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Abstract

Entropy measures that assess signals’ complexity have drawn increasing attention recently

in biomedical field, as they have shown the ability of capturing unique features that are intrin-

sic and physiologically meaningful. In this study, we applied entropy analysis to electroen-

cephalogram (EEG) data to examine its performance in epilepsy detection based on short-

term EEG, aiming at establishing a short-term analysis protocol with optimal seizure detec-

tion performance. Two classification problems were considered, i.e., 1) classifying interictal

and ictal EEGs (epileptic group) from normal EEGs; and 2) classifying ictal from interictal

EEGs. For each problem, we explored two protocols to analyze the entropy of EEG: i) using

a single analytical window with different window lengths, and ii) using an average of multiple

windows for each window length. Two entropy methods—fuzzy entropy (FuzzyEn) and dis-

tribution entropy (DistEn)–were used that have valid outputs for any given data lengths. We

performed feature selection and trained classifiers based on a cross-validation process. The

results show that performance of FuzzyEn and DistEn may complement each other and the

best performance can be achieved by combining: 1) FuzzyEn of one 5-s window and the

averaged DistEn of five 1-s windows for classifying normal from epileptic group (accuracy:

0.93, sensitivity: 0.91, specificity: 0.96); and 2) the averaged FuzzyEn of five 1-s windows

and DistEn of one 5-s window for classifying ictal from interictal EEGs (accuracy: 0.91, sen-

sitivity: 0.93, specificity: 0.90). Further studies are warranted to examine whether this pro-

posed short-term analysis procedure can help track the epileptic activities in real time and

provide prompt feedback for clinical practices.

Introduction

Epilepsy affects approximately 9 million people in China [1] and more than 65 million people

worldwide [2]. It is the fourth most common neurological disorder in the USA [2]. In Austra-

lia, the prevalence of epilepsy is between 0.6%-0.75% [3]. Nearly 80% of the people with epi-

lepsy live in low- and middle-income countries, among which, however, over three fourths do
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not get the treatment they need [4]. To reduce this treatment gap, there is not only a need for

well-trained healthcare providers, but related technologies/devices that can detect or even

track epileptic activities reliably and cost-effectively are also required urgently.

Continuous electroencephalogram (EEG) monitoring allows uninterrupted assessment of

brain activity [5] and thus makes the tracking of seizure events possible. In order for caregivers

to take prompt action during monitoring, a rapid seizure onset or seizure attack detection is

required which is, however, still challenging. It relies not only on accurate performance but

also the compatibility of classification algorithms with inputs of short-term EEG data (e.g.,

length�5 s). To the best of our knowledge, only very few, amongst the vast number of pub-

lished studies, were initially designed for handling short-term data [6, 7]. The reason for using

longer signal recordings may partly lie in the fact that the algorithms used in most previously

published studies, e.g., empirical mode decomposition (EMD) [8], wavelet transform [9], and

detrended fluctuation analysis (DFA) [10], require large numbers of data points for robust per-

formance. Note that in [8], although the authors have claimed that their statistical features

were extracted from the IMF (intrinsic mode function which is extracted using the EMD algo-

rithm) segments of only 256 points (~1.5 s), their preprocessing (filtering signal using a Butter-

worth band-pass filter) and extraction of IMFs from EEG was done on the complete EEG

recording.

In view of clinical practices, two important aspects of EEG based seizure detection can be

described as: i) screening subjects with epilepsy from the normal cohort, i.e., classifying inter-

ictal and ictal EEG from normal EEG; and ii) detection of seizure in epileptic population, i.e.,

classifying ictal from interictal EEG. Based on one of the most widely used open access EEG

data sets—the Bonn database [11, 12], the two problems can be specified as classifying: i) N

(EEG during interictal phase recorded from the opposite hemisphere of the epileptogenic

zone), F (EEG during interictal phase recorded from the epileptogenic zone) and S (EEG at

ictal phase) from Z (normal EEG recorded with eyes closed), O (normal EEG recorded with

eyes open); and ii) N, F from S. However, to the best of our knowledge, no publication has yet

reported the results exactly in this way (published studies including [9, 10, 13–26] and for a

review see [27]). Though various models that combined several classification problems have

been developed, most of them were found to have only covered one of the two problems. Spe-

cifically, a few studies which targeted detection of epileptic seizure always used set S as one

class and either one or a combination (e.g., ZNF, ONF, or very occasionally ZONF) set from

sets Z, O, N, and F [9, 13–16] (a detailed list regarding which one or what combination was

used could be found in [9]). Some studies have worked on differentiating EEG at the ictal

phase from those at the interictal phase. However, only one set from the interictal class (either

