

ORIGINAL RESEARCH

The Homologous Gene of Chromosomal Virulence D (chvD) Presents High Resolution as a Novel Biomarker in Mycobacterium Species Identification

Xia Yu¹,*, Yingxia He²,*, Yuzhen Gu¹,*, Tingting Zhang¹, Fengmin Huo¹, Qian Liang¹, Jing Wu¹, Yan Hu², Xuan Wang², Wei Tang², Hairong Huang¹, Guan Liu²

¹National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People's Republic of China; ²Wuhan Pulmonary Hospital, Wuhan Institution of Tuberculosis Control, Wuhan, 430030, People's Republic of China

Correspondence: Hairong Huang; Guan Liu, Email huanghairong@tb123.com; liuguantbdoctor@hotmail.com

Objective: To evaluate the resolution of chromosomal virulence D (*chvD*) as a novel marker for mycobacterial species identification. **Methods:** A segment of *chvD* (652 bp) was amplified by PCR from 63 mycobacterial reference strains, 163 nontuberculous mycobacterial clinical isolates, and 16 *M. tuberculosis* complex (MTBC) clinical isolates. A phylogenetic tree based on the reference strains was constructed by the neighbor-joining and IQ-tree methods. Comparative sequence analysis of the homologous *chvD* gene efficiently differentiated the species within the genus *Mycobacterium*. Slowly growing *Mycobacterium* (SGM) and rapidly growing *Mycobacterium* (RGM) were separated in the phylogenetic tree based on the *chvD* gene.

Results: The sequence discrepancies were obvious between *M. kansasii* and *M. gastri*, *M. chelonae* and *M. abscessus*, and *M. avium* and *M. intracellulare*, none of which could be achieved by 16S ribosomal RNA (rRNA) homologous gene alignment. Furthermore, *chvD* manifested larger intraspecies diversity among members of *M. intracellulare* subspecies. A total of 174 of the 179 (97.21%) clinical isolates, consisting of 12 mycobacterial species, were identified correctly by *chvD* blast. Four *M. abscessus* subsp. *abscessus* were identified as *M. abscessus* subsp. *bolletii* by *chvD*. MTBC isolates were indistinguishable, because they showed 99.84%—100% homology.

Conclusion: Homologous *chvD* is a promising gene marker for identifying mycobacterial species, and could be used for highly accurate species identification among mycobacteria.

Keywords: species identification, *Mycobacterium*, chromosomal virulence D, phylogenetic tree

Introduction

The clinical symptoms and signs of pulmonary disease caused by nontuberculous mycobacteria (NTM) are very similar to tuberculosis, so differentiating the two becomes extremely challenging. Both diseases manifest cough, expectoration, hemoptysis, chest pain, and other respiratory symptoms, as well as systemic symptoms, such as fatigue and anorexia. ^{1–3} Furthermore, NTM pulmonary disease cannot be easily differentiated from tuberculosis by radiographic images either, even though nodular or cavitary, or multifocal bronchiectasis with multiple small nodules fit best with diseases caused by *Mycobacterium avium* complex (MAC), *M. kansasii* and *M. abscessus*. ⁴ Currently, more than 200 species of NTM are known, but most of them are nonpathogenic and mainly found in water and soil. ⁵ However, a very small minority of the NTM species can cause human diseases. ⁶ During the last few decades, NTM infections have increased globally. ^{7,8} In the absence of species identification, NTM diseases are often misdiagnosed as tuberculosis. Because of the evident differences in drug-susceptibility profiles of different mycobacterial species, accurate species identification is tremendously important before commencing treatment. ⁴

