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Key Points

• Clonal heterogeneity
occurs especially in
patients with
extramedullary MM.

• Residual disease,
secondary cancers,
site-specific high-risk
clones, and drug
susceptibilities are
detected by guided
biopsies.
Spatial heterogeneity is a common phenomenon in metastatic solid tumors and an evolving

concept in multiple myeloma (MM). The interplay between malignant plasma cells (PCs)

and the microenvironment has not yet been analyzed in MM. For this purpose, we

performed bone marrow aspirates and imaging-guided biopsies of corresponding lesions in

newly diagnosed MM (NDMM) and relapsed/refractory MM (RRMM) patients. PCs were

isolated and subjected to whole-exome sequencing (WES). Non-PCs were studied with next-

generation flow (NGF) and T-cell receptor sequencing (TCRseq) to analyze the connection

between malignant and nonmalignant cells in the bone marrow and in lesions. Although we

observed a strong overlap from WES, NGF, and TCRseq in patients with intramedullary

disease, WES revealed significant spatial heterogeneity in patients with extramedullary

disease. NGF showed significant immunosuppression in RRMM compared with NDMM as

indicated by fewer myeloid dendritic cells, unswitched memory B cells, Th9 cells, and CD8

effector memory T cells but more natural killer and regulatory T cells. Additionally, fewer T-

cell receptor (TCR) sequences were detected in RRMM compared with NDMM and healthy

individuals. After induction therapy, TCR repertoire richness increased to levels of healthy

individuals, and NGF showed more regulatory T cells and myeloid-derived suppressor cells,

regardless of depth of response. Clinical significance of imaging-guided biopsies of lesions

was demonstrated by detection of monoclonal PCs in patients without measurable residual

disease (MRD) in aspirates from the iliac crest as well as identification of secondary primary

malignancies in MRD− patients. Furthermore, site-specific clones with different drug

susceptibilities and genetically defined high-risk features were detected by our workflow.
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WES data from 10 patients were part of a previous analysis, including single-cell RNA
sequencing.9 Access to WES and TCR raw data as well as R code created for this
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Introduction

Chromosomal aberrations and somaticmutations drive the progression
from benign plasma cells (PCs) over asymptomatic precursor diseases
to symptomatic, and ultimately refractory, multiple myeloma (MM).1,2

Some of the respective genetic alterations are already present at
early stages of monoclonal gammopathy of undetermined significance
and smoldering MM, suggesting that nonmalignant cells of the tumor
microenvironment also contribute to the malignant transformation of
benignPCs. This hypothesiswasconfirmedby a recent single-cell RNA
sequencing study showing early immune dysregulation in precursor
stages of MM.3 Additionally, targeting the immune system is a corner-
stone of MM therapy, and modulating cellular immune response with
T-cell engagers or chimeric antigen receptor T cells are emerging
concepts in the treatment of MM.4

In solid tumors, there is a well-established interplay between
somatic mutations in the coding genome, neoantigen expression,
and antitumor immunity.5,6 Furthermore, metastastic solid tumors
are comprised of spatially divergent ecosystems, and it has been
shown that genomic heterogeneity drives coevolution of site-
specific T-cell immune responses.7

Spatial genomic heterogeneity is also an emerging concept in
MM.8,9 However, so far, no study examined the interactions between
spatially divergent clones and host immune cells in MM. In the cur-
rent study, we performed bone marrow biopsies from the iliac crest
and imaging-guided biopsies of corresponding lesions in patients
with newly diagnosed MM (NDMM) and relapsed/refractory MM
(RRMM). To decipher genomic heterogeneity of the PC compart-
ment, we performed whole-exome sequencing (WES) on purified
PCs from both locations. The non-PC compartment was investi-
gated with next-generation flow cytometry (NGF) to analyze the
cellular composition of the bone marrow and lesion microenviron-
ments. T-cell immune response was furthermore studied with T-cell
receptor sequencing (TCRseq). Beyond the assessment of spatially
divergent PC clones and immune repertoires, analyses were
repeated after induction therapy with immunomodulatory drugs
(IMiD) in combination with proteasome inhibitors (PI) and steroids.