N or F) along with set S were used to develop the models [10, 17, 18]. There are also a couple

of studies which considered three-class (normal, interictal, and ictal) models [19–26], all of

which used one set from the two EEG sets in both normal and interictal groups except [8, 23]

which applied all five data sets. Though these three-class models may potentially satisfy the

conventional clinical requirements, when taking continuous monitoring into account, e.g., for

the online tracking and prompting of epileptic activities, their applicability may need to be fur-

ther validated since all of them were developed based on long-term recordings with 4,097 sam-

pling points (23.6 s).

Regarding features used to characterize EEG, nonlinear properties have attracted increasing

attention nowadays since nonlinearity is believed to be inherent in physiological processes

[28]. Various entropy measures, i.e., approximate entropy (ApEn) [29], sample entropy (Sam-

pEn) [30], permutation entropy [31], symbolic dynamics based entropy [32], and fuzzy

entropy (FuzzyEn) [17], have been favored since they were capable of providing estimations of

complexity, a nonlinear dynamical biomarker for healthy physiology [33], based on data of
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limited length. Recently, we established a new entropy method based on the distribution of

inter-vector distances in order to achieve high robustness for extremely short data recordings

[34]. This distribution entropy (DistEn), which acts as a new member of the entire family of

entropy measures, has shown extraordinarily good performance compared with traditional

algorithms in several fields [34–37].

Most recently, we have applied DistEn and SampEn on the Bonn database to analyze 5-s

EEG and found that DistEn worked well for classifying interictal EEG from normal, ictal EEG

from normal, and ictal from interictal EEG, whereas SampEn failed in one of the three classifi-

cation problems (ictal from interictal EEG) [6]. Additionally, we also reported that DistEn

could still work when using 1-s EEG segment with a protocol of moving analytical windows

[7]. Based on those previous findings, we aim to develop an entropy-based short-term EEG

classification model, which is suitable for clinical settings and can be used to prompt the diag-

nosis of epileptic conditions or interventions during seizure for epileptic patients. We have

decided to use entropy based approaches since they are applicable for probing the dynamics

with data of limited length [34]. The short-term analyses we explored here will offer model

compatibility for clinical settings as well as provide capacity for early intervention during sei-

zure attack.

In this study, we will use FuzzyEn and DistEn methods since both of them are defined for

any given data length (even as short as 1 s though FuzzyEn may vary severely) in contrast to

SampEn. Besides, although ApEn is also defined for short data length, it was left out due to the

bias of the measure (especially for short-term data). We have decided not to use permutation

entropy or symbolic dynamics based entropy since to the best of our knowledge, no systematic

study has been done yet regarding their applicability or application to short or extremely short

physiological time-series.

To develop the model with the above-mentioned capacity, the challenge is to determine the

optimal minimum EEG length under which a reasonably high accuracy could be achieved. We

will apply two protocols to do this: i) entropy of a single window with length varying from 1 to

23 s (almost the complete recording length of the used database); and ii) average entropy of

multiple windows with length l varying from 1 s to a certain length x s based on the results of

protocol i) with overlapping of (l − 1) s. For both protocols, the performance will be measured

as the capacity for distinguishing: i) normal from ictal and interictal EEGs (represented below

by “epileptic group” for short); and ii) ictal from interictal EEGs.

