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Carotenoids protect organs, tissues, and cells from the damaging action of singlet

oxygen, oxygen radicals, and lipid peroxides. This systematic review was sought

to evaluate the influence of oral carotenoids on antioxidant/oxidative markers, blood

carotenoids levels, and lipid/lipoprotein parameters in human subjects. A comprehensive

review of relevant literature was conducted in PubMed, Web of Sciences, and

the Cochrane library, from 2000 to December 2020. Randomized controlled trials,

case-controlled trials, or controlled trials were identified. A total of eighteen trials were

included, with the target populations being healthy subjects in 16 studies, athletes

in 1 study, and pregnant women in 1 study. The meta-analysis results showed that

carotenoids complex supplementation significantly increased the levels of antioxidative

parameters ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance

capacity (ORAC) [standardized mean difference (SMD) = 0.468; 95% CI: 0.159–0.776,

p = 0.003; SMD = 0.568; 95% CI: 0.190–0.947, p = 0.003] and decreased the blood

triglyceride (TG) level (SMD = −0.410, 95% CI: −0.698 to −0.122, p = 0.005). Oral

carotenoids supplement significantly increased the blood levels of β-carotene (SMD =

0.490, 95% CI: 0.123–0.858, p = 0.009), α-tocopherol (SMD = 0.752, 95%CI: 0.020–

1.485, p = 0.044), and the intaking durations were 8 weeks. The levels of antioxidative

enzymes and other lipid/lipoprotein parameters were not different between subjects

receiving carotenoids and controls (p > 0.05). In conclusion, our systematic review

showed that the carotenoids complex is beneficial for alleviating potential oxidative stress

via interacting with free radicals or decreasing blood TG levels. The intaking duration of

carotenoids should be 8 weeks to reach enough concentration for function.

Keywords: carotenoids, oxidative stress, antioxidants, lipid/lipoprotein, age-related disease

INTRODUCTION

Oxidative stress has been implicated in the etiology of several chronic diseases, namely,
cardiovascular disease (1), type 2 diabetes (2), neurodegenerative disease (3), some cancers (4–6),
and also involved in the aging process and age-related diseases (ARDs) (7). Aging is an unavoidable
biological phenomenon affecting all multicellular organisms (8). Various hypotheses have been put
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forward to explain the molecular reasons for aging (9, 10). In
damage theories, reactive oxygen species (ROS) is considered to
lead to cumulative DNA, protein, and lipid damages, which play a
prominent role in the pathogenesis and progression of aging (11).

FIGURE 1 | Flowchart of literature search and selection of studies.

Accumulation of ROS leads to inflammation, cellular
dysfunction and cell death, and mitochondrial dysfunction.
Decline in mitochondrial function, the oxidative stress
response in aging, and accumulation of aberrant proteins
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TABLE 1 | Fundamental information of subjects.

References Country Sex (male/female) Age (years) Body mass index (kg/m2) Weight (kg)

Treatment

(T)

Control (C) Treatment

(T)

Control (C) Treatment

(T)

Control (C) Treatment

(T)

Control (C)

Duthie et al. (29) UK 9/12 10/14 48.3 (5.6) 48.5 (4.8) 26.6 (3.9) 26.0 (3.4) –

Ryu et al. (30) Korea 22/11 22/8 48.2 (1.4) 50.9 (1.6) 23.9 (0.6) 24.5 (0.5) –

Turner et al. (31) USA 0/34 0/33 23.0 (4.0) 24.0 (5.0) 20.4 (2.9) 20.2 (2.3) 45.4 (6.5)

Miyazawa et al. (32) Japan 3/3 4/2 58.0 (7.0) 57.0 (7.0) 23.4 (3.4) 22.5 (2.5) 61.4 (11.5) 59.3 (10.4)

Ma et al. (33) China — — T1: 10.0 (0.6);

T2: 18.6 (1.2);

T3: 65.3 (9.0)

C1: 10.1

(0.7); C2:

18.6 (0.8);

C3: 65.3 (7.3)

T2: 21.2 (2.0);

T3: 23.7 (3.2)

C2: 21.1

(2.8); C3:

24.4 (3.2)

T1: 31.4 (4.8);

T2: 59.5 (9.0);

T3: 61.9 (9.9)

C1: 33.6

(6.5); C2:

60.5 (10.1);

C3: 63.6 (8.6)

Jacob et al. (34) Spain 12 12 23.0 (2.0) 21.5 (2.8) –

Briviba et al. (35) Germany T1: 21/0;

T2: 21/0

21/0 T1: 31.0 (9.0);

T2: 31.0 (9.0)

32.0 (9.0) T1: 24.1 (2.4);

T2: 23.8 (2.8)

24.3 (3.2) —

Concentrate et al.

