to occur through a reactive metabolite of thalidomide (arene oxide) (Figure 2A),
formed in significantly higher proportions in human (and rabbit) liver than in mouse liver.
After this occurrence, U.S. Food and Drug Administration (FDA), and medicine agencies
worldwide, implemented obligatory full multi-species (in vivo) teratogenicity testing as
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a requisite for drug approval [88,89]. Another example is the metabolism and effect of
aflatoxin B1 in trout. Aflatoxin B1, the most potent hepatic chemical carcinogen known
today is activated via a CYP-dependent reaction (Figure 2G). Interestingly, and in contrast
with the rat model, trout exposure to aflatoxin B1 may result in a hepatocellular carcinoma
with relevant similarity to the one found in humans [90,91].
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Figure 2. Examples of reactions catalyzed by CYPs. (A) CYP-mediated bioactivation of thalidomide. 
(B) CYP-mediated hydroxylation of phenol. (C) CYP-mediated metabolism of caffeine, with multi-
ple metabolites. (D) Bioactivation of benzo[a]pyrene mediated by CYP enzymes. (E) CYP-mediated 
metabolism of paracetamol and its potential toxicity. (F) CYP-mediated bioactivation of NNK. (G) 
Bioactivation of aflatoxin B1 by CYP enzymes. AFB1: Aflatoxin B1. APAP: acetaminophen; B[a]P: 
benzo[a]pyrene; BPDE: benzo[a]pyrene diol epoxide; DMX: dimethylxanthine; GST: glutathione S-
transferases; NAPQI: N-acetyl-p-benzoquinone imine; NNAL: 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol; NNK: nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; PST: phe-
nol sulfotransferase; SULT: sulfotransferases; TMX: trimethylxanthine; UGT: UDP-glucuronosyl-
transferases. 

In 1987, the gene superfamily nomenclature system, based on evolutionary diver-
gence of CYP, was proposed [54,83]. Since then, CYPs are organized into families and 
subfamilies, based on the percentage of amino acid sequence identity (Figure 3) [61,92,93]. 
Cytochrome P450s forms sharing an identity of ≥40% constitute a particular family desig-
nated by an Arabic numeral, whereas enzymes with ≥55% identity are assigned to a par-
ticular subfamily designated by a letter. Finally, the gene coding the isoenzyme is desig-
nated by an Arabic numeral (https://drnelson.uthsc.edu/) (accessed on 20 June 2021). In 
humans, the CYP superfamily consists of 57 genes (and 58 pseudo-genes) divided into 18 
families and 44 sub-families and can be classified based on major substrate classes (Table 
1) (https://cyped.biocatnet.de/) (accessed on 20 June 2021) [5,25,82,94]. 
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Figure 2. Examples of reactions catalyzed by CYPs. (A) CYP-mediated bioactivation of thalidomide. (B) CYP-mediated
hydroxylation of phenol. (C) CYP-mediated metabolism of caffeine, with multiple metabolites. (D) Bioactivation of
benzo[a]pyrene mediated by CYP enzymes. (E) CYP-mediated metabolism of paracetamol and its potential toxicity.
(F) CYP-mediated bioactivation of NNK. (G) Bioactivation of aflatoxin B1 by CYP enzymes. AFB1: Aflatoxin B1. APAP:
acetaminophen; B[a]P: benzo[a]pyrene; BPDE: benzo[a]pyrene diol epoxide; DMX: dimethylxanthine; GST: glutathione
S-transferases; NAPQI: N-acetyl-p-benzoquinone imine; NNAL: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol; NNK:
nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; PST: phenol sulfotransferase; SULT: sulfotransferases; TMX:
trimethylxanthine; UGT: UDP-glucuronosyltransferases.