Methods

Description of EEG data

The EEG data used in this study came from the Bonn database [12] which is publicly accessible

online [11]. It is comprised of 500 single-channel EEG recordings sampled at 173.61 Hz with

duration of 23.6 s each. They are categorized into five groups (classes Z, O, N, F, and S) and

each group consists of 100 recordings. Classes Z and O are surface EEG data collected from

five healthy volunteers using the standardized 10–20 electrode placement scheme in awake

and relaxed state with their eyes open and closed, respectively. Classes N, F, and S were col-

lected from five epileptic patients using intracranial electrodes. Signals in N and F were

recorded from the opposite hemisphere and the hemisphere of the epileptogenic zone, respec-

tively, during only seizure-free (interictal) periods. Signals in S were collected during the sei-

zure attacks (ictal period). Prior to the following data analyses, all raw EEG recordings were

filtered by a 20-order finite impulse response (FIR) band pass filter with cut-off frequencies of

0.53 and 40 Hz [12].

Entropy of short-term EEG for epilepsy detection
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Analysis protocols

Two protocols were proposed for analysis in this study as shown schematically in Fig 1.

Single window protocol (SP). Entropy (either FuzzyEn or DistEn) was calculated using

short segments with length varying from 1 to 23 s. Segments always started from the very

beginning of each recording, as indicated in Fig 1(a).

Multiple windows protocol (MP). Entropy was obtained by averaging the entropy results

over multiple segments. The length of segments varied from 1 s to a certain length x s based

on results of SP. For each specific length l, the window shifted from the very beginning of the

signal recording until (23 − l) s with an overlap of (l − 1) s between subsequent windows, as

described in Fig 1(b). Note that in this protocol, the numbers of moving windows were differ-

ent for different segment lengths.

Algorithms of FuzzyEn and DistEn

Fuzzy entropy (FuzzyEn). FuzzyEn is a refined algorithm for SampEn based on fuzzy

logic. By definition, it does not count on the absolute probability of similar vectors according

to the hard thresholding criterion as applied in SampEn. Instead, FuzzyEn estimates the proba-

bility that two vectors are similar based on the fuzzy membership function. Briefly, the Fuz-

zyEn algorithm for a time-series of N points {u(i), 1� i� N} can be summarized as follows:

1. State space reconstruction: Form (N − mτ) vectors X(i) by X(i) = {u(i), u(i + τ), � � �, u(i +

(m − 1)τ)}, 1� i� N − mτ. Here m indicates the embedding dimension and τ the time

delay.

2. Ranking similar vectors: Define the distance between X(i) and X(j) (1� i, j� N − mτ, i 6¼ j)
by di,j = max(|u(i + k) − u(j + k)|, 0� k�m − 1). Calculate the average probability that vec-

tors X(j), j = 1, 2, � � �, N − mτ and j 6¼ i are similar to X(i) in terms of degree of membership

using:

AðmÞi ðrÞ ¼
1

N � mt

XN� mt

j¼1;j6¼i
e� lnð2Þ

di;j
r

� �2

: ð1Þ

Similarly, we define Aðmþ1Þ

i ðrÞ as the counterpart when the subsequent point was included

in the vectors. Here r indicates the threshold parameter.

Fig 1. Analysis protocols. WL: window length. n: number of windows.

https://doi.org/10.1371/journal.pone.0193691.g001
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3. Calculation: The FuzzyEn value of the time-series {u(i)} can be calculated by

FuzzyEnðm; t; rÞ ¼ � ln
PN� mt

i¼1
Aðmþ1Þ

i ðrÞ
PN� mt

i¼1
AðmÞi ðrÞ

: ð2Þ

Distribution entropy (DistEn). DistEn was initially proposed to alleviate the parameter-

dependence and unrobustness of ApEn and SampEn especially when being applied to small

data sets. It takes full advantage of the state space counterpart of the under-analyzed time-

series by quantifying the distribution characteristics of the inter-vector distances. For the time-

series {u(i), 1� i� N}, DistEn can be estimated as follows:

1. State space reconstruction: Form (N − (m − 1)τ) vectors X(i) by X(i) = {u(i), u(i + τ), � � �, u(i +

(m − 1)τ)}, 1� i� N − (m − 1)τ. Here m indicates the embedding dimension and τ the time

delay.

2. Distance matrix construction: Compute the inter-vector distances (distances between all

possible combinations of X(i) and X(j)) by di,j = max(|u(i + k) − u(j + k)|, 0� k�m − 1)

for all 1� i, j� N − m. The distance matrix is denoted as D = {di,j}.