6039

^{*}These authors contributed equally to this work

Yu et al Dovepress

Mycobacterial species identification was once dependent on the conventional biochemical method, which relies on a series of biochemical experiments, pigmentation, and growth characteristics. These had inherent drawbacks, such as slow turnaround time and limited accuracy, due to similar phenotypes of different mycobacterial species in biochemical experiments that brought great challenges to the interpretation of results.² Then, from the end of last century, molecular tests based on homologous gene/sequence comparison have become a major tool to identify NTM at the species level. The 16S rRNA-encoding gene (16s rRNA) is highly conserved, but exhibits obvious nucleotide variations in different organisms, which makes it an ideal sequence maker for bacterial species identification, including *Mycobacterium*. Although 16s rRNA can clearly differentiate most of the NTM species, it fails to separate some of the most frequently isolated species, such as *M. abscessus* and *M. chelonae, M. avium*, and *M. intracellulare*, as well as *M. kansasii* and *M. gastric.*^{4,9} This failure is typically attributed to the presence of almost identical 16s rRNA sequences in some mycobacterial species. The *hsp65* gene exhibits a homology tendency similar to that of rpoB. The homology among *M. intracellulare, M. chimaera* is greater than 99.6%, making them indistinguishable.¹⁰ In addition, 16S–23S rRNA gene ITS is not a useful method for identification at the species level, although it may be a method for intraspecific differentiation.¹¹ Therefore, alternative or complementary phylogenetic markers for the 16S rRNA gene are needed to increase the resolution power of species identification.

Chromosomal virulence D (*chvD*, *Rv2477c*) encodes a probable macrolide-transport ATP-binding protein ABC transporter in *M. tuberculosis* (https://mycobrowser.epfl.ch). As one of the efflux-pump genes, *chvD* was thought to be involved in the active transportation of drugs across the membrane, which has been observed during ofloxacin stress in *M. tuberculosis*. ¹² In addition, *chvD* is expected to be in 144 mycobacteria species (reported *Mycobacterium* species from LPSN (http://www.bacterio.net/mycobacterium.html), and *Mycobacterium* has a single copy of *chvD* in the genome (Table S1). Our preliminary data analysis found that the sequence similarity among different mycobacterial species with known *chvD* gene sequences was 86.05%–100%. These outcomes imply that *chvD* can be valuable in phylogenetic studies of the genus *Mycobacterium*. ¹³ In this study, we report the resolution and reliability of the homologous *chvD* gene as a novel biomarker for mycobacterial species identification.

Methods

Ethics

All the mycobacterial reference and clinical isolates were stored in the Biobank at Beijing Chest Hospital (Beijing, China). The study was approved by the Ethics Committee of the Beijing Chest Hospital, Capital Medical University (2021–32-01).

Mycobacterial Reference Strains and Clinical Isolates

A total of 63 reference *Mycobacterium* strains (Table 1), 163 clinical NTM isolates, and 16 *M. tuberculosis* complex (MTBC) clinical isolates were investigated. The reference strains were obtained either from the American Type Culture Collection (ATCC) or the German Collection of Microorganisms (DSM). The clinical isolates of *Mycobacterium* were obtained from the Biobank at the National Clinical Laboratory on Tuberculosis, Beijing Chest Hospital in northeast China (n=149) and Wuhan Pulmonary Hospital in central China (n=30). All the clinical NTM isolates were classified as NTM, preliminarily by *p*-nitrobenzoic acid-containing Löwenstein–Jensen medium (500 μg/mL) and were subsequently identified at species level by sequence alignment of 16S rRNA, *hsp65*, *rpoB*, and 16–23S rRNA internal transcribed spacer (ITS) sequences.¹⁴

chvD Gene Amplification and Sequencing

DNA was extracted from cultured mycobacteria by boiling them in TE buffer for 10 min. After centrifugation, the supernatant was used as a template for PCR amplification. The forward primer, 5'-TGCCCTCGAACCAGAACC-3', corresponded to positions 96–113 in the *chvD* gene of *M. tuberculosis* (GenBank accession number NC000962.3). The reverse primer, 5'-CTGCAGCGCTACGAGGAG-3', corresponded to positions 799–816 in the *chvD* gene of *M. tuberculosis* (GenBank accession number NC000962.3). PCR amplification conditions were 5 min at 95°C, followed by 30 cycles of 95°C for 30