In 1987, the gene superfamily nomenclature system, based on evolutionary diver-
gence of CYP, was proposed [54,83]. Since then, CYPs are organized into families and
subfamilies, based on the percentage of amino acid sequence identity (Figure 3) [61,92,93].
Cytochrome P450s forms sharing an identity of ≥40% constitute a particular family des-
ignated by an Arabic numeral, whereas enzymes with ≥55% identity are assigned to a
particular subfamily designated by a letter. Finally, the gene coding the isoenzyme is
designated by an Arabic numeral (https://drnelson.uthsc.edu/) (accessed on 20 June
2021). In humans, the CYP superfamily consists of 57 genes (and 58 pseudo-genes) divided
into 18 families and 44 sub-families and can be classified based on major substrate classes
(Table 1) (https://cyped.biocatnet.de/) (accessed on 20 June 2021) [5,25,82,94].
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Table 1. Main classes of compounds metabolized by CYPs and major isoenzymes involved their
biotransformation.

Classes of Compounds CYP Isoenzymes

Sterols 1B1, 7A1, 7B1, 8B1, 11A1, 11B1, 11B2, 17A1, 19A1, 21A2,
27A1, 39A1, 46A1, 51A1

Xenobiotics 1A1, 1A2, 2A6, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1,
2F1, 3A4, 3A5, 3A7

Fatty acids 2J2, 2U1, 4A11, 4B1, 4F11, 4F12, 4F22, 4V2, 4X1, 4Z1
Eicosanoids 4F2, 4F3, 4F8, 5A1, 8A1
Vitamins 2R1, 24A1, 26A1, 26B1, 26C1, 27B1, 27C1
Unknown 2A7, 2S1, 2W1, 4A22, 20A1

Microsomal CYPs (CPR as obligatory electron donor) in black and mitochondrial CYPs (adreno-
doxin/adrenodoxin reductase as obligatory electron donor) in green.

4. Location and Function of Cytochrome P450s in Mammals

Cytochrome P450s are expressed virtually in all tissues, with highest concentrations
found in the small intestine, but particularly in the liver. These membrane-bound heme-
proteins contain more than 500 amino acid residues and a single heme prosthetic group
in the active site [14,25,26,32]. CYPs are abundant in the microsomal fraction of the liver,
playing a central role in bile acid biosynthesis and in the metabolism of foreign com-
pounds [5,25,94]. CYPs are also involved in the homeostasis of steroid hormones, with
relevant CYP forms present in the inner membrane of mitochondria of steroidogenic tis-
sues, such as adrenal cortex, testis, ovary, breasts, and placenta [43,44]. Additionally, CYPs
are of importance in vitamin metabolism, metabolism of unsaturated fatty acids, and in
cholesterol biosynthesis [54,82,95] (Table 1).

The human gut microbiome represents a site for xenobiotic metabolism, altering the
pharmacokinetics outcome of drugs, environmental toxicants, and heavy metals. Increased
metabolism or biactivation of xenobiotics by the gut microbiome may occur, either through
the intestinal tract or re-entering the gut via enterohepatic circulation. This is dependent
on the enzymatic activity within the microbial niche [96,97]. CYP host expression in mice
showed to be modulated by the collection of microorganisms in the gastrointestinal tract
via altered xenobiotic nuclear receptors activity [98,99]. In a dual effect, the microbiota
modulates the pharmacokinetics of the xenobiotics, while reciprocally xenobiotics can
influence the viability and metabolism of the microbiota.

Cytochrome P450s catalyze a variety of oxidation and reduction reactions involving
broad, and in many cases overlapping substrate specificity (Figure 2) [8,18,26,100–106].
In this context, a single compound can be metabolized by different CYP isoenzymes,
in a complex biotransformation enabled by multiple pathways, resulting in numerous
metabolites. On the other hand, a unique compound can be metabolized by a single CYP
originating different metabolites. The typical CYP-mediated monooxygenation consists
of the incorporation of one oxygen atom into the substrate (RH + O2 + 2e− + 2H+ →

ROH + H2O), although the activated oxygen atom may not necessarily be incorporated
but used in different types of reactions. Reactions catalyzed by CYPs include: aliphatic,
aromatic and N-hydroxylation; epoxidation; N-, O- and S-dealkylation; N- and S-oxidation;
oxidative deamination; dehalogenation; dehydrogenation; dehydration; C-C bond cleavage;
isomerization; reduction; and esterase [107].