3. Probability density estimation: Estimate the empirical probability density function of the

distance matrix D by the histogram approach with a fixed bin number of B. The probability

of each bin can be denoted as {pt, t = 1, 2, � � �, B}. Note here elements with i = j in D are

excluded in the estimation.

4. Calculation: The DistEn value of the time-series {u(i)} can be calculated by

DistEnðm; t;BÞ ¼ �
1

log
2
ðBÞ

XB

t¼1
pt log

2
ðptÞ: ð3Þ

Selection of input parameters. FuzzyEn is a function of m, τ, and r, whereas DistEn a

function of m, τ, and B, as specified above. In this study, we were not exploring the effects of

input parameters on either algorithm. Therefore, we chose to use those commonly recom-

mended assignments for r and B, i.e., r = 0.15 � sd (sd indicates the standard deviation of the

time-series under analysis) [38], and B = 64 [6, 34]. The embedding dimension m and time

delay τ were determined jointly based on a differential entropy method [39]. Our analysis

resulted in an optimal range of m 2 [2,5] and τ 2 [8,12], respectively. However, we did not

apply all the possible combinations of m and τ in this study. Instead, m = 3 and τ = 3 were used

because our recent study found that this combination works well for both algorithms (in that

study we applied all the combinations, see [6] for details).

Statistical analysis

Area under the receiver operating curve (AUC) was applied to test the ability of FuzzyEn and

DistEn as measures for distinguishing: 1) normal from epileptic group (i.e., interictal and ictal

EEG); and 2) ictal from interictal EEG. AUC can be a value from 0.5 to 1 and a smaller value

indicates less discriminatory power.

The quadratic discriminant (QD) classifier was applied to test the ability of FuzzyEn and

DistEn features in detecting epileptic subjects from normal subjects at the first stage and then

classifying ictal EEG from interictal at the second stage. A 5-fold cross-validation scheme was

Entropy of short-term EEG for epilepsy detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0193691 March 15, 2018 5 / 17

https://doi.org/10.1371/journal.pone.0193691


adopted to evaluate the generalization ability of the classifiers (Fig 2). Cross-validation proce-

dures have been used in a number of classification evaluations, particularly for limited data

sets [40]. In this scheme, the data set was uniformly divided into five subsets, maintaining the

positive (epileptic or ictal) and negative (normal or interictal) class ratio. For the cross-valida-

tion, one set was used for testing and the remaining 4 subsets were used to train the classifiers.

This was repeated for the remaining subsets so that all subsets were used as the testing sample.

The feature selection method to select the single best feature from all FuzzyEn and DistEn fea-

tures was embedded in the classification process, i.e., the single best feature was selected during

Fig 2. Performance evaluation and feature selection processes.

https://doi.org/10.1371/journal.pone.0193691.g002
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each iteration of the cross-validation approach and the feature selection was performed using

the training samples. A 5-fold partitioning scheme was used for dividing the training data uni-

formly into five subsets and at each run, four subsets of them were used for calculating the

AUC value for each feature. Once all AUC values were calculated, features were ranked

(1, 2, . . ., P) in descending order of AUC values, where P is the total number of features. Thus,

the feature with the highest AUC value was given a rank value 1 and multiple features with

same AUC values were given the same rank value. After one complete 5-fold partitioning

scheme, there were five rank values for each feature and the feature rank matrix is of order

P × 5. We have repeated the partitioning process 50 times to reduce the effect of randomiza-

tion, which resulted in the final feature rank matrix of order P × 250. Finally, the rank of each

feature was calculated by averaging all rank values of that feature and the feature with lowest

average rank value was selected as the single best feature. After selecting the single best feature

of each entropy feature group, they were used both independently and jointly to train the clas-

sification model and validate the developed model using test data. After all repetitions the clas-

sification results were obtained for the complete data set.

The following three measures, i.e., accuracy, sensitivity, and specificity, were used to assess

the performance of the classifiers [41, 42]:

Accuracy ¼
TPþ TN

TPþ FP þ TN þ FN
� 100; ð4Þ

Sensitivity ¼
TP

TPþ FN
� 100; ð5Þ

Specificity ¼
TN

TN þ FP
� 100; ð6Þ

where, TP is the number of true positives, i.e., the classifier identifies a patient that was labeled

as epileptic (classification problem 1) or ictal (classification problem 2); TN is the number of

true negatives, i.e., the classifier identifies a patient that was labeled as normal (problem 1) or

interictal (problem 2); FP is the number of false epileptic or ictal identifications; and FN is

the number of false normal or interictal identifications. Accuracy indicates overall detection

capacity; sensitivity is defined as the ability of the classifier to accurately recognize epileptic or

ictal, whereas specificity indicates the classifier’s ability not to generate a false negative (normal

or interictal).