(36)

USA 31 28 25.3 (3.4) 27.4 (8.1) 24.0 (3.9) 23.4 (3.1) —

Tauler et al. (37) Spain 8/0 7/0 23.3 (2.0) 24.5 (1.3) 70.8 (1.2)

Aust et al. (38) Germany T1: 12;

T2: 12

12 – (18.0–25.0) –

Hininger et al. (39) France 0/33 0/32 29.0 (3.4) 28.0 (4.5) 23.3 (74.6) 22.8 (76.9) —

Upritchard et al. (40) Netherlands T1:

14/19;

T2:

13/20

11/20 (35.0–70.0) (18.0–32.0) —

Nelson et al. (41) USA T1: 13;

T2: 15;

T3: 13

14 71.2 (5.5)

(65.0–85.0)

27.8 (7.1)

(16.6–39.9)

–

Kiokias and Gordon

(42)

UK 31 31.77 (11.3) 22.47 (3.0) –

Heinrich et al. (43) Germany T1: 12;

T2: 12

12 (22.0–55.0) — —

Schmidt et al. (44) USA 21 19 22.5 (3.9) 22.9 (5.1) — 80.0 (11.3) 82.3 (8.7)

Stahl et al. (45) Germany 9 10 (26.0–67.0) — —

Stahl et al. (46) Germany 10 10 (20.0–57.0) — —

may contribute to ARD (12). What is more, a specific form
of oxidative stress called photo-oxidative stress (13) which
is induced by UV exposure can cause a common external
aging, i.e., photoaging (14). Uncontrolled production of ROS is
implicated in vascular injury and oxidative stress participates in
antioxidant mechanisms in the development and progression
of atherosclerosis (15). ROS can also promote tumor formation
by inducing DNA mutations and pro-oncogenic signaling
pathways; oxidative stress is an important factor in both the
tumor development and responses to anticancer therapies (16).

In this regard, carotenoids are of particular interest
(12). Carotenoids act as electron-transport agents and play
crucial roles in protecting organs, tissues, and cells from
the damaging action of singlet oxygen, oxygen radicals, and
lipid peroxides (17). Experimental studies have demonstrated
that they reduce chemical-induced neoplasia (18), improve
erythrocyte antioxidant status (19), and protect tissues from
UV-related damage (20). According to chemical structure,
carotenoids were generally classified as pure hydrocarbon
carotenoids called “carotenes” (such as lycopene, α-carotene,

β-carotene and β-cryptoxanthin) and carotenoids containing
one or several oxygen functions known as “xanthophylls”
(such as lutein, zeaxanthin) (21). Some precursors during
biosynthesis such as lycopene also belong to carotenoids
(21). Nowadays, carotenoids are the most numerous and
widespread group of hydrophobic pigments mainly in fruits
and vegetables (22). High fruit and vegetable consumption
is linked with changes in specific antioxidant markers or
early-disease indicators, for example, cholesterol oxidation
products, plasma antioxidant capacity, oxidized DNA base
damage, etc. (23–28). It has recently been hypothesized
that carotenoids cannot be biosynthesized by humans and
animals de novo, but can be derived from their food and feed,
respectively (21).

To the best of our knowledge, the systematic investigation of
the relationship between diary carotenoids and redox markers or
lipid/lipoprotein parameters was lacking. The current systematic
review was conducted to evaluate the influence of diary
carotenoids on antioxidant/oxidative stress, blood carotenoids
levels, and lipid/lipoprotein parameters, in human subjects. The
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TABLE 2 | Intervention and measurement parameters of all included studies classified by intervention type.

References Treatment (T) Control (C) Measurement

Carotenoids complex

Ryu (30) 5.0 g chlorella (13.0mg lutein, 0.25mg zeaxanthin, 1.2mg

α-carotene, 0.85mg β-carotene) (daily, 4 weeks)

Placebo (daily, 4 weeks) TG (µmol/L),

HDL (µmol/L)

Miyazawa (32) 8.0 g chlorella (22.9mg lutein, 5.0mg β-carotene) (daily, 2

months)

0.0 g chlorella (daily, 2months) HDL (mg/dL),

TG (mg/dL),

lutein (µmol/L),

zeaxanthin µmol/L),

α-carotene (µmol/L),

β-carotene

(µmol/L),

lycopene (µmol/L),

α-tocopherol (µmol/L)

Ma (33) T1 (children): 2,000.0 IU retinol, 1.0mg β-carotene, 100.0mg

α-tocopherol, 300.0mg ascorbic acid, 200.0 µg selenium

(daily, 2 months); T2 (young people): 3,000.0 IU retinol, 1.5mg

β-carotene, 200.0mg α-tocopherol, 500.0mg ascorbic acid,

400.0 µg selenium (daily, 2 months); T3 (old people): 3,000.0

IU retinol, 1.5mg β-carotene, 200.0mg α-tocopherol,

500.0mg ascorbic acid, 400.0 µg selenium (daily, 2 months)

C1 (children): placebo (daily, 2 months); C2 (young

people): placebo (daily, 2 months); C3 (old people):

placebo (daily, 2 months)

β-carotene (µmol/L),

tocopherol (µmol/L)

Concentrate (36) 7.5mg β-carotene, 234.0mg vitamin C, 45.0 IU vitamin E,

420.0mg folate, 60.0mg calcium (daily, 11 weeks)

Placebo (microcrystalline cellulose) (daily, 11 weeks) ORAC (µmol/L),

β-carotene (µmol/L),

lutein (µmol/L),

lycopene (µmol/L)

Tauler (37) 250.0mg Vitamin E, 15.0mg of β-carotene (daily, 90 days),

1.0 g vitamin C (daily, 16–90 days)

Placebo (lactose) (daily, 90 days) SOD (pKat/109 cells),

CAT (K/109 cells),

GPx (nKat/109 cells)

Aust (38) T1: 9.8mg lycopene, 0.8mg phytofluene, 1.0mg phytoene,

0.4mg β-carotene (daily, 12 weeks); T2: 8.2mg lycopene,

3.2mg phytofluene, 4.6mg phytoene, 0.4mg β-carotene

daily, 12 weeks)