We demonstrate spatial heterogeneity in patients with extra-
medullary disease, compromised immunity in relapsed MM, and
immunological effects of combination induction therapy. The site-
specific detection of emerging heterogeneous clones through
imaging-guided biopsies in patients without measurable residual
disease (MRD) from regular bone marrow biopsies underlines the
prognostic significance of our study.
Patients and methods

Imaging-guided biopsies of osteolytic lesions

Patients with NDMM or RRMM and new positron emission
tomography (PET)-positive lesions were discussed in a weekly,
multidisciplinary tumorboard. If interventional radiologists (A.B. and
R.A.) identified lesions accessible for imaging-guided biopsy,
patients were consented for a biopsy of the respective lesion and a
regular bone marrow biopsy of the iliac crest. Both interventions
were performed under computed tomography (CT) or fluo-
roscopyguidance in the same session under conscious sedation.
The study was approved by the local ethics review board and
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performed according to the Declaration of Helsinki. The entire
study protocol can be found in supplemental Material.

As described previously,9 bone marrow aspirates (15 mL) from the
iliac crest and lesion were captured in tubes containing EDTA. To
prevent hemodilution of samples, native first pull aspirates (5 mL)
were transferred to hematopathology for microscopic evaluation
and confirmation of diagnosis as well as fluorescence-activated cell
sorting (FACS) for immunophenotyping and assessment of MRD.
The remaining 10 mL aspirate was subjected to CD138+ selection
using magnetic beads according to manufacturer’s instructions.
The CD138+ fraction was afterward analyzed with fluorescence in
situ hybridization (FISH) and WES. DNA was extracted from
CD138− fraction and was used for TCRseq (supplemental
Figure 1). The workflow is summarized in supplemental Figure 1.

FACS

Immunophenotyping on fresh bone marrow aspirates from the iliac
crest and corresponding lesions was performed as described previ-
ously,10,11 testing epitopes that are summarized in supplemental
Table 1 to identify immune cell phenotypes. MRD (threshold 10−5)
was assessed as described previously,12 using 3 tubes of 4 fluoro-
chromes per tube, testing for the expression of CD38, CD138, CD45,
CD56, CD19, CD117, CD28, and cytoplasmic κ and λ.

FISH

FISH analyses were performed on CD138-purified PCs, counting at
least 100 nuclei per sample and using probes for: 1q, 1p, 5q, 9
satellite III, del13q, 15 α satellite, del17p, t(4;14), t(11;14), t(14;16),
and breakapart probes for immunoglobulin H (IgH) as well as MYC.

WES

DNA was extracted from frozen PCs using kits according to
manufacturer’s instructions (DNeasy kit; Qiagen, Hilden, Ger-
many) for bulk WES. Oral swabs (oragene⋅DNA; DNA genotek,
Ontario, Canada) were collected for germline controls. After
quality check (Quibit Fluorometric Quantification DNA and RNA
Assay kits; Thermo Fisher, MA), samples were subjected to WES.
SureSelect XT Low Input Target Enrichment System (Agilent Inc,
CA) was used for individual exome capturing of each DNA sam-
ple. DNA was sheared using a Covaris S220 (Covaris Inc., MA)
followed by end repair, P5 adaptor ligation, and 10 cycles of
polymerase chain reaction (PCR) to complete the P7 adapter.
Unique dual-indexed libraries were purified with AMPureXP
beads (Beckman Coulter, CA) and validated for appropriate size
on a Tapestation 4200 DNA1000 screentape (Agilent Inc., CA).
The purified library was then hybridized to the SureSelectXT
Human All Exon V7 Capture library (Agilent Inc., CA). Afterward,
the hybridized regions were bound to streptavidin magnetic
beads and washed to remove any nonspecific bound products.
Eluted library underwent a second 10-cycle PCR amplification to
generate enough material for sequencing. Final libraries were
purified, measured by Tapestation 4200 DNA1000 screentape,
and quantitated using KAPA qPCR (KAPA Biosystems, Basel,
Switzerland). Individual libraries were pooled in equimolar fashion
at 2 nM final concentration. Each pool was denatured and diluted
to 350 pM with 1% PhiX control library added. The resulting pool
was then loaded into the appropriate NovaSeq Reagent cartridge
and sequenced on a NovaSeq6000 following the manufacturer's
recommended protocol (Illumina Inc., CA).
IMMUNOGENOMIC HETEROGENEITY IN MYELOMA 719