Table I chvD sequence matches among types/reference strains

	Type/reference strain	GenBank ID	RGM/ SGM	First match (%)		Second match (%)	
Nocardia farcinica	BJXK 21105	OP709763#	NA	M. phlei	90.98%	M. vaccae	88.91%
М. хепорі	ATCC 19250	OP709762 [#]	SGM	M. malmoense	86%	M. avium subsp. silvaticum	85.74%
						M. avium subsp. avium	85.74%
M. vulneris	DSM 45247	NZ-NCXM01000044.1	SGM	M. intracellulare subsp. chimaera	93.22%	M. intracellulare subsp. intracellulare	93.02%
M. ulcerans	ATCC 19423	OP709760 [#]	SGM	M. marinum	98.18%	M. avium subsp. silvaticum	85.86%
						M. avium subsp. avium	85.86%
M. tuberculosis H37Rv	ATCC 27294	OP709759#	SGM	M. tuberculosis H37Ra	99.82%	M. bovis	99.64%
				M. microti	99.82%	M. bovis_BCG	99.64%
				M. africanum	99.82%		
M. tuberculosis H37Ra	ATCC 25177	OP709758 [#]	SGM	M. africanum	100%	M. bovis	99.82%
				M. microti	100%	M. bovis BCG	99.82%
M. triplex	ATCC 700071	NZ-LQPY01000030.1	SGM	M. intracellulare subsp. intracellulare	92.02%	M. intracellulare subsp. chimaera	91.83%
M. terrae	ATCC 15755	OP709754 [#]	SGM	M. parafortuitum	88.27%	M. phlei	87.63%
M. szulgai	ATCC 35799	OP709753 [#]	SGM	М. avium subsp. silvaticum	88.11%	M. gordonae	87.72%
				M. avium subsp. avium	88.11%		
M. scrofulaceum	ATCC 19981	OP709749#	SGM	M. parascrofulaceum	98.18%	M. avium subsp. silvaticum	90.56%
						M. avium subsp. avium	90.56%
M. parascrofulaceum	ATCC BAA-614	OP709743 [#]	SGM	М. avium subsp. silvaticum	89.92%	M. cosmeticum	88.90%
				M. avium subsp. avium	89.92%		
M. nonchromogenicum	ATCC 19530	OP709740 [#]	SGM	M. arupense	90.41%	M. austroafricanum	85.50%
M. microti	ATCC 19422	OP709737#	OP709737 [#] SGM M. africanum		100%	M. bovis_BCG	99.82%
						M. bovis	99.82%
M. marseillense	JCM 17324	AP022584.1	SGM	M. intracellulare subsp. chimaera	96.69%	M. intracellulare subsp. intracellulare	96.68%

Table I (Continued).