All statistical analyses were performed using MATLAB R2014b (The MathWorks Inc.,

Natick, Massachusetts, USA).

Results

The left panels of Fig 3 show five exemplary EEG recordings with each coming from one of

five groups, i.e., groups Z, O, N, F, and S. Their FuzzyEn and DistEn results calculated based

on protocol MP are shown in the right two panels of Fig 3. Below we presented the analysis

results based on the SP and MP protocols, as well as the classification results, separately in dif-

ferent sub-sections.

Performance based on single window (protocol SP)

FuzzyEn showed good performance with AUC level consistently � 0.9 for distinguishing

normal subjects from the epileptic group; the performance was better with longer window

length n initially (from l = 1 to 5 s) and was maintained at a high AUC level (~0.95).

Entropy of short-term EEG for epilepsy detection
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However, for distinguishing ictal from interictal EEG, FuzzyEn was not effective since the

AUC levels were always lower than 0.7 no matter how long the window length was (Fig 4

and S1 Fig).

DistEn displayed totally different performance as compared with FuzzyEn. For distinguish-

ing normal subjects from epileptic group, DistEn showed a relatively high AUC level (~0.8)

initially (from l = 1 to 3 s) and then the AUC went down to< 0.7 slowly when the window

length n was larger than ~15 s. However, it showed better performance for distinguishing ictal

from interictal EEG with higher AUC levels (� 0.85), though initially with shorter window

length (� 3 s) the AUC levels were lower than 0.8 (Fig 4 and S2 Fig).

For both algorithms, the best performance could be reached, or had already been reached,

when the window length was 5 s. In addition, considering that we were targeting models based

on short-term EEG, we applied window lengths ofup to x = 5 s in the MP protocol.

Performance based on averages over multiple windows (protocol MP)

Overall, as shown in the left two panels of Fig 5, for classifying normal from epileptic group,

with the increase of window length, performance of FuzzyEn either became better (number

of windows n� 5) or remained (n> 5). For classifying ictal from interictal EEG, FuzzyEn

Fig 3. Exemplary EEG recordings from each of the five groups and their corresponding FuzzyEn and DistEn results calculated based on analysis

protocol MP.

https://doi.org/10.1371/journal.pone.0193691.g003
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showed worse performance with the increase of window length no matter how many windows

were averaged. Specifically, for both classification tasks, when the window length was 1-s, the

AUC values of FuzzyEn had an initial increase with the number of windows n and became sat-

urated (without showing obvious increase) at n = ~5. For the two classification tasks using lon-

ger windows (i.e., 2–4 s), similarly the AUC results increased initially and then became

unchanged or even reduced. The number of windows at which AUC became saturated shifted

forward with the increase of window length.

The right two panels of Fig 5 show the AUC results of DistEn for the two classification

tasks. The performance happened to be opposite to that of FuzzyEn. Specifically, for classifying

normal from epileptic using a 1-s window, AUC values show an initial increase from n = 1 up

to ~5 and became saturated without dramatic increase afterwards. For other window lengths

from 2 to 5 s, the performance was similar except that the corresponding overall AUC values

were reduced gradually. For classifying ictal from interictal EEG, the AUC values were almost

unchanged for all n and the overall AUC values corresponding to different window lengths

increased gradually from 1 to 5 s.

The detailed FuzzyEn and DistEn results did not follow a normal distribution and summa-

rized in term of median±interquartile range (S3 and S4 Figs).