High quality paired-end reads passing Illumina RTA filter were
initially processed against the National Center for Biotechnology
Information human reference genome (GRCh37) using publicly
available bioinformatic tools13,14 and Picard (http://picard.
sourceforge.net/). Putative single-nucleotide variants and inser-
tions and deletions were identified by running the variation detec-
tion module of Bambino.15 All putative single-nucleotide variants
were further filtered based on a standard set of criteria to remove
the following common types of false calls: (1) The alternative allele
was present in the matching normal sample, and the contingency
between the tumor and normal samples was not statistically sig-
nificant. (2) The mutant alleles were only present in 1 strand, and
the strand bias was statistically significant. (3) The putative muta-
tion occurred at a site with systematically dropped base quality
scores. (4) The reads harboring the mutant allele were associated
with poor mapping quality. Ambiguous cases were manually
inspected to ensure accuracy. Putative insertions and deletions
were evaluated by a realignment process to filter out potential false
calls introduced by unapparent germline events, mapping artifacts,
and homopolymer. The identified somatic mutations were
compared with the public human germline databases, including
dbSNP,16 1000 Genomes Project,17 and the National Heart, Lung,
and Blood Institute’s Exome Sequencing Project, to further exclude
remaining germline polymorphisms. All mutations were annotated
using ANNOVAR18 with the National Center for Biotechnology
Information RefSeq database. Results were visualized with Gen-
VisR in R.19 Overlap between mutations from bone marrow and
lesion were compared by calculating Jaccard indices. To identify
clinically relevant and druggable mutations, the Drug Gene Inter-
action Database was queried using the rDGIdb package in R.20

TCRseq

Sequencing libraries were generated using the immunoSeq kit
from Adaptive Biotechnologies. Input DNA amounts (1800 ng)
were determined using the recommendations in the kit based on
the anticipated percentage of T cells for the sample type. The first
round of PCR was accomplished using the proprietary PCR primer
mix included with the kit. A positive control reaction, provided in the
kit, and a negative control reaction were included with each sample
batch. The first-round PCR was purified using the PCR Cleanup
beads provided in the kit. A second round of PCR was performed
to generate uniquely barcoded sequencing libraries utilizing the
barcode primer plate included in the kit. Final library purification
was done using the PCR Cleanup beads provided. Final libraries
were validated for appropriate size on a 4200 TapeStation D1000
Screentape (Agilent Technologies, Inc.). Samples were pooled
volumetrically, and the final pool was quantitated using KAPA
Biosystems qPCR kit. The pool was denatured and diluted to 1.0
pM with 20% PhiX control library added. The resulting pool was
then loaded into a NextSeq500 MidOutput 150 cycle Reagent
cartridge and sequenced on a NextSeq500 following the manu-
facturer's recommended protocol (Illumina Inc.) with 156 Read1
cycles and 15 Index1 cycles utilizing the custom primers included
in the immunoSeq kit.

Downstream analyses were performed with immunoSEQ Analyzer
from Adaptive biotechnologies and the immunarch R package.21

The number of unique T-cell receptor (TCR) clones in repertoires
(richness) was estimated by calculating chao1 indices. Simpson’s
D was calculated to compare repertoire diversities. To analyze
720 MERZ et al
overlap between TCR repertoires from bone marrow and lesion, the
Morisita-Horn Index was calculated. TCR data from 10 healthy
individuals between ages 65 and 75 were downloaded from Adap-
tive biotechnologies public domain (https://clients.adaptivebiotech.
com/immuneaccess).

Statistical analyses

Statistical analyses were performed in R. A two-tailed, nonpara-
metric unpaired Wilcoxon rank-sum test was performed to
compare independent samples. A paired Wilcoxon rank-sum test
was used for comparison of bone marrow and lesion as well as pre-
and posttherapy samples in individual patients. P values were
considered significant if <.05.

Results

Spatial heterogeneity occurs in patients with

extramedullary MM

In total, 18 patients underwent bone marrow aspirates and
imaging-guided biopsies of paired MM lesions in a prospective
clinical trial. Ten patients had NDMM, and 8 patients had RRMM.
Extramedullary disease (EMD), defined by growth without
connection to bone or outgrowth from cortical bone, was observed
in 4 patients (1 NDMM, 3 RRMM). Table 1 and supplemental
Table 2 summarizes patient characteristics of the analyzed
cohort. All patients who underwent imaging-guided biopsies were
evaluable for the study, and no dropouts occurred due to sample
quality. No complications were observed during or after samples
acquisition.