The energy required to activate oxygen is supplied to microsomal CYPs (including
those of families 1–4, involved in xenobiotic metabolism, see below) by cytochrome P450
oxidoreductase (CPR) [108]. This reductase obtains two electron equivalents in the form of
a hydride (H−) from NADPH, which is received by its flavin adenine dinucleotide (FAD)
moiety (reductase) and subsequently donated to CPR’s second flavin prosthetic group,
flavin mononucleotide (FMN) (transporter). Through an extensive open/close protein
dynamics, the FMN is reduced (inter-flavin electron transfer, closed conformation) and
subsequently, CPR undergoes a large rearrangement, allowing the interaction of CYPs
with the FMN domain of CPR (open conformation), with electron equivalents transferred,



J. Xenobiot. 2021, 11 102

one at a time, to the heme group of CYPs (inter-protein electron transfer) [80,81,109–113].
Additionally, cytochrome b5 may play an auxiliary role in sustaining CYPs in their activity,
by donating the second electron, which is facultative and dependent on the CYP isoenzyme
and/or substrate [75–79].

5. The Central Role of Cytochrome P450s as Xenobiotic-Metabolizing Enzymes

In humans, the CYP enzyme family represents the most important enzymatic system
involved in Phase I drug metabolism [5,10,13,20,25]. A survey on literature databases of
human oxidoreductases and CYP enzymes implicated in the Phase I metabolism evidenced
that CYPs are involved in the vast majority (approx. 90–95%) of enzymatic reactions in the
metabolism of xenobiotics [7]. Additional enzyme systems may play a role in hepatic Phase
I metabolism, albeit to a lesser extent than CYPs, as mentioned above. These include FMOs,
NQOs, amine oxidases, alcohol dehydrogenases, esterases and peroxidases [7,13–16].

Although the majority of the isoenzymes of the 18 human CYP families have specific
functions in the metabolism of endobiotics, about 15 isoforms belonging to CYP families 1,
2 and 3 (Table 2) are accountable for 70–80% of all Phase I metabolism of clinically used
drugs [25] and are involved in the biotransformation of a vast diversity of environmental
chemicals (approx. 90%), including 66% metabolism reactions of chemical carcinogens [114].
From these, CYP1A2, CYP2C9, CYP2D6 and CYP3A4/5, are responsible for about 72% of all
CYP-mediated metabolism of clinically marketed drugs [25]. Although typically contribut-
ing to theω-oxidation of endogenous fatty acids and eicosanoids, members of the CYP4
family are additionally involved in xenobiotic metabolism (e.g., CYP4A11, CYP4F2 and
CYP4F12), albeit to a much lower extend than isoforms of the CYP1–3 families [115–118].