10.2mg lycopene, 0.0mg phytofluene, 0.0mg

phytoene, 0.0mg β-carotene (daily, 12 weeks)

lycopene (µmol/L),

β-carotene (µmol/L)

Hininger (39) 60.0mg Vitamin C, 4.8mg β-carotene , 10.0mg vitamin E,

1.4mg thiamin, 1.6mg riboflavin, 15.0mg niacin, 6.0mg

pantothenic acid, 200.0mg folic acid, 1.0mg cobalamin,

15.0mg Zn, 87.5mg Mg, 100.0mg Ca (daily, 2months)

Placebo (daily, 2 months) β-carotene (µmol/L)

Upritchard (40) T1: 43.0mg vitamin E, 0.22mg lutein, 0.06mg lycopene,

0.06mg α -carotene, 0.11mg β -carotene (daily, 11 weeks)

T2: 111.0mg vitamin E, 0.63mg lutein, 0.18mg lycopene,

0.14mg α -carotene, 0.28mg β -carotene (daily, 11 weeks)

1.3mg vitamin E (daily, 11 weeks) HDL(µmol/L),

TG (µmol/L),

α-tocopherol (µmol/L),

lutein (µmol/L),

α-carotene (µmol/L),

β-carotene (µmol/L),

lycopene (µmol/L),

FRAP (µmol/L)

Nelson (41) T1: one food group (11.0mg β-carotene, 6.0mg lutein,

0.6mg zeaxanthin, 10. 0mg lycopene) (daily, 5 weeks) T2: 2

antioxidant capsule (2.4mg β-carotene, 6mg

lutein/zeaxanthin, 0.5mg lycopene) (daily, 5 weeks) T3: 2

antioxidant tablet (4.0mg β-carotene, 4.0mg

lutein/zeaxanthin) (daily, 5 weeks)

Placebo (daily, 5 weeks) lutein (µmol/L), zeaxanthin

(µmol/L), lycopene (µmol/L),

α-carotene (µmol/L),

β-carotene (mmol/L),

α-tocopherol (µmol/L),

ORAC (µmol/L)

Kiokias (42) 4 capsules (1.0 g) (fish oil), 24.6mg tomato extract, 6.3mg

palm oil carotene extract, 2.0mg marigold extract, 3.7mg

paprika extract, 3.7mg bixin (daily, 6 weeks)

4 capsules (1g) (fish oil) (daily, 6 weeks) TG (µmol/L), HDL (µmol/L),

ORAC (mM)

Heinrich (43) T1: 24.0mg β-carotene, soybean oil (daily, 12 weeks) T2:

8.0mg β-carotene, 8.0mg lycopene, 8.0mg lutein, soybean

oil (daily, 12 weeks)

Soybean oil (daily, 12 weeks) β-carotene (µmol/L), lutein

(µmol/L), lycopene (µmol/L)

Schmidt (44) 20,050.0 IU β-carotene, 330.0mg ascorbic acid, 650.0 IU

α-,β-,γ-, δ-tocopherols, 167.0 g selenium, 13.2mg catechin,

500.0 µg lutein, 100.0 µg lycopene, 181.0mg N-acetyl

1-cysteine, 5.0mg pomegranate extract, 100.0mg vegetable

blend concentrate (lutein, β-carotene, α-carotene, lycopene)

(daily, 24 days)

Placebo (daily, 24 days) FRAP (moles trolox

equivalents/ml), ORAC

(moles trolox

Equivalents/ml), α-carotene

(µg/ml), β-carotene (µg/ml),

lutein (µg/ml), lycopene

(µg/ml), α-tocopherol

(µg/ml), zeaxanthin (µg/ml)

(Continued)
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TABLE 2 | Continued

References Treatment (T) Control (C) Measurement

Stahl (45) 40.0 g tomato paste, 10.0 g olive oil, 16.0mg lycopene,

0.5mg β-carotene 0.1mg lutein (daily, 10 weeks)

10.0 g olive oil (daily, 10 weeks) α-tocopherol (µmol/L),

α-carotene (µmol/L),

β-carotene (µmol/L), lutein

(µmol/L), lycopene (µmol/L)

Stahl (46) Carotenoid, vitamin E (daily, 12 weeks) 25.0mg total carotenoids, 25.0mg carotenoids,

13.0mg all-trans-β-carotene, 10.5 mg

9-cis β-carotene, 0.3mg other cis isomers

β-carotene, 0.75mg α-carotene, 0.18mg

cryptoxanthin, 0.15mg zeaxanthin, 0.12mg lutein

(daily, 12 weeks)

β-carotene (µmol/L),

α-tocopherol (µmol/L)

Fruits/vegetables

Duthie (29) 480.0 g diverse fruits, vegetables, fruit juices (daily, 12 weeks) 3 or fewer portions fruits and vegetables (daily, 12

weeks)

FRAP (µmol Fe(II)/L), SOD

(U/g Hb), CAT (U/g Hb), GPx

(U/g Hb), HDL (µmol/L),

TG µmol/L) α-tocopherol

(µg/ml), β-carotene (µg/ml),

α-carotene (µg/ml),

lycopene (µg/ml)

Turner (31) 0.5mg vitaminA, 200.0 g orange-fleshed sweet potatoes

(daily, 6 days/week, 3 weeks)