First, we investigated the malignant PC compartment by WES. No
significant differences in total number of mutations and transitions/
transversions were found between bone marrow and lesions for
both NDMM and RRMM (Figure 1A). Significantly more mutations
were detected in the bone marrow and lesions from patients with
RRMM compared with NDMM (Figure 1B). Particularly in patients
with NDMM (8 out of 10), we found a high concordance between
mutations in PCs from the bone marrow and lesions with Jaccard
indices of ~0.9 and higher (Figure 1C). The least overlap among
newly diagnosed patients was observed in patient NDMM08, who
had a history of solitary plasmacytoma and progressed into systemic
MM with a new EMD lesion originating from the left humerus and
progressive serum free light chains (Figure 2C). Also, in 4 out of
7 patients with RRMM, ~80% of mutations were shared between
locations. Again, the least overlap was observed in patients with
EMD (RRMM01, RRMM02, and RRMM06, Figure 1C). The entire
list of mutations detected in bone marrow and lesions in NDMM and
RRMM can be found in supplemental Material.

Because chromosomal aberrations are major drivers of disease
progression and important prognostic factors in MM, 22 we inferred
copy number variations (CNVs) from WES. Although patients with
strictly intramedullary growth showed a high concordance between
CNVs from bone marrow and lesion (Figure 2A-B), significant dif-
ferences between both locations were assessed in patients with
EMD (Figure 2A,C). Importantly, these changes included chromo-
somes with prognostic implications like site-specific losses and
amplifications of chromosome 1 (NDMM08, RRMM01, and
RRMM02) as well as deletion of chromosome 17p (RRMM01).
14 MARCH 2023 • VOLUME 7, NUMBER 5
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Table 1. Baseline characteristics

Patient Sex Disease status Subtype Location EMD

Histology

% PCs

FACS

Immunoparesis FISH

% PCs

after sorting Viability

NDMM01 Male New IgG κ Bone marrow N 10 96 92 No Normal

L2 20 96 90

NDMM02 Male New IgG λ Bone marrow N 70 97 98 Yes HD, del13, del15, IgH unknown

Iliac crest (L) 60 99 94

NDMM03 Female New λ Bone marrow N 10 91 97 Yes IgH unknown

Sacrum 50 78 96

NDMM04 Female New IgG κ Bone marrow N 25 95 89 No HD (both)

Iliac crest (R) 25 72 92

NDMM05 Female New IgA κ Bone marrow N 60 100 100 Yes del13, del16, del17, gain8, gain15, t(11;14)

T10 80 100 97

L4 80 100 97

NDMM06 Female New IgG κ Bone marrow N 30 96 89 No del13, del16, t(11;14) (both)

L4 30 92 90

NDMM07 Male New IgG κ Bone marrow N 95 100 99 Yes del1p, HD

Iliac crest (L) 95 100 99

NDMM08 Male New κ Bone marrow Y 4 92 45 Yes Normal (both)

Clavicle 100 NA NA

NDMM09 Female New IgG κ Bone marrow N 1 77 91 No Normal

L3 10 79 89

NDMM10 Female New κ Bone marrow N MRD neg 68 44 No Normal (both)

Iliac crest (R) MRD pos 70 88

RRMM01 Female Relapse IgA κ Skin thigh (R) Y 100 NA NA Yes Normal

Scaral lesion 100

RRMM02 Male Relapse IgA κ/λ Bone marrow Y 5 91 81 No gain1, t(MYC)

Clavicle (R) 100 NA 92

RRMM03 Male Relapse λ Bone marrow N 4 85 71 No del13, t(11;14) in OL negative in bone marrow

L3 50 95 40

RRMM04 Female Relapse IgG κ Bone marrow N 79 99 98 No HD (gain1 3 and 4 copies), del4, del13, del 16,
t(MYC) (both)

T12 83 98 91

RRMM05 Male Relapse IgG κ Bone marrow N 15 97 87 Yes del16, del17 (both)