Fig 4. AUC results of analysis using single window protocol.

https://doi.org/10.1371/journal.pone.0193691.g004

Entropy of short-term EEG for epilepsy detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0193691 March 15, 2018 9 / 17

https://doi.org/10.1371/journal.pone.0193691.g004
https://doi.org/10.1371/journal.pone.0193691


Optimal feature selection and classification performance

The feature selection process has resulted in the single best feature from both FuzzyEn and

DistEn features for both stages of classification. For the first stage classification (epileptic vs.

normal), the lowest average rank value was obtained for FuzzyEn of one 5-s window (F1
5
;

occurred in 3 runs) or averaged FuzzyEn of three 3-s windows (F3
3 ; occurred in 2 runs), and

averaged DistEn of five 1-s windows (D5
1 ; occurred in all 5 runs), as shown in Fig 6. On the

other hand, for the second stage classification (ictal vs. interictal), averaged FuzzyEn of five 1-s

windows (F5
1 ) and DistEn of one 5-s window (D1

5
) showed the lowest rank values for all 5 runs

(Fig 6).

Table 1 shows the confusion matrix and the performance of the QD classifier in distin-

guishing the epileptic group from normal (task i, left part) and the ictal EEGs from interictal

(task ii, right part). For task i (epileptic vs. normal), the FuzzyEn feature F1
5

and the DistEn fea-

ture D5
1 were used to train the first QD classifier and generate the cross-validation results. The

results based on the combination of F3
3 and D5

1 , or based on fold-specific best single FuzzyEn

feature and D5
1

(i.e., F1
5

and D5
1 for 3 folds while for the rest 2 folds, F3

3 and D5
1 ) were quite simi-

lar compared to those based on the selected combination (i.e., F1
5

and D5
1) and were reported in

Supplemental Materials (S1 Table). On the other hand, for task ii (ictal vs. interictal), features

Fig 5. AUC results of analysis based on averaging over multiple windows.

https://doi.org/10.1371/journal.pone.0193691.g005
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F5
1 and D1

5
were used to train the second QD classifier and generate the cross-validation results.

The overall accuracy we obtained for classifying the epileptic group from the normal group

using both FuzzyEn and DistEn features (F1
5

and D5
1 ) is 92.80% (Table 1, left part) with sensitiv-

ity of 90.67% and specificity of 96.00%. On the other hand, classification of the ictal from inter-

ictal EEGs showed accuracy of 95.33% with sensitivity of 93.00% and specificity of 96.50%

Fig 6. Rank matrix for different features. Subscripts in x-axes labels represent the length of windows and superscripts indicate

how many windows were used or averaged if superscripts are larger than 1 (in this case a bar is also used to indicate the average).

Because of limited space, x-axes are not fully labeled. For those without labels, the superscripts increase by 1 from left to right

and are reset to 1 when subscripts change. Results are from fold 1 and are shown by mean (line) and standard deviation (error

bar) across 250 ranks for each feature, except the upper left panel where results from fold 1 and fold 4 are shown.

https://doi.org/10.1371/journal.pone.0193691.g006

Table 1. Confusion matrix and classification performance.

Classification task i Classification task ii

Confusion matrix (Features F1
5

and D5
1 ) Confusion matrix (Features F5

1 and D1
5
)

Epileptic Normal Actual Ictal Interictal Actual

Epileptic 272 28 300 Ictal 93 7 100

Normal 8 192 200 Interictal 20 180 200

Predicted 280 220 Predicted 113 187

Performance Performance

Features Sensitivity Specificity Accuracy Features Sensitivity Specificity Accuracy

F1
5

D5
1

90.67% 96.00% 92.80% F5
1 D1

5
93.00% 90.00% 91.00%

F1
5

88.67% 93.00% 90.40% F5
1

66.00% 85.00% 78.67%

D5
1

80.66% 89.00% 84.00% D1
5

75.00% 78.50% 77.33%

https://doi.org/10.1371/journal.pone.0193691.t001
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using FuzzyEn and DistEn features (F5
1 and D1

5
). From the results, it is obvious that the best

classification performance in both stages was achieved by combining the best performing fea-

tures from DistEn and FuzzyEn. Individually, FuzzyEn showed better performance (accu-

racy = 90.40%) in classifying epileptic EEGs from normal than DistEn (accuracy = 84.00%).

On the other hand, although both DistEn and FuzzyEn showed similar performance (accuracy

of 77.33% and 78.67%) in classifying ictal from interictal EEG, DistEn showed more balanced

results with higher sensitivity = 75.00%) than FuzzyEn (sensitivity = 66.00%).