200.0 g white-fleshed sweet potatoes, 2 corn-oil

capsule (daily, 6 days/week, 3 weeks)

β-carotene (µmol/L),

α-carotene (µmol/L),

lycopene (µmol/L),

α-tocopherol (µmol/mmol

lipid)

Jacob (34) 500.0ml tomato juice (41.8mg lycopene, 90.0mg vitamin C)

(daily, 2 weeks)

500.0ml tomato juice (870.0mg vitamin C) (daily, 2

weeks)

lycopene (µmol/L),

β-carotene (µmol/L), lutein

(µmol/L), tocopherol (mg/l),

FRAP (µmol/L)

Briviba et al. (35) T1: 0.8 (0.2) servings vegetables, 1.1 (0.4) servings fruits

[total 1.9 (0.5) servings] (daily, week 1–4) 4.3 (0.6) servings

vegetables, 3.5 (0.5) servings fruits [total 7.8 (1.1) servings]

(daily, weeks 4–8); T2: 0.9 (0.2) servings vegetables, 1.0 (0.3)

servings fruits [total 1.9 (0.4) servings] (daily, week 1–4) 2.8

(0.4) servings vegetables, 1.9 (0.3) fruits servings [total 4.6

(0.7) servings] (daily, weeks 4–8)

1.0 (0.3) servings vegetables, 1.0 (0.4) servings

fruits [total 2.0 (0.6) servings] (daily, week 1–4) 1.0

(0.5) servings vegetables, 1.0 (0.4) servings fruits

[total 2.0 (0.8) servings] (daily, weeks 4–8)

Lutein (nM), zeaxanthin

(nM), α-carotene (nM),

β-carotene (nM), lycopene

(nM)

ORAC, oxygen radical absorbance capacity; TG, triglyceride; HDL, high density lipoprotein; FRAP, ferric-reducing ability of plasma; SOD, superoxide dismutase; CAT, catalase.

FIGURE 2 | The methodological quality assessment of included studies based on risk of biases presenting as percentages across all included studies.
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study will add valuable evidence of carotenoids on improving
disease caused by oxidative stress.

MATERIALS AND METHODS

Search Strategy
A systematic review of the literature was conducted in the
following databases: PubMed, Web of Sciences, the Cochrane
library, and CNKI from 2000 to December 2020. The searching
strategies were interventions (“antioxidant” or “carotenoid”
or “carotene” or “lutein” or “lycopene” or “zeaxanthin” or
“tocopherol” or “cryptoxanthin” or “canthaxanthin”), outcomes
[“oxidative stress” or “ferric-reducing ability of plasma (FRAP)”
or “oxygen radical absorbance capacity (ORAC)” or “superoxide
dismutase (SOD)” or “catalase (CAT)”or “glutathione peroxidase
(GPx)” or “lipid” or “lipoprotein” or “high density lipoprotein
(HDL)” or “triglyceride (TG)”], and study designs (“random”
or “control”). In addition, a hand-searching of the citation lists
and the articles of the relevant publications were performed to
identify other potentially eligible studies.

Study Selection
The clinical trials with the following criteria were included in
this systematic review: (1) randomized controlled trials (RCTs),
case-controlled trials, and controlled trials; (2) human subjects
being the target population without age limitation; (3) studies
relating to oxidative stress, lipid/lipid-protein, or carotenoids
level; and (4) treatment group receiving oral carotenoids
supplementation (single carotenoid, carotenoids complex, or
dietary botanical carotenoids) and control group (placebo, no
treatment, or other treatment). Studies that lack necessary
information were excluded.

Data Extraction and Quality Assessment
Characteristics of eligible studies were extracted using a
predesigned collection form. The data extracted included: The
first author’s name, publication year, country, subject numbers,
gender, age, body mass index (BMI), weight, intervention,
and outcome.

The methodological quality of each included study was
assessed using the “the Cochrane Collaboration Risk of bias tool.”
The assessment covers the following biases: random sequence
generation (selection bias), allocation concealment (selection
bias), blinding of participants and personnel (performance bias),
blinding of outcome assessment (detection bias), incomplete
outcome data (attrition bias), selective reporting (reporting bias),
and other bias.

Two independent authors (Chengfei Zhuang and Yan Sun)
did the above tasks of literature searching, study selection, data
extraction, and risk of bias assessment. Upon any disagreement,
a third author (Yan Wu) was resorted to reach a consensus.

Statistical Analysis
All the statistical analyses were performed using STATA 13.0
software (Stata Corporation, College Station, Texas, USA).

FIGURE 3 | The detailed results of risk of bias in each included study.
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FIGURE 4 | Meta-analysis and subgroup analysis showing that carotenoids complex significantly increased ferric-reducing ability of plasma (FRAP) comparing to

control group.