Iliac crest (R) 15 99 90

RRMM06 Male Relapse κ Bone marrow Y 35 99 99 Yes

Paravertebral 100 NA NA

RRMM07 Male Relapse IgD κ Bone marrow (L) N 20 96 83 Yes TP53 del and 1q gain for both

Bone marrow (R) 82 96 72

RRMM08 Male Relapse IgG λ Bone marrow N 60 87 90 Yes gain5-17 3-4 copies, gain1 5-7 copies (both)

Iliac crest (R) 60 94 85

FLC, free light chain; Hb, hemoglobin; HD, hyperdiploid; L, left, LDH, lactate dehydrogenase; N, no; NA, not available; R, right; Y, yes.
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Immune repertoire in newly diagnosed and relapsed

disease

Next, we investigated the immune microenvironment of the bone
marrow and MM lesions in newly diagnosed and relapsed disease
with TCRseq and NGF. In accordance with results from WES, we
found a strong overlap between TCR repertoires from both locations
in NDMM and RRMM as indicated by Morisita indices (Figure 3A).
Analysis of estimated TCR richness (chao1 estimator) and clonality
also showed no significant differences between bone marrow and
lesion, regardless of disease status (Figure 3B). Significantly richer
TCR repertoires were observed in NDMM compared with RRMM
(P = .0031). The majority of TCR clones in NDMM and RRMM
accounted for a small proportion of the total number of T cells
(≤10−4), and no significant differences in relative abundancies were
detected between bone marrow and lesion (Figure 3C).

Immune repertoires were furthermore characterized with NGF. In
agreement with WES and TCRseq, no significant differences in the
cellular composition of the non-PC compartment in the bone
marrow and lesion were found. Compared with NDMM, the bone
marrow of RRMM harbored less frequently myeloid dendritic cell,
unswitched memory B cells, Th9 cells, and CD8 effector memory T
cells but more natural killer (NK) cells and regulatory T cells (Tregs;
Figure 3D).

Effects of induction therapy on immune repertoires in

NDMM

To study the effects of induction therapy on the immune repertoire,
longitudinal samples were acquired before and after treatment with an
IMiD, PI, and steroids in 5 patients (Figure 4A). Significant expansion of
TCR clones after therapy were observed in all 5 patients, regardless of
depth of remission after induction therapy (Figure 4B). Less overlap of
TCR repertoires between primary diagnosis and remission was
observed in 4 out of 5 patients. Longitudinal tracking showed no
expansion but reduction of initially present top 10 clones (Figure 4C).
No differences in relative TCR abundance were found between both
timepoints (Figure 4D). When analyzing TCR repertoire richness and
clonality, we found significant differences in richness between healthy
individuals and NDMM as well as NDMM and RRMM, whereas no
differences in clonality were observed (Figure 4E). After induction
therapy, TCR repertoire richness reached levels of healthy individuals
(Figure 4E). NGF demonstrated significantly more Tregs and MDSCs
after treatment in all patients, regardless of remission (Figure 4F).

Clinical significance of imaging-guided biopsies

Beyond enabling the evaluation of spatiotemporal immunogenomic
heterogeneity, imaging-guided biopsies had direct clinical conse-
quences for the patients enrolled in our study (Figure 5). It still
needs to be clarified whether imaging and methods from bone
marrow like NGF and next generation sequencing (NGS) provide
complimentary or additive information on MRD status. There is
evidence that double negativity from both methods is superior to
being MRD− only by bone marrow assessment.23,24 Here, we
showed differing MRD findings in a patient with a new lesion from
PET/CT (Figure 5A). After 5 cycles of RVD and high-dose
chemotherapy followed by autologous stem cell transplantation,
the patient went into MRD− CR, which was maintained during 5
years of lenalidomide maintenance therapy. Routine follow-up with
PET/CT showed a new lesion in the caudal right ilium (Figure 5A1).
722 MERZ et al
Although NGF of a bone marrow aspirate from the right iliac crest
showed persistent MRD negativity (Figure 5A3), analysis of an
imaging-guided biopsy of the PET+ lesion revealed monoclonal
PCs (Figure 5A2). Because no other signs for disease activity were
found at that timepoint, the patient was actively surveilled.
Repeated PET/CT after 5 months showed progression of the
respective lesion (Figure 5A4). Serological evaluation confirmed
relapse from MRD− CR by reappearance of monoclonal protein,
and systemic treatment was reinitiated.