Discussion

In this study, we proposed two protocols to analyze the entropy, i.e., FuzzyEn and DistEn, of

EEGs with an aim of detecting epileptic activities based on nonlinear EEG dynamics. One pro-

tocol was to use a single analytical window with different window lengths. Another one was

based on the average of multiple windows for each window length. Our motivation in propos-

ing these two protocols was to attempt to find a definite “short” window length that could

result in optimal classification performance to facilitate the online tracking of epileptic activi-

ties and even the prompt alarm of seizure onset and seizure attack in both ambulatory and in-

hospital monitoring of EEGs. Our results suggest that:

1. Both FuzzyEn and DistEn could reach their optimal performance with window length l� 5 s.
Their performance was either maintained or even declined afterwards when the window

length increased to above 5 s (Fig 4).

2. Averaging over approximately 5 or less windows for shorter window length (l� 3 s) can

improve the performance. For longer windows (e.g. l = 4 or 5 s), averaging either shows

only slight improvement on the performance (Figs 5 and 6).

3. For better classification performance, features from both FuzzyEn and DistEn measures

should be used to build the classifier. The best classification performance was achieved by

using: i) FuzzyEn of one 5-s window and averaged DistEn of five 1-s windows for classifying

normal from epileptic group; and ii) averaged FuzzyEn of five 1-s windows and DistEn of

one 5-s window for classifying ictal from interictal EEGs.

Usually it is believed that longer data should be associated with better performance since: i)

the longer data the higher the possibility of capturing the true dynamics; and ii) the statistical

performance of algorithms is ordinarily better with a larger data set. Intriguingly, our results

seem not to endorse this common expectation. We found that though increasing window

length might help entropy measurements to achieve better performance, the effect was limited.

Specifically, the best detection accuracy occurred with a certain window length, i.e., l = 5 s or

less and the accuracy maintained or even declined afterwards with further increasing in win-

dow length. According to simulated bench-mark models, it is true that both FuzzyEn and Dis-

tEn show more consistent and robust performance with longer data [34, 43]. Thus the reason

why longer (l> 5 s) EEGs were not accompanied by better FuzzyEn and DistEn performance

may relate to the algorithm applied by the entropy measurements to reconstruct the dynamics,

i.e., the delay embedding reconstruction. For synthetic data, it works fine because the dynam-

ics simply follows the model. However, for real-world physiological data like EEGs, the

dynamics is more complicated and changes frequently with time (time variant and non-sta-

tionary in nature) and this may challenge the homogenous nature of this algorithm.

In addition, it is also a widely accepted idea that averaging over multiple trials improves

robustness. Our results were also only partially in support of this expectation. We found that

averaging did help to improve the performance but it only affected the analysis based on
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shorter windows. For longer windows, the averaging effect either diminished or vanished.

This phenomenon, to some extent underlines the window length effect, i.e., if the best perfor-

mance has already occurred using a single window with a certain length, averaging based on

multiple windows of the same length will not help improve the performance anymore. On the

other hand, if the performance declined for windows with lengths larger than the “best-perfor-

mance” window, averaging might help convert the declined accuracy and made it better for

shorter windows (e.g. averaging over less than 5 windows).

When looking deep into the changes of FuzzyEn and DistEn values in different categories

(see S1–S4 Figs), FuzzyEn values reduced whereas DistEn increased in the epileptic group as

compared with the normal group, which is similar to what we reported in [6, 7]. Assumptions

do exist that the brain may exhibit randomness in its normal state and change to deterministic

chaotic dynamics during an ictal state. The higher FuzzyEn values in the normal group can be

attributed to the stochastic dynamics of a normal EEG as FuzzyEn was developed to detect ran-

domness or irregularity [43]. On the other hand, DistEn was found to increase in nonlinear

deterministic dynamics [34]. The increase of DistEn values in the epileptic group can thus

make sense because the dynamics of the EEG shifts to deterministic chaos in a seizure activity.