Moreover, RevMan V.5.3 software (Cochrane Collaboration,
Oxford, UK) was used for risk of bias assessment. Standardized
mean difference (SMD) with 95% CI was used to express
the comparison results of two groups, based on the inverse
variance method and Cohen statistics. When an outcome was
measured in 2 or more studies, the pooled estimate was made.
When outcomes were measured at 2 or more time points
in the included studies, only data of baseline and final time
point were extracted and the change levels of treatment and
control group were compared. Subanalysis by supplements and
time points was undertaken if there were enough studies to
conduct a separate meta-analysis. The data were considered
the significant difference between treatment and control groups
when the p < 0.05. The results of the meta-analysis were
presented as forest plots. Heterogeneity was determined using
p-value and I2 statistics. The I2 > 50% with a p < 0.05 was
denoted to be significant heterogeneity between the studies, and
a random-effects model was adopted, or else, a fixed-effects
model would be used. If obvious clinical heterogeneity existed,
though statistical heterogeneity was not detected, a random
effects model would be adopted. Publication bias was scrutinized

using Egger’s test with a p< 0.1 being representative of significant
publication bias.

RESULTS

Literature Search
A total of 13,812 potentially relevant articles were found in the
initial search, and 11,991 articles were excluded by removing the
duplications and screening the titles and/or abstracts. Full-text
evaluations were conducted for the remaining 134 articles, and
104 of these articles were excluded for not meeting inclusion
criteria. Eventually, 18 articles were included in our analysis
(29–46). The details of the step-by-step trial’s identification and
selection process are given in Figure 1.

Characteristic of Included Studies and
Subjects
The effects of carotenoids were evaluated by oxidative stress
parameters, carotenoid level, and lipids or lipoprotein levels.
Trials were conducted in 9 countries and published between 2000
and 2017. The sample size ranged from 12 to 99 subjects and
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FIGURE 5 | Meta-analysis result showing that carotenoids complex significantly increased oxygen radical absorbance capacity (ORAC) concentration comparing to

control group.

age ranged from 10.0 to 71.77 years old. BMI ranged from 18 to
27.8 kg/m2 and weight ranged from 20.2 to 82.3 kg. The target
populations were healthy subjects in 16 studies, athletes in 1 study
(29), and pregnant women in 1 study (30). Table 1 presents the
fundamental information of all the subjects.

The treatment durations are mainly 4–12 weeks, with the
shortest duration being 2 weeks and the longest duration
being 12 weeks. The tested carotenoids in blood were β-
carotene, α-carotene, lutein, lycopene, zeaxanthin, and α-
tocopherol. The interventions of 14 trials were carotenoids
complex, 4 trials were fruits/vegetables, and 0 trial was single
carotenoid. The formulations of carotenoids were capsules
or tablets and fruits/vegetables were juice or servings. The
doses of carotenoids complex were characterized into low dose
(<20mg), medium dose (≥20mg, <50mg), and high dose
(>50mg). Among the studies for meta-analysis, both the low
and medium doses of carotenoids complex were applied in
trials measuring HDL and TG and, thus, subgroup analyses
stratified by doses were conducted, simple medium dose of
carotenoids complex was seen in trials with FRAP measurement,
and simple low doses were found in trials with other measured
parameters. Of all included studies, only one study applied
high doses of carotenoids complex and did not participate in
meta-analysis as the necessary data were unavailable. Table 2

shows the detailed interventions and measurements of all the
included studies.

Quality Assessment
All the trials except for 1 trial (32) used an appropriate
method of random sequence generation. The majority of
trials (15/18) were assessed as low risk of bias for allocation
concealment. One trial did not explain the detailed process
of blinding, 10 trials were classified as low risk of blinding
of participants and personnel (performance bias) and 11 trials
had a low risk of blinding of outcome assessment (detection
bias). One trial explained the unclear risk of incomplete
outcome data (attrition bias). Risks of bias are shown in
Figures 2, 3.

Meta-Analysis Results and Descriptive
Analysis Results
Two Antioxidative Capability Parameters
There were respective 5 and 3 trials that compared change
levels of FRAP and ORAC between the treatment and control
groups. Both the FRAP and ORAC concentrations were
significantly increased in the group receiving carotenoids
compared with the control groups (SMD = 0.371; 95%
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TABLE 3 | Meta-analysis/subgroup analysis and publication bias of included studies.

Measurement index Number of study SMD 95% CI p Heterogeneity Model Publication bias

I2 p t p

Antioxidative capability parameters

FRAP Overall 5 0.371 0.113 0.629 0.005* 0.00% 0.407 Fixed −1.06 0.368

Fruits/vegetables 2 0.143 −0.331 0.616 0.554 0.00% 0.896 Fixed

Carotenoids complex (MD) 3 0.468 0.159 0.776 0.003* 26.0% 0.259 Fixed

ORAC carotenoids complex (LD) 3 0.568 0.190 0.947 0.003* 40.9% 0.184 Fixed −1.61 0.354