Imaging-guided biopsies did not only reveal relapse from MRD
negativity but also detected secondary primary malignancies
(SPM). In a patient treated with 4 cycles of lenalidomide and
dexamethasone followed by high-dose chemotherapy and autolo-
gous transplant, MRD− CR was maintained with lenalidomide for
3 years until multiple new PET+ lesions occurred. (Figure 5B). NGF
showed no signs for monoclonal PCs in bone marrow aspirates
from the iliac crest and a biopsied lesion. Although no malignant
cells were found in the peripheral blood or the random bone
marrow sample, NGF detected B lymphoblasts in aspirates from a
PET+ lesion. The patient was treated with induction chemotherapy
and allogeneic stem cell transplantation and currently shows no
signs for MM or B-cell acute lymphocytic leukemia.

In addition to the detection of relapse from MRD negativity and
SPMs, imaging-guided biopsies might have prognostic and pre-
dictive value. To investigate whether unshared mutations might be
accessible for therapeutic interventions, the Drug Gene Interaction
Database was queried for clinically actionable mutations
(Figure 5C).20 More interactions were found in lesions compared
with the bone marrow, underlining that response to targeted ther-
apies needs to be assessed with whole-body imaging. Further-
more, we showed spatially divergent results for relevant prognostic
markers (eg, chromosome 1 aberrations [Figure 2A] and TP53
mutations [RRMM03, Figure 5D]) as well as mutations associated
with drug resistance (eg, PSMC3 in RRMM05,25 Figure 5D).

Discussion

In the current study, we demonstrated spatial heterogeneity based
on WES, especially in MM patients with EMD, as well as increased
mutational burden accompanied by immune dysregulation in
RRMM compared with NDMM. After IMiD- and PI-based induction
therapies, we identified a richer TCR repertoire compared with
primary diagnosis and identified subsets of immune cells that are
expanded by treatment. Lastly, we showed that imaging-guided
biopsies of MM lesions are of diagnostic, prognostic, and predic-
tive relevance because site-specific detection of locoregional MRD
and SPM, as well as mutations associated with drug susceptibility
and resistance, had direct clinical consequences.

MM is a spatially divergent disease, and findings from whole-body
imaging showing focal lesions serve as surrogate for clonal hetero-
geneity.8 In agreement with a recent study in heavily pretreated
patients with MMdemonstrating a highmutational load and increased
genomic instability,26 we found significantly more mutations in RRMM
compared with NDMM. It could have been expected that spatial
genomic heterogeneity is more prevalent in patients with higher
mutational load. However, based on our previous work, we included
additional patients with EMD in the current analysis. Therefore, we
were able to show significant spatial heterogeneity in patients with
14 MARCH 2023 • VOLUME 7, NUMBER 5
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Figure 1. WES of the PC compartment from paired samples. (A) Number of total mutations as well as transitions and transversions from bone marrow and lesion (OL) for each

individual patient. No significant differences between lesion and marrow were found for number of mutations and transitions/transversions in both NDMM and RRMM. (B)

Significantly more mutations were found in patients with RRMM compared with NDMM in both locations. (C) Scatterplots of variant allele frequencies in the bone marrow (x-axis)

and lesion (y-axis) in NDMM (blue) and RRMM (red). Jaccard indices were calculated to quantify overlap between paired samples. The largest numbers of unshared mutations were

found in patients with EMD (indicated by black stars). BM, bone marrow.
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Figure 2 (continued)
EMD, regardless of mutational load or disease status, and limited
spatial heterogeneity in patients with strictly intramedullary MM.