The CYP-enzymes involved in xenobiotic metabolism have evolved to protect humans
against potential toxic agents. However, CYP-mediated biotransformation may result
in metabolic activation of environmental chemicals to reactive carcinogenic products, a
process known as “lethal synthesis” or bioactivation [14,25,82,94,114,119,120]. While CYPs
may catalyze the activation of procarcinogens to electrophilic ultimate carcinogens, the
Phase II enzymes in general detoxify electrophilic intermediates into non-toxic substrates,
with few exceptions of non-canonical bioactivation through conjugation reactions [19]. The
potentially toxic reactive metabolites that “escape” from Phase II metabolism are able to
covalently interact with nucleophilic structures such as those of nucleic acids, proteins,
or lipids, causing cell damage and potentially triggering carcinogenesis, teratogenicity,
and/or adverse drug reactions (ADRs) [1,3,20,58,103–105,114,120] (Figure 1). Several
CYP-mediated oxidations contribute to the synthesis of more toxic metabolites, after ex-
posure to specific compounds such as: (i) polycyclic aromatic hydrocarbons (PAHs) (e.g.,
benzo[a]pyrene, Figure 2D), including nitro-polycyclic aromatic hydrocarbons, derived
from incomplete combustion; (ii) heterocyclic aromatic amines (HAAs) from charbroiled
meats; (iii) aromatic amines as dyes, or present in pesticides, tobacco smoke and phar-
maceuticals (e.g., paracetamol, Figure 2E); (iv) nitrosamines present in tobacco smoke
(e.g., nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK, Figure 2F) and
diet, formed from nitrites and nitrates; (v) toxins present in food products (e.g., grains or
cereals) contaminated with pathogenic microorganisms (e.g., aflatoxin B1 produced by
Aspergillus flavus and A. parasiticus, Figure 2G). These xenobiotics are transformed to their
toxic forms—usually electrophiles such as epoxides, hydroxylamides, acyl halides, among
others—through CYP-mediated activity [5,14,106,107,121].
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Table 2. Genetic variability and importance of the main CYP isoenzymes involved the metabolism of xenobiotics.

CYCYP Isoenzyme Polymorphism Frequency Functional Effects Allelic Variants Participation in the Metabolism of Xenobiotics

1A1 Relatively high Rare 13
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6. Genetic Determinants in Cytochrome P450s Expression and Activity

With the advances in research during the last 30 years, it became clear that the ef-
fects of genetic variability of DMEs, particularly those of the CYP enzymes complex, are
highly relevant in terms of drug response and detoxification or bioactivation of xeno-
biotics in general [24,26,57,59,114]. Cytochrome P450s exhibit genetic polymorphisms
with multiple allelic variants, demonstrating frequencies varying between different pop-
ulations and ethnicities [57–59,82,106,122] (Figure 4). These include single nucleotide
variants, small deletions or insertions, and copy number variants (gene deletion or du-
plication/amplification, the later more frequent) [55–57]. These genetic variants can alter
structurally the CYP enzyme or its expression, resulting in normal, reduced, increased
or absence of activity [58,59,82,122,123]. A nomenclature system has been set up for the
CYP alleles (using the suffixes *1, *2, *3 . . . ; where *1 designates the “wild type,” or most
common gene-variant) (Figure 3). Allelic variants are summarized and described on the
home page of the human CYP allele nomenclature committee, at Pharmacogene Variation
(PharmVar) Consortium (https://www.pharmvar.org/htdocs/archive/index_original.htm)
(accessed on 20 June 2021).
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Isoforms CYP2C9, 2C19 and 2D6 present the highest genetic variability in the human
population, with so far 70, 38 and 145 allelic variants being identified, respectively (Table 2).
These three CYPs have been estimated to account for approximately 35–40% of oxidative
drug metabolism and a quarter of biotransformation of xenobiotics in general, including
environmental and industrial pollutants [7,17,25,114]. The high frequencies of genetic
polymorphism of these three CYPs were demonstrated to cause significant functional effects
and high penetrance in individual susceptibility in the human population [4,5,56–58,82].
Conversely, severe loss-of-function alleles or functional gene duplications are rare in genes
encoding CYP1A2 and 3A4 (21 and 32 allelic variants, respectively) [7,14,25,57,122]. These
two CYPs together are responsible for 35% and 30% of drug- and of general chemical
metabolism, respectively.
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This extensive genetic variability, causing inter-individual differences in expression
and activity of human CYPs is considered to be one of the major causes in the lack of
efficacy and in ADRs of therapeutic drugs, as well as in the variability of toxic outcome
after exposure to environmental compounds [55,56,58,124,125]. Pharmacogenetic testing
of CYPs is gaining attention due to the possibility of developing safer drugs and patient-
tailored drug therapy in precision medicine [5,25,26]. The occurrence of specific gene
variants translates into four major metabolizer phenotypes: (i) ultrarapid metabolizers
(UM), involving two or more active gene copies or allelic variants, encoding more efficient
enzymes or over-expressed CYP isoforms; (ii) extensive metabolizers (EM), carriers of
two functional CYP alleles; (iii) intermediate metabolizers (IM), heterozygous for a defect
allele or carrying two alleles causing combined decreased activity of a CYP; (iv) poor
metabolizers (PM), carrying two defective alleles, producing CYPs with very low or with-
out activity/function [55,56,122,125]. A potential additional genetic variability in CYP
mediated xenobiotic metabolism has recently been revealed. This regards the genetic
variability of CPR (encoded by the POR gene), the obligatory redox partner of microsomal
CYPs for the reception of electron equivalents to sustain their activity. Recent data suggest
that natural occurring genetic variants of POR may lead to altered CYP mediated drug
metabolism [126–129].