	Type/reference strain	GenBank ID	RGM/ SGM	First match (%)		Second match (%)	
M. marinum	ATCC 927	OP709736 [#]	SGM	M. avium subsp. silvaticum	85.56%	M. asiaticum	84.94%
				M. avium subsp. avium	85.56%		
M. malmoense	ATCC 29571	OP709735 [#]	SGM	M. avium subsp. avium	88.50%	M. intracellulare_subspchimaera	87.21%
				M. avium subsp. silvaticum	88.50%		
M. kansasii	ATCC 12478	OP709734 [#]	SGM	M. gastri	95.57%	M. avium subsp. silvaticum	87.06%
						M. avium subsp. avium	87.06%
M. intracellulare subsp. intracellulare	ATCC 13950	OP709733 [#]	SGM	M. intracellulare subsp. chimaera	98.91%	M. gilvum	88.46%
M. intracellulare subsp. chimaera	DSM 44623	CP015278.1	SGM	M. gilvum	88.48%	M. gordonae	88.25%
M. gordonae	ATCC 14470	OP709732 [#]	SGM	M. fortuitum	89.79%	M. farcinogenes	89.55%
M. gastri	ATCC 15754	OP709729#	SGM	M. avium subsp. silvaticum	87.70%	M. cosmeticum	85.34%
				М. avium subsp. avium	87.70%		
M. celatum	ATCC 51131	OP709718 [#]	SGM	M. austroafricanum	87.20%	M. agri	86.99%
M. bovis	ATCC 19210	OP709717#	SGM	M. africanum	99.82%	M. bovis_BCG	99.64%
M. avium subsp. silvaticum	ATCC 49884	OP709716 [#]	SGM	М. avium subsp. avium	100%	M. austroafricanum	88.87%
M. avium subsp. avium	ATCC 25291	OP709715#	SGM	M. asiaticum	87.64%	M. austroafricanum	88.87%
M. asiaticum	ATCC 25276	OP709712#	SGM	M. aichiense	84.60%	M. agri	83.24%
M. arupense	DSM 44942	NZ-MVHH01000002.1	SGM	M. agri	84.77%	M. aichiense	83.25%
M. africanum	ATCC 25420	OP709709#	SGM	M. tuberculosis_ H37Ra	100%	M. tuberculosis_H37Rv	99.82%
				M. microti	100%	M. bovis	99.82%
						M. bovis BCG	99.82%
M. bovis BCG	ATCC 35735	OP709707#	SGM	M. africanum	99.82%	M. avium subsp. silvaticum	84.46%
						M. avium subsp. avium	84.46%

M. paragordonae	JCM 18565	CP025546.1	SGM	M. gordonae	91.61%	M. avium subsp. silvaticum	89.31%
						M. avium subsp. avium	89.31%
M. vaccae	ATCC 15483	OP709761#	RGM	M. gilvum	93.42%	M. aurum	91.60%
M. tokaiense	ATCC 27282	OP709756 [#]	RGM	M. gilvum	88.69%	M. aurum	88.31%
M. thermoresistibile	ATCC 19527	OP709755 [#]	RGM	M. porcinum	90.35%	M. goodii	89.94%
M. smegmatis	ATCC 19420	OP709752 [#]	RGM	M. diernhoferi	89.96%	M. flavescens	89.70%
M. septicum	ATCC 700731	OP709751 [#]	RGM	M.porcinum	90.38%	M. senegalense	89.58%
						M. neoaurum	89.58%
						M. fortuitum	89.58%
M. senegalense	ATCC 35796	OP709750 [#]	RGM	M. porcinum	94.98%	M. fortuitum	94.41%
M. porcinum	ATCC 33776	OP709746 [#]	RGM	M. peregrinum	95.55%	M. fortuitum	95.17%
M. phlei	ATCC 11758	OP709745 [#]	RGM	M. flavescens	91.98%	M. farcinogenes	90.76%
M. peregrinum	ATCC 14467	OP709744 [#]	RGM	M. fortuitum	94.01%	M. farcinogenes	93.41%
M. rhodesiae	ATCC 27024	OP709748#	RGM	M. aichiense	95.17%	M. phlei	90.36%
M. pulveris	ATCC 35154	OP709747 [#]	RGM	M. agri	88.72%	M. goodii	88.71%
M. parafortuitum	ATCC 19686	OP709742 [#]	RGM	M. vaccae	90.79%	M. austroafricanum	90.57%
M. obuense	ATCC 27023	OP709741#	RGM	M. gilvum	90.37%	M. vaccae	88.74%
M. neoaurum	ATCC 25795	OP709739 [#]	RGM	M. flavescens	89.75%	M. septicum	89.58%
M. mucogenicum	ATCC 48650	OP709738 [#]	RGM	M. senegalense	88.31%	M. porcinum	88.07%
M. goodii	DSM 44492	OP709731#	RGM	M. porcinum	91.82%	M. peregrinum	90.60%
M. gilvum	ATCC 43909	OP709730 [#]	RGM	М. vaccae	93.42%	M. aurum	90.20%
M. gadium	ATCC 27726	OP709728 [#]	RGM	M. goodii	86.79%	M. peregrinum	86.30%
M. fortuitum	ATCC 6481	OP709727 [#]	RGM	M. porcinum	95.17%	M. senegalense	94.41%
M. flavescens	ATCC 14474	OP709726 [#]	RGM	M. phlei	91.98%	M. diernhoferi	90.57%

Table I (Continued).