In accordance with the first study that demonstrated spatial
heterogeneity especially in larger lesions,8 we found most
unshared mutations between the bone marrow and lesions in
patients with EMD. MM cells usually reside within the bone
marrow and are highly dependent on survival signals from the
surrounding tumor microenvironment.27 Once MM cells gain
access to the vasculature, extramedullary spread becomes
possible and most likely makes them independent from survival
signals from bone marrow cells.28 Besides mutations in genes
that have been associated with advanced disease like BRAF,
NRAS, KRAS, and MYC, we also found additional chromosomal
aberrations in extramedullary lesions like amplifications of chro-
mosome 1. In the past, several studies showed an association
between high-risk cytogenetics and EMD. However, these ana-
lyses were restricted to either bone marrow samples, cells
derived from EMD,29 or single case reports.30,31 These studies
left the question unanswered of which occurs first: high-risk
cytogenetics or EMD. Because we were able to perform
biopsies on the same day and showed high-risk features in EMD
compared with bone marrow, we provide first evidence that EMD
might represent an evolving clone from intramedullary disease.
Beyond their biological implications, these findings are of
prognostic relevance because the respective changes have
been associated with adverse outcome in MM32 and would have
been missed by sampling solely from the iliac crest.
14 MARCH 2023 • VOLUME 7, NUMBER 5
Our findings from NGF and TCRseq to study the non-PC
compartment are in agreement with data from WES because we
found a strong overlap in TCR repertoires and no significant dif-
ferences between bone marrow and lesion environment. This also
supports that intramedullary MM is highly dependent on the inter-
play with the surrounding host cells, whereas EMD does not rely on
supporting signals from the bone marrow microenvironment. This is
supported by findings from histology showing subtotal PC infiltra-
tion in all patients with EMD in our current study. However, our
results on the immune repertoire from TCRseq and NGF from
different locations need to be interpreted with caution: Although
we aimed at using first-pull aspirates(maximum, 5 mL) for NGF and
the CD138− fraction isolated from additional 10 mL aspirate for
TCRseq analyses, we cannot rule out contamination of samples by
peripheral blood. This could also provide an explanation for the
overlapping immune repertoire from both locations and the small
proportion of productive TCR clones because TCR sequences
could be derived from naïve T cells from contaminating peripheral
blood. Therefore, novel techniques like single-cell TCRseq33 and
spatial transcriptomics will be implemented to investigate the
interface between lesions and the immune system in the future.

Because there is a strong connection between nonsynonymous
mutations and expanded TCR clones in solid tumors, like
non–small-cell lung cancer,7 we compared TCR repertoires from
NDMM and RRMM. In contrast to previous studies in solid tumors,
we found no correlation between mutational burden and relative
TCR abundance. Compared with RRMM, patients with NDMM
IMMUNOGENOMIC HETEROGENEITY IN MYELOMA 725
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Figure 3. NGF and TCRseq from paired samples in newly diagnosed and relapsed patients. (A) Scatterplots of productive TCR frequencies in bone marrow (x-axis) and
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Figure 3 (continued) locations regarding relative abundance because distributions between lesion and marrow of small (blue), medium (red), large (green), and hyperexpanded

(purple) TCR clones were comparable in NDMM and RRMM. (D) Although NGF showed no significant differences between lesion and marrow, patients with RRMM harbored

fewer myeloid dendritic cells, unswitched memory B cells, Th9 cells, and CD8 effector memory T cells and more NK cells and regulatory T cells compared with NDMM. This

underlines the immunosuppressive capabilities of RRMM.
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Figure 4. Longitudinal analyses after induction therapy. (A) In 5 patients, bone marrow samples were collected after induction therapy. All patients received combination

treatment with an IMiD, PI, and dexamethasone. Patient NDMM03 was changed from bortezomib, lenalidomide, dexamethasone (VRD) to daratumumab, pomalidomide,
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Figure 4 (continued)
harbored fewer mutations and exhibited a richer TCR repertoire.
NGF showed significant differences between RRMM and NDMM:
fewer effector T cells and unswitched memory B cells and myeloid
dendritic cell, but more NK cells and Tregs were observed in
RRMM. Immune dysregulation creating an immunosuppressive
environment is an established concept in progressive MM,27,34 and
increased numbers of Tregs and NK cells have been described
during the natural history of the disease with single-cell RNA
sequencing.3 This might have clinical implications. Although in
some metastatic solid tumors mutational burden can be correlated
to response and superior survival after checkpoint inhibition,5,6

studies of PD-1/PD-L1 inhibitors have been underwhelming in
MM.35,36 It can be hypothesized that progressive immunoparesis
and the missing connection between mutational burden and anti-
tumor immunity might be a reason for the detrimental effects of
checkpoint inhibition in MM.