Antioxidative enzymes

SOD Overall 3 0.237 −0.673 1.147 0.200 67.1% 0.048 Random 0.55 0.680

Fruits/vegetables 1 −0.043 −0.629 0.542 0.885 – – –

Carotenoids complex (LD) 2 0.458 −1.320 2.237 0.614 81.3% 0.021 Random

CAT Overall 3 0.173 −0.285 0.631 0.459 0.5% 0.366 Fixed 0.72 0.604

Fruits/vegetables 1 0.036 −0.550 0.621 0.905 – – –

Carotenoids complex (LD) 2 0.390 −0.346 1.125 0.299 31.8% 0.226 Fixed

GPx Overall 3 1.369 −0.324 3.062 0.117 87.0% 0.000 Random 4.84 0.130

Fruits/vegetables 1 0.046 −0.539 0.632 0.877 - - -

Carotenoids complex (LD) 2 2.180 −0.112 4.472 0.062 81.1% 0.021 Random

Carotenoid levels

β-carotene Overall 11 0.294 −0.098 0.687 0.142 67.6% 0.001 Random 0.85 0.416

Fruits/vegetables 6 0.189 −0.227 0.605 0.373 64.7% 0.015 Random

Carotenoids complex (LD) 5 0.496 −0.399 1.392 0.277 74.7% 0.003 Random

Week 4 5 −0.168 −0.526 0.190 0.357 20.6% 0.283 Random

Week 8 4 0.490 0.123 0.858 0.009* 0.00% 0.451 Random

Fruits/vegetables 2 0.665 0.232 1.098 0.003* 0.0% 0.593 Random

Carotenoids complex (LD) 2 0.042 −0.652 0.736 0.906 0.0% 0.727 Random

Week 12 2 1.281 −0.435 2.996 0.143 88.0% 0.004 Random

α-carotene Overall (week 4) 4 0.322 −0.011 0.655 0.058 0.0% 0.837 Fixed 2.10 0.171

Fruits/vegetables 1 0.400 −0.192 0.992 0.185 – – –

Carotenoids complex (LD) 3 0.286 −0.118 0.689 0.165 0.0% 0.686 Fixed

lutein Overall 5 0.756 −0.062 1.575 0.070 80.0% 0.000 Random 2.38 0.097

Carotenoids complex (LD) 3 1.325 −0.297 2.947 0.109 85.8% 0.001 Random

Fruits/vegetables 2 0.138 −0.291 0.566 0.528 0.0% 0.627 Random

Week 4 3 0.391 −0.262 1.043 0.241 53.8% 0.115 Random

Week 12 2 1.229 −1.235 3.693 0.328 92.5% 0.000 Random

Lycopene Overall 15 0.303 −0.129 0.736 0.169 83.4% 0.000 Random −0.28 0.783

Fruits/vegetables 8 0.202 −0.276 0.681 0.408 84.2% 0.000 Random

Carotenoids complex (LD) 7 0.611 −0.372 1.595 0.223 84.9% 0.000 Random

Week 4 7 0.430 −0.306 1.166 0.252 82.8% 0.000 Random

Week 8 8 0.258 −0.279 0.795 0.346 83.7% 0.000 Random

Zeaxanthin Overall (week 4) carotenoids complex (LD) 3 0.249 −0.153 0.651 0.225 0.0% 0.936 Random 2.04 0.290

α-tocopherol Overall 6 0.752 0.020 1.485 0.044* 75.2% 0.001 Random 4.01 0.016*

Fruits/vegetables 2 −0.102 −0.530 0.326 0.641 0.0% 0.760 Random

Carotenoids complex (LD) 4 1.314 0.520 2.107 0.001* 48.5% 0.120 Random

Week 4 3 1.304 −0.327 2.936 0.117 86.80% 0.001 Random

Week 8 3 0.284 −0.351 0.919 0.381 39.20% 0.193 Random

Lipids or lipoproteins

HDL Overall 5 0.061 −0.191 0.312 0.635 41.4% 0.146 Fixed −0.51 0.642

Carotenoids complex 4 0.132 −0.146 0.410 0.352 44.9% 0.142 Fixed

Carotenoids complex (LD) 2 0.102 −0.248 0.452 0.569 79.2% 0.028 Fixed

Carotenoids complex (MD) 2 0.184 −0.274 0.641 0.431 0.0% 0.455 Fixed

Fruits/vegetables 1 −0.258 −0.846 0.330 0.390 – – –

TG Carotenoids complex 3 −0.410 −0.698 −0.122 0.005* 0.0% 0.405 Fixed −2.82 0.217

Carotenoids complex (LD) 2 −0.297 −0.646 0.052 0.095 0.0% 0.460 Fixed

Carotenoids complex (MD) 1 −0.652 −1.163 −0.140 0.013* – – –

FRAP, ferric-reducing ability of plasma; ORAC, oxygen radical absorbance capacity; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; HDL, high density

lipoprotein; TG, total glyceride; LD, low dose (<20mg); MD, medium dose (≥20mg,<50 mg).

*Significantly different (p < 0.05).
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FIGURE 6 | Subgroup analysis of β-carotene showing a higher β-carotene level in fruits/vegetables group than in placebo group at week 8.

CI: 0.113–0.629, p = 0.005; SMD = 0.568; 95% CI: 0.190–
0.947, p = 0.003) (Figures 4, 5). Subgroup analysis of
FRAP showed that medium-dose carotenoids complex
significantly increased antioxidative capability comparing
to control (SMD = 0.468; 95% CI: 0.159–0.776, p =

0.003), while supplements of fruits/vegetables did not
significantly increased antioxidative capability (p > 0.05)
(Table 3).

Three Antioxidative Enzymes Parameters
The changes from posttreatment to the baseline of SOD,
CAT, and GPx were compared between treatment and control
groups. No significant differences were seen for all the
parameters (p > 0.05) neither pooled results nor subgroup
results were stratified by different forms of oral carotenoids
(Table 3).

Blood Levels of Seven Carotenoid Levels Indexes
In all, 14 trials compared β-carotene levels between the treatment
and control groups. Meta-analysis of 11 trials showed that
significant difference was seen at week 8 and the difference
came from fruits/vegetables (SMD = 0.665, 95% CI: 0.232–
1.098, p = 0.003) (Figure 6), as the fruits/vegetables treatment
group produced higher β-carotene level than the control group

(Table 3). The other 3 trials that had no deserved data for
meta-analysis also showed that the treatment groups had higher
β-carotene levels than the control groups (p= 0.003; Table 4).