	Type/reference strain	GenBank ID	RGM/ SGM	First match (%) Second match (%)		Second match (%)	
M. farcinogenes	ATCC 35753	OP709725 [#]	RGM	M. porcinum	93.80%	M. peregrinum	93.41%
M. fallax	ATCC 35219	OP709724 [#]	RGM	M. phlei	88.68%	M. arupense	87.03%
M. diernhoferi	ATCC 19340	OP709723 [#]	RGM	M. flavescens	90.57%	M. phlei	90.36%
M. cosmeticum	ATCC BAA-878	OP709722 [#]	RGM	M. avium subsp. silvaticum	89.94%	M. phlei	89.51%
				M. avium subsp. avium	89.94%		
M. chubuense	ATCC 27278	OP709721 [#]	RGM	M. agri	89.73%	M. austroafricanum	89.31%
M. chitae	ATCC 19627	OP709720 [#]	RGM	M. phlei	89.96%	M. austroafricanum	87.23%
M. chelonae	ATCC 35752	OP709719#	RGM	M. abscessus subsp. abscessus	90.09%	M. abscessus subsp. massiliense	88.83%
						M. abscessus subsp. bolletii	88.83%
M. austroafricanum	ATCC 33464	OP709714 [#]	RGM	M. parafortuitum	90.57%	M. phlei	89.93%
M. aurum	ATCC 23366	OP709713 [#]	RGM	M. vaccae	91.60%	M. flavescens	90.37%
M. aichiense	ATCC 27280	OP709711 [#]	RGM	M. rhodesiae	95.17%	M. phlei	89.73%
M. agri	ATCC 27406	OP709710 [#]	RGM	M. chubuense	89.73%	M. phlei	89.72%
М. abscessus subsp. massiliense	FLAC047	CP021122.1	RGM	M. abscessus subsp. abscessus	97.81%	M. abscessus subsp. bolletii	96.88%
M. abscessus subsp. bolletii	BD	AP018436.1	RGM	M. abscessus subsp. massiliense 96.88%		M. chelonae	88.83%
M. abscessus subsp. abscessus	ATCC 19977	OP709708 [#]	RGM	M. abscessus subsp. bolletii 97.99% M. abscessus subsp. massi		M. abscessus subsp. massiliense	97.81%

Notes: #Sequences uploaded by this study.

Dovepress Yu et al

seconds, 60°C for 30 seconds, and 72°C for 45 seconds, with a final extension step at 72°C for 10 min. The amplified product, 721 bp in length, was sequenced by Rui Biotech (Beijing, China).

Sequence Analysis and Phylogenetic Tree Constructions

In addition to the sequences of 56 reference strains obtained in this study, the *chvD* sequence of seven other *Mycobacterium* species were retrieved from GenBank, including *M. abscessus subsp. massiliense* (GenBank accession number CP021122.1), *M. abscessus subsp. bolletii* (GenBank accession number AP018436.1), *M. arupense* (GenBank accession number NZ_MVHH01000002.1), *M. intracellulare subsp. chimaera* (GenBank accession number CP015278.1), *M. marseillense* (GenBank accession number AP022584.1), *M. paragordonae* (GenBank accession number CP025546.1), and *M. vulneris* (GenBank accession number NZ_NCXM01000044.1). Then, **a 652 bp region** (excluding the terminal nucleotides at both ends that represented the primer binding site) of sequencing was phylogenetically analyzed using both neighbor joining and IQ-tree. The sequence of *Nocardia farcinica* (Genebank accession number OP709763) was used as the outgroup to construct a rooted tree. In addition, hypervariable regions of 16S rRNA was widely used for *Mycobacterium* species identification, and an ~873 bp region of 16S rRNA of the above 64 reference strains were retrieved from GenBank.