Genotyping provides sequence data allowing the estimation of the expectable CYP
metabolizer phenotypes. However, additional determinants have been shown to play a
role in modulating CYP enzymes function, such as those of the environment and physio-
pathological conditions (discussed below) [25,130,131]. Of relevance also to mention two
main epigenetic mechanisms affecting CYP gene expression: (i) altered DNA methylation —
involved in biased cellular control of gene expression; and (ii) microRNA (miR) regulation—
affecting expression levels of target CYPs [5,132,133]. The inhibition of methylation in
hepatic cell lines has been reported to induce CYP genes expression, particularly CYP3A
genes [134]. Additionally, methylation patterns in the promoters of CYP genes seem to be
different in distinct physiological conditions or environmental exposures (e.g., decreased
inducibility of CYP1B1 due to promoter methylation at multiple CpG sites; lower methyla-
tion in the CYP1A1 promoter found in heavy smokers) [132,135]. Direct regulation of CYPs
by miRs was evidenced for CYP1B1 (miR-27b), CYP2C9 (miR-130b), CYP2C9 (miR-34a),
CYP2E1 (miR-378), and CYP3A4 (miR-27b, miR148a, and miR34a) [133,136–138]. Addi-
tionally, histone protein modification, an epigenetic mechanism that may affect chromatin
structure, impacting accessibility, have been indicated to be involved in transcriptional
regulation of CYP expression. Epigenetic patterns leading to divergent CYP-mediated
metabolism are normally reversible, tissue-specific and highly dependent on environmental
and individual physio-pathological conditions [25,56,139].

7. Nongenetic Factors Influencing Cytochrome P450s Expression and Activity

Factors such as age, sex, hormone levels, and environment, as well as pathological
conditions such as infection, inflammation, cholestasis, and cancer are aspects demon-
strated to influence CYP expression and activity [25,130,131] (Figure 4). Other biochemical
factors such as protein-protein interaction—involving CYP interaction with redox partners
and other proteins with allosteric regulatory effect [76,77,81,129], or substrate-substrate
interaction—consisting in CYP activity inhibition due to substrate interference/competition
mechanism, are also implicated in CYP function [25,100,140–142].