Therefore, DistEn and FuzzyEn are likely to be sensitive to different EEG dynamics, offering a

mechanistic answer for the question that combining FuzzyEn and DistEn improve each other’s

performance. From purely the methodological viewpoint, FuzzyEn and DistEn differ from

each other as FuzzyEn measures entropy rate—the increase of information with the increase of

embedding dimension, whereas DistEn is Shannon entropy that measures the variety of pat-

terns. The different characteristics FuzzyEn and DistEn catch also make it possible that they

complement each other’s performance.

Since the reported classification performance here requires no more than 5-s EEG data, it is

very promising for application in tracking epileptic activities and providing prompt feedback.

So far as we know, it is the first study that has achieved such a high classification accuracy

using purely short-term data, although there are a mass of publications that have reported

almost ideal performance [27], they were indeed not based on short-term data. It should be

noted that although Alam et al also reported a high accuracy based on features derived from

~1.5-s IMF of EEG data [8], their protocol, as we mentioned, was not truly short-term because

the IMFs were obtained from long-term data. It is unclear and hard to predict whether the

other way—construct IMFs based on ~1.5-s EEG and then derive the features—would be able

to achieve similar performance or not.

In the database we used, each complete EEG recording is around 23.6 s. However, in our

classifier, only the first 5-s segment from each was used. It is natural to ask whether the perfor-

mance we reported is dependent on the segments or not. In other words, will the performance

be different if other 5-s segments are used? One of our most recent studies [6] can potentially

be used to answer this question. In that study, we applied three protocols to select different 5-s

segments from the complete recording. The results indicated that the entropy measurements

were segment-independent such that the performances of the three protocols were highly

comparable to each other. Therefore, the effect of the selection of segment can be ruled out for

the current study and it is more likely that the performance will remain similar if other 5-s seg-

ments are employed.

Study limitations. (1) It is worth noting that the database mixed scalp (applied for healthy

subjects) and intracranial recordings (used for epileptic patients), which is therefore not per-

fect for testing different classification algorithms. It is possible that the amplitudes of intracra-

nial recordings, overall, are higher partly due to the different locations of electrodes and the

filtering mechanism of the skull. Before all formal data analyses, we have band-pass filtered all

the raw EEGs (cut-off frequencies: 0.53–40 Hz) in order to minimize the possible filtering
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effect of the skull. Additionally, neither FuzzyEn nor DistEn is considered to be an amplitude-

dependent measure since both measures perform amplitude normalization first. Therefore,

the probability of similar vectors (for FuzzyEn) and the distribution of distances across all vec-

tors (for DistEn) are performed in a comparable manner. (2) Given that the length of each

EEG recording is fixed, fewer sliding windows are expected for larger window lengths. Thus,

the observation that the averaging effect diminishes or vanishes for longer windows may come

from the fact that fewer windows have been averaged across. However, since we only presented

window lengths varying from 1s to 5s for the MP protocol (Fig 5), the potential effect of reduc-

ing sliding window numbers should be minimized, i.e., there are still 19 windows to be aver-

aged for window length of 5s, which are highly comparable to the 23 windows for window

length of 1s. However, it should be noted that this database, again, is not ideal for testing slid-

ing window analysis for longer windows. In order for the proposed analysis framework to be

further verified, studies based on long-term monitoring of EEG data are warranted.

Supporting information

S1 Fig. FuzzyEn of normal vs epileptic group (upper panel) and interictal vs ictal EEG

(lower panel) calculated based on the single window protocol. Results are shown by median

±interquartile range (IQR).

(EPS)

S2 Fig. DistEn of normal vs epileptic group (upper panel) and interictal vs ictal EEG

(lower panel) calculated based on the single window protocol. Results are shown by median

±interquartile range (IQR).

(EPS)

S3 Fig. FuzzyEn of normal vs epileptic group (left panels) and interictal vs ictal EEG (right

panels) calculated based on the multiple windows protocol. Window lengths increase gradu-

ally from 1 s to 5 s from top to bottom. Results are shown by median±interquartile range

(IQR).

(EPS)

S4 Fig. DistEn of normal vs epileptic group (left panels) and interictal vs ictal EEG (right

panels) calculated based on the multiple windows protocol. Window lengths increase gradu-

ally from 1 s to 5 s from top to bottom. Results are shown by median±interquartile range

(IQR).

(EPS)

S1 Table. Confusion matrix and classification performance.

(PDF)
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