Species Identification of the Clinical Isolates

To evaluate the performance of *chvD* in species identification of mycobacteria, clinical isolates were obtained and analyzed. The strain inclusion criteria were as follows. For frequently isolated species, like *M. abscessus* complex, *MAC*, *M. kansasii*, *M. fortuitum*, and MTBC, one or a few dozen strains were included. For the less frequently isolated species, all the strains available were recruited. Sequences minus the known PCR primer sequences were assembled using SeqMan (version 7.1.0; DNAstar, Madison, WI). Isolates were identified by comparing sequences using a FASTA BLASTn search with MegAlign (version 10.1.0; DNAstar) to an in-house database of sequences consisting of type and reference strains from external culture collections.

Results

chvD Sequence Alignment of the Reference Strains

The 63 tested reference strains and one additional mycobacterial species (whose sequences were obtained from the GenBank database) demonstrated 86.05%-100% sequence identity (Table 1). Among the 29 reference strains of the slowly growing mycobacteria (SGM), besides themselves, 13 strains had >97% homology with the other first-matched mycobacterial species, including MTBC members and subspecies of M. avium and M. intracellulare, M. ulcerans and M. marinum. Among the 34 reference strains of rapidly growing Mycobacterium (RGM), only three had sequence identity >97% with the other firstmatched species (Table 1), ie, M. parafortuitum and M. triviale shared identical chvD sequences, whereas the intrasubspecies of *M. abscessus* complex demonstrated 97%–98% sequence identity. Furthermore, except for the five MTBC member strains, all involved strains were well separated from the second-matched strains (homology was lower than 97%). Notably, the pathogenic M. kansasii was easily differentiated from the nonpathogenic M. gastri (with 96.03% homology). Those two species were not distinguishable by the 16S rRNA sequence alignment. For some other species, for which 16S RNA provides inadequate separation, chvD also demonstrated very distinct sequence variation: 88.80% sequence identity between M. chelonae and M. abscessus, 88.26% between M. avium and M. intracellulare, and 84.66% sequence identity between M. szulgai and M. malmoense were observed. In contrast to 16S rRNA, chvD also easily differentiated the subspecies of M. abscessus complex, ie, homology of 96.74% between M. bolletii and M. massiliense, 97.78% between M. bolletii and M. abscessus, and 97.61% between M. massiliense and M. abscessus were observed. However, the sequence similarity between MTBC members was high, 99.84%-100%, which indicated incapacity in differentiating members of MTBC (Table S2).

Phylogenetic Tree Construction

A phylogenetic tree that provided the basis for species differentiation in the genus *Mycobacterium* was constructed (Figure 1). The reliability of the phylogenetic tree was verified by the bootstrap method, using *Nocardia farcinica* as the outgroup. All 63 tested species showed good separation. The phylogenetic tree built upon the 63 reference strains was