Transcriptional activation is described as the main process of induction of CYP genes
and protein levels [143]. Yet, mRNA and protein stabilization, or inhibition of protein
degradation pathways will also lead to altered levels of CYP activity [144]. Proteasome-
mediated degradation, phosphorylation, and long non-coding RNA (lncRNAs)-related
mechanisms, are among the non-canonical post-transcriptional regulation pathways of
CYPs [145–147]. Induction of expression of CYP enzymes, and of DMEs in general,
involves a complex expression-regulation network dependent on cell-membrane- and
nuclear-receptors, promoter-regulation sequences of the cis-acting elements, and of trans-
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acting activators and repressors, which may be shared among the same enzyme family
and between different DME families. Expression of genes encoding CYPs involved in
xenobiotic metabolism (mainly of CYP families 1–4) is highly inducible and can be tran-
scriptionally activated by xenobiotics through xenobiotic receptor-dependent mechanisms
(Figure 5) [26,148]. Several receptors mediate the induction of these CYPs, such as: the aryl
hydrocarbon receptor (AhR)—CYP1 genes; the pregnane nuclear receptor (PXR)—CYP2A6,
2B, 2C, and 3A genes; the constitutive androstane receptor (CAR)—CYP1A, 2A6, 2B, 2C8,
2C9 and 3A4 genes [5,144,148–153]. Typically, CYP1A1 and 1A2 are highly inducible by
numerous xenobiotics that act as AhR ligands. Genes of these two CYP1A members are
arranged in a head-to-head orientation, sharing a common bi-directional promoter with
at least 13 AhR response elements [154,155]. Additionally, transactivation of both CYP1A
promoters by CAR is also possible through a common cis-regulatory estrogen receptor
element (ER8) in the 5′-flanking region [149]. Transcriptional regulation of CYP2A6 gene
involves PXR and CAR activators via direct repeat 4 (DR4) elements [150]. In vivo and
in vitro studies are indicative that transcriptional upregulation of CYP2A6 may also oc-
curs through an estrogen receptor-dependent pathway [156,157]. CYP2B6 expression is
majorly regulated by an orphan CAR (NR113) via a phenobarbital-responsive enhancer
module (PBREM), while PXR (NR112) contributes to smaller fraction in CYP2B6 induction
through a distal xenobiotics-responsive enhancer module (XREM) [151,152]. The CYP2C
genes are variable in their relative inducibility, which is dependent on ligands of the PXR
and CAR, glucocorticoid (GR), and vitamin D nuclear receptor (VDR) pathways [158,159].
CYP2C9 is the highest expressed member of this subfamily in the liver, requiring cross-talk
between distal PXR and CAR sites and proximal hepatocyte nuclear factor 4α (HNF4α)
binding sites in its promoter [160,161]. The proximal PXR responsive element (prPXRE),
REM, and the constitutive liver enhancer module 4 (CLEM4) are cis-regulatory elements
responsible for inducible transcriptional regulation of CYP3A genes via xenosensors PXR
and CAR [153,160,162]. Peroxisome proliferator-activated receptor (PPAR) also contributes
to inducible and constitutive regulation of CYP3A4, the major expressed member of the
subfamily [163]. Constitutive transcriptional regulators of CYP3A genes include members
of CCAAT/enhancer-binding proteins (C/EBP) and HNFs [161,164,165]. Although most of
the studies on inducibility of expression of CYP4A subfamily genes have been performed
in mouse and rat models, accumulated data are indicative that PPAR mediates induction
of expression of members of this subfamily in humans [116]. Expression of the CYP4F2
gene seems to be transactivated by the sterol regulatory element-binding protein (SREBP)
and AMP-activated protein kinase (AMPK) activators [118,166].