There were 7 trials comparing α-tocopherol levels between
the treatment and control groups. The pooled results of 6 trials
showed significant differences (p < 0.05) and the subgroup
analysis presented that supplement of low-dose carotenoids
complex contributed to the difference (SMD = 1.314, 95% CI:
0.520–2.107, p = 0.001) (Figure 7) (Table 3). One trial showed
that no significant differences were present between the orange-
fleshed sweet potatoes treatment group and the white-fleshed
sweet potatoes control group (p > 0.05; Table 4).

The meta-analyses results showed that the levels of other 5
kinds of carotenoid, i.e., α-carotene, lycopene, lutein, zeaxanthin,
and β-cryptoxanthin were not different between treatment
and control groups (p > 0.05) (Table 3). One trial that had
no sufficient data for meta-analyses showed that remarkable
changes of α-carotene, lutein, or zeaxanthin were, respectively,
seen between the low-dose carotenoids complex group and the
placebo group (p < 0.05; Table 4).

Lipid or Lipoprotein Parameters
The changes from posttreatment to the baseline of HDL and
TG were compared between treatment and control groups.
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TABLE 4 | Descriptive analyses of included studies that had no sufficient data for meta-analyses.

Measurement index Intervention References Outcome

β-carotene

Fruits/vegetables Turner (31) Plasma β-carotene increased 250% in the orange-fleshed sweet potatoes group, and the

mean change in plasma β-carotene (0.306 ± 0.070 mmol/L) was different from that in the

white-fleshed sweet potatoes group (p < 0.001).

Carotenoids complex (HD) Ma (33) Significant increases of plasma β-carotene after 2 months supplementation in all three

supplemented groups compared with the respective placebo groups (p < 0.001).

carotenoids complex (LD) Hininger (39) Significant higher level of plasma β-carotene in the supplemented group at 9 months of

gestation, comparing to placebo group (p < 0.05).

α-carotene

Carotenoids complex (LD) Ryu (30) Remarkable changes of α-carotene between two groups (Chlorella 163.6%; placebo 15%; p <

0.0001).

Lutein

Carotenoids complex (LD) Ryu (30) Remarkable changes of lutein two groups (Chlorella 89.6%; placebo −1.7%; p < 0.0001).

Zeaxanthin

Carotenoids complex (LD) Ryu (30) Remarkable changes of zeaxanthin between two groups (Chlorella 89.6%; placebo −1.7%; p

< 0.0001).

α-tocopherol

Fruits/vegetables Turner (31) No significant differences between orange-fleshed sweet potatoes group and white-fleshed

sweet potatoes group.

HDL

Carotenoids complex (LD) Ryu (30) Remarkable changes of HDL (Chlorella 4.0%; placebo s betwep = 0.023) compared with

placebo.

TG

Carotenoids complex (LD) Ryu (30) Remarkable changes of TG (Chlorella 4.0%; placebo sweet pp = 0.023) compared with

placebo.

HDL, high density lipoprotein; TG, triglyceride; LD, low dose (<20mg); MD, medium dose (≥20mg,<50mg); HD, high dose (≥50 mg).

The pooled results showed that no significant differences were
seen of any parameters (p > 0.05). The subgroup analysis,
stratified by different forms of carotenoids, showed that medium-
dose carotenoids complex significantly decreased the blood TG
level (SMD = −0.410, 95% CI: −0.698 to −0.122, p = 0.005)
(Figure 8) (Table 3). The trial that had no sufficient data for
meta-analyses showed that remarkable changes of HDL or
TG were, respectively, seen between the low-dose carotenoids
complex group and placebo group (p < 0.05; Table 4).

Publication Bias (Table 3)
Egger’s regression tests showed that most indexes had no
evidence of publication bias (p > 0.05), with the exception of α-
tocopherol (t = 4.01, p = 0.016) and TG (t = −5.89, p = 0.004)
(Table 3).

DISCUSSION

A systematic review conducted in 2015 assessed that a range
of single carotenoids among which β-carotene and lycopene
were the most abundant consumed carotenoids, and β-carotene
and α-carotene were the most commonly assessed carotenoids
biochemically (47). In recent years, carotenoids complex and
dietary botanical carotenoids (especially in fruits/vegetables)
were more welcomed than a single form of carotenoid. The
current systematic review, not only an updated systematic review
of the previous one but specially reported carotenoids complex

and dietary botanical carotenoids rather than single carotenoids.
Besides, we added antioxidative markers and lipid/lipoprotein
parameters that may be influenced by oral carotenoids, and
these important markers were not analyzed in the previous
systematic review.