In longitudinal samples after induction therapy with an IMiD, PI, and
dexamethasone, we observed a richer TCR repertoire but no sig-
nificant expansion of distinct TCR clones. In parallel to the spatial
analysis of the TCR repertoire, bulk TCR sequencing of naïve T cells
from contaminating peripheral bloodmight have introduced bias into
this analysis. However, regardless of depth of response, we
observed an expansion of Tregs and MDSCs that have been
reported to promote immune evasion.27,34 This raises the question
of whether early effects of combination induction therapy are mainly
driven by direct antimyeloma effects and not immunomodulation.
Future longitudinal analyses after autologous transplantation and
14 MARCH 2023 • VOLUME 7, NUMBER 5
maintenance therapy will follow to elucidate this controversial
finding. However, this hypothesis is supported by a recent study that
showed no beneficial effect of adding elotuzumab to RVD induction
therapy.37 Elotuzumab promotes, among others, long-term effects
on NK activity in MM.38 To prove our hypotheses on immune dys-
regulation in RRMM and longitudinal changes after therapy, future
in vitro studies exploring the roles of Tregs, MDSCs, and NK cells in
the respective patients are warranted.

There is still a controversial discussion of whether findings from
whole-body imaging are complimentary to MRD assessment from
the bone marrow. Two large prospective trials demonstrated
beneficial effects of normalized PET studies in MRD− patients.
However, both studies showed discordant PET findings in MRD−

patients in up to 25%.23,24 We were able to demonstrate that
imaging-guided biopsies are of diagnostic, prognostic, and pre-
dictive relevance because we were able to detect MRD as well as
SPM in MRD− patients based on PET findings. Our results
emphasize that repeated PET/CTs in MRD− patients should be
performed (eg, every 12 months) to rule out progression or SPMs.

Lastly, we show that spatial heterogeneity might be the reason for
lack of response to targeted approaches. Imaging-guided biopsies
revealed PC clones with different drug susceptibilities, like spatially
divergent BRAF and RAS mutations. Spatially divergent clones have
been described under BRAF inhibition in MM.39 However, in our
study, participants were treatment naïve to targeted approaches.
This underlines the importance of whole-body imaging and guided
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Figure 5. Clinical significance of imaging-guided biopsies. (A) Early, site-specific detection of relapse in a patient without MRD (MRD−) complete response (CR) after 5

cycles of RVD (lenalidomide, bortezomib, dexamethasone), high-dose chemotherapy, and autologous stem cell transplantation (ASCT) followed by 5 years of lenalidomide

maintenance. Routine PET/CT showed a small PET+ lesion in the caudal right pelvis (A1). Although flow cytometry showed no signs for MRD in the iliac crest (A3), MRD positivity

was confirmed by imaging-guided biopsy of the lesion (A2). Because the patient had no other signs for disease activity, active surveillance was continued. Repeated PET/CT 5

months later showed progression of the biopsied lesion. At that time point, serological relapse was also confirmed, and systemic therapy was initiated. (B) The necessity to confirm

findings from PET/CT with biopsies is demonstrated by a case of secondary B-cell acute lymphoblastic leukemia (B-ALL) in a patient in MRD− CR after 4 cycles of lenalidomide

and dexamethasone, ASCT, and 3 years of lenalidomide maintenance. Although imaging-guided biopsy of a newly emerged lesion showed no signs for monoclonal PCs, B

lymphoblasts were detected. The patient was treated with induction therapy and allogeneic transplantation, and both conditions remain in CR at the moment. (C) To investigate

whether mutations from WES are accessible for therapeutic intervention, the Drug Gene Interaction database was queried. More interactions were found in PCs from lesion (OL),

which emphasizes that personalized treatment approaches need to be monitored with whole-body imaging. (D) Also, prognostic factors were detected by imaging-guided biopsies

(eg, TP53 mutation in a vertebral body of patient RRMM03). Lollipot plot shows all TP53 mutations in the analyzed cohort. Also, mutations associated with drug resistance (eg,

PSMC3 associated with resistance to proteasome inhibitors in RRMM05) were detected by imaging-guided biopsies. BM, bone marrow.
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Figure 5 (continued)
biopsies of the respective lesions in patients with residual disease
after personalized treatments and MRD− patients.

Taken together, we show spatiotemporal differences of the PC and
non-PC compartment, especially in progressive and extramedullary
myeloma, with clinical consequences resulting from imaging-
guided biopsies of MM lesions.
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