Inhibition of CYP enzymes impairs the biotransformation of clinically used drugs or
environmental compounds, resulting in higher plasma concentrations of these xenobiotics,
which may lead to toxicity (Figure 4) [130,144]. On the other end, if the compound is
a prodrug, the efficacy of the therapeutic regimen could be decreased as concentrations
of the metabolite (the active drug), may fall below effective levels. Inhibitors of CYP
enzymes can be classified into three mechanistically distinct groups, namely agents that
form (i) reversible complexes (competitive or noncompetitive), (ii) quasi-irreversible com-
plexes with the heme-iron atom, (iii) irreversible complexes through covalent binding to
particular residues of the CYP protein. The latter disrupt critical interactions with its redox
partners, i.e., CPR or b5, or of the heme moiety, accelerating degradation and/or oxidative
fragmentation of the prosthetic heme [81,140–142]. In competitive reversible inhibition
two structurally different molecules transiently compete for the same CYP isoenzyme
irrespective of whether these are substrates for the enzyme. In noncompetitive reversible
inhibition, a molecule binds to a site other than the active site, causing allosteric modulation
of CYP function [5,140].
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Dietary factors such as phytochemicals affect CYP expression and activity which
may be of importance in diet-drug interactions. Several studies evidenced the inhibitory
properties of flavonoids by structural interference with CYP proteins [167]. Additionally,
soy components seem to promiscuously modulate several nuclear receptors including
AhR, PXR, PPAR and liver X receptor (LXR), altering drug pharmacokinetics and thera-
peutic efficacy [168] (Figure 5). Other factors have been described to be involved in the
induction or inhibition of CYP enzymes, in particularly conditions implying underlying
chronic inflammation, such as bacterial, parasitic or viral infections (HIV, hepatitis C),
sepsis, rheumatoid arthritis, liver transplant, multiple myeloma, chronic liver disease and
cancer [130,131]. Proinflammatory states with secretion of large amounts of cytokines seem
to be implicated in divergent xenobiotic metabolism. Cytokines such as interleukins IL-1β,
IL-2, IL-4, IL-6, IL-10, and IL-23, interferon gamma (IFNγ), transforming growth factor
beta (TGFβ), tumor necrosis factor alpha (TNFα), but also factors involved in infection
such as lipopolysaccharides (LPS), have been reported to directly or indirectly modulate
CYP expression, as demonstrated in hepatic cell lines, animal models and humans (e.g.,
patients with cancer undergoing immunotherapy) [130,131,142,169–174]. These inflam-
mation factors generally exert a down-regulation of CYP expression, although in some
cases, the reverse was noted. The importance of a particular cytokine in CYP regulation
will depend on many factors, including its concentration in the liver, particularly in the
vicinity of the hepatocytes, time course of its production, modulation by other cytokines,
and concentrations of natural antagonists (e.g., IL-1-ra) and facilitators (e.g., specific sol-
uble receptors) [25,131,174]. Cross-talks between cytokine levels and xenobiotic nuclear
receptors (i.e., PXR and CAR) have been reported to contribute to the modulation of the
CYP activity. During inflammation, nuclear factor κB (NF-κB) represses both PXR and CYP
expression through protein-protein interactions with the PXR pathway. Upregulation of
protein kinase C (PKC) and cAMP-dependent protein kinase A (PKA) seem to be involved
in the repression of CYP expression associated with liver inflammation [146,175]. Moreover,
extra-hepatic conditions (e.g., infection, tumors) involving inflammation also reduce the
capacity of hepatic drug metabolism due to downregulation of hepatic CYP expression,
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probably mediated via inflammatory cytokines released by remotely inflamed organs,
reaching the liver via systemic circulation [176,177].

8. Final Remarks

This short review is intended to highlight main aspects of the central role of CYP en-
zymes in xenobiotic metabolism, of high significance in clinical pharmacology and toxicol-
ogy. Although with over seven decades of research and major scientific breakthroughs, sev-
eral questions and challenges still maintain regarding CYP-mediated metabolism. Current
research is mainly focused on obtaining more detailed and precise knowledge regarding:
(i) functional properties and differences of CYP isoenzymes; (ii) their interspecies func-
tional variance; (iii) tissue distribution and cellular location; (iv) regulatory mechanisms
of gene expression; (v) population genetic and epigenetic determinants and variability;
(vi) physio-pathological and environmental factors influencing expression and activity;
(vii) genotype–phenotype correlation; (viii) and overall clinical impact. The scientific
literature cited in this short-review, and many more studies not referred, are evidence of
the remarkable efforts and achievements in understanding CYPs as the central Phase I
enzyme family responsible for the oxidative biotransformation of xenobiotics, integrated
in a vast and complex physiological detoxification network.
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