In the aspect of antioxidative effects, FRAP and ORAC
are standardized indexes measuring the antioxidant capacity
of nutraceutical or dietary supplement industries (48). FRAP
follows a single electron transfer mechanism and ORAC follows
a hydrogen atom transfer mechanism. Antioxidant phenols
directly interact with free radicals by electron or hydrogen
atom donation to fulfill antioxidative capacity (49). For example,
Shanely et al. (50) showed that watermelon puree was associated
with increases in plasma antioxidant capacity measured by
FRAP and ORAC. In our meta-analysis, pooled results showed
that oral carotenoids supplementation significantly increased
the blood levels of FRAP, and subgroup analysis indicated that
the antioxidative capacity attributed to carotenoids complex but
not fruits/vegetables. The pooled results of studies measuring
ORAC also showed higher antioxidative capacity after intaking
the carotenoids complex. One previous uncontrolled study
demonstrated that levels of single antioxidants in food do
not necessarily reflect their total antioxidant capacity which
also depends on the synergic and redox interactions among
the different molecules present in the food (51). This theory
may explain the relatively high antioxidative capacity of the
carotenoids complex. In the current study, we also assessed
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FIGURE 7 | Subgroup analysis of α-tocopherol showing a higher α-tocopherol level in carotenoids complex than in placebo group.

the levels of antioxidative enzymes in blood before and
after carotenoid supplements. The antioxidative enzymes play
protective effects against active and massive oxidative attacks due
to the ability to decompose ROS (48). For example, SOD can
catalyze superoxide into oxygen and hydrogen peroxide (52),
and CAT and GPx can neutralize the hydrogen peroxide by
decomposing it into molecular oxygen and water (53, 54). Our
meta-analysis showed that oral intake of carotenoids, no matter
carotenoids complex or fruits/vegetables, did not influence the
blood levels of these antioxidative enzymes. The current results
indicated that oral carotenoids play antioxidative roles via
interacting with free radicals by electron or a hydrogen atom
(direct action) but not via promoting antioxidative enzymes
(indirect action).

Given the relationships between some botanical antioxidants
(for example, polyphenol compounds and phytochemicals)
and vitagenes network in health benefit (for example,
neuroprotection) (3, 55), we should not ignore such potential
indirect mechanism of carotenoids. The generation of ROS is
involved in the regulation of cellular stress response mechanisms
and is a highly regulated process under the control of vitagenes
(55, 56). Vitagenes are redox-sensitive genes coding for redox
proteins (55, 56). These proteins control a complex network

of intracellular signaling pathways relevant to life span and
preservation of cellular homeostasis under stress conditions (3).
Hormetic dose responses are mediated by endogenous cellular
defense pathways (3). Modulation of endogenous cellular defense
mechanisms represents a therapeutic intervention in oxidative
stress-related diseases (3). Antioxidants including carotenoids
may play their protective role through a hormetic-dependent
activation of vitagenes (3).

High-density lipoprotein (HDL) is plasma lipoproteins that
are macromolecular assemblies of proteins and lipids (57). A
review put forward that high levels of lipid oxidation products
in HDL appear to associate with the prevention of atherosclerosis
(58). In our meta-analysis, the supplement of various carotenoids
did not change the level of HDL in the blood. Interestingly, the
blood TG level was significantly decreased by the carotenoids
complex. According to a previous report, a high level of TG could
aggravate oxidative stress, then drove mucosal inflammation and
increased mucosal barrier permeability, thus promoting colitis
(59). High TG levels also cause prediabetic neuropathy through
oxidative-nitrosative stress (60). These results demonstrated that
oral intake of carotenoids, especially carotenoids complex, may
have protective effects of some oxidative stress relating diseases
via decreasing TG levels.
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FIGURE 8 | subgroup analysis of TG level showing supplements of carotenoids complex significantly decreased the TG level in blood.

After being orally taken, carotenoids are liberated from
the food matrix, absorbed into the bloodstream, and then
they will exert biological effects (61). Some factors may
influence the bioactivities of carotenoids. For example, different
isomers of lycopene have discriminatory bioaccessibility. The
cis-isomer in tissues exceeds that in foods, and the greater
bioaccessibility contributes to the enrichment in tissues,
as compared with all-trans isomers (62). Besides, serum
concentrations of most carotenoids decrease abiding by first-
order kinetics, with plasma half-life between 26 and 76 days
(about 4 and 10 weeks) (63). In our systematic review,
the blood levels of 6 carotenoids were tested, and α-
carotene, β-carotene, and α-tocopherol got positive findings.
The blood β-carotene level was not increased until 8 weeks
of fruits/vegetable supplement. In addition, the carotenoids
complex supplement produced a high level of α-tocopherol
after week 4. These results reflect that the intake duration
of carotenoids should be long enough to reach enough
concentration for function.

This systematic review has several advantages. Different
from other systematic reviews, the current one especially,
examined the effects of carotenoid supplementations on
oxidative stress in vivo. We first demonstrated that the
carotenoids complex had more advantages over fruits/vegetables.
All potential studies, namely, RCTs, case-controlled trials, and
controlled trials, were included to obtain as much information
as possible, and the methodological quality of each study
was relatively high. Nevertheless, the following limitations

need further research. The measurement assessment of some
types of carotenoids, such as α-carotene and zeaxanthin,
was limited to only one time point. We were unable to
state whether carotenoids have different antioxidative effects
among subjects with variable physiologic states. Besides, origins
(natural or synthetic) and administration methods (for example,
chlorella crushed or not?) may influence the effects of
carotenoids. We cannot provide the important information
owing to unavailability.

In conclusion, this systematic review showed that the
carotenoids complex is beneficial for alleviating potential
oxidative stress via interacting with free radicals or decreasing
blood TG levels. The intaking duration of carotenoids should
be 8 weeks to reach enough concentration for function.
Intake of carotenoids nutrition may have huge potentials for
disorders/diseases relating to oxidative stress.
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