Yu et al Dovepress

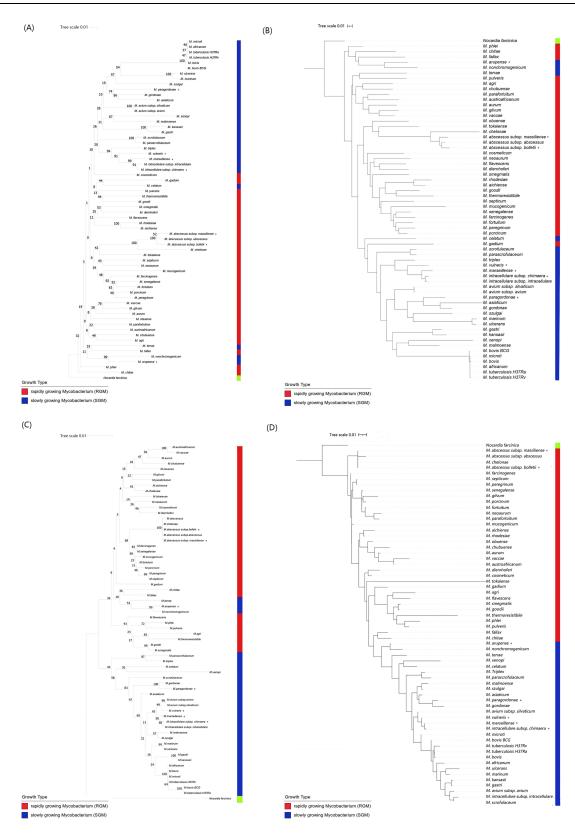


Figure 1 Phylogenetic tree based on *chvD* and 16S rRNA gene sequences shows the relationship of the 63 type strains of mycobacteria and one outgroup strain. Bootstrap values (percentages) are shown next to the nodes. (**A**) Tree of 652 bp region of *chvD* reconstructed with neighbor joining. (**B**) Tree of 652 bp region of *chvD* reconstructed with IQ tree. (**C**) Tree of 873 bp hypervariable regions of 16S rRNA reconstructed with neighbor joining. (**D**) Tree of 873 bp hypervariable regions of 16S rRNA reconstructed with IQ tree. Seven other *Mycobacterium* spp. retrieved from GenBank marked with an asterisk at the end of their names.

Dovepress Yu et al

robust and discriminatory. Four SGM species — *M. celatum, M. terrae, M. trivial* and *M. nonchromogenicum* — were incorrectly placed among the RGM strains. Otherwise, the SGM and RGM were well separated. The sequence discrepancy was obvious between *M. kansasii* and *M. gastri, M. chelonae* and *M. abscessus, M. avium* and *M. intracellulare*, and *M. szulgai* and *M. malmoense*, which could not be achieved by 16S rRNA gene comparison (Figure 1). Notably, *chvD* also showed higher discrimination within the intraspecies of *M. intracellulare* complex and *M. abscessus* complex.

Species-Identification Outcomes of Clinical Isolates

To evaluate the performance of *chvD* in identifying mycobacteria, 179 clinical isolates were tested, including 11 mycobacterial species, three subspecies, and clinical strains of *M. tuberculosis* (Table 2). *chvD* sequence identity in intraspecies was very high, generally 97%–100% (Table S2). Only three clinical strains of *M. gordonae* demonstrated significant variation when compared with the *chvD* sequence of the *M. gordonae* reference strain. Using the first-matched species' sequence similarity (ie, >97%) as a cutoff value, *chvD* correctly identified 174 of the 179 (97.21%) clinical isolates (Table 2). All clinical strains of the frequently isolated pathogenic species, including *M. intracellulare, M. avium, M. abscessus* and MTBC, had been accurately identified. Misidentification was encountered in one of the six tested *M. gordonae* clinical isolates, which was identified as *M. paragordonae*. In addition, four (10.26%) *M. abscessus subspecies abscessus* of the 39 *M. abscessus* complex isolates were incorrectly identified as *M. abscessus subspecies bolletii* (Table 2). Owing to the high similarity between MTBC members (99.84–100%), *chvD* can not differentiate between members of MTBC taking 97% as a cutoff value.

Discussion

While 16S rRNA has good resolution in identifying most NTM species, many species that have close phylogenic relatedness often have indistinguishable 16S rRNA gene sequences. For example, the difference between *M. abscessus* and *M. chelonae* was only four nucleotides across the several-hundred bp lengths of the genes.¹⁵ A previous study showed that about a third of the included clinical strains were wrongly categorized when using 16S rRNA alone, due to high similarity of the sequences.¹⁶ Additional/supplementary DNA markers are needed for species that cannot be identified confidently by 16S rRNA.¹⁷ *rpoB* was reported to be an effective DNA marker for the species identification of mycobacteria.¹⁸ Addition of *rpoB* increased the resolution to 84% in contrast to 48% achieved using only the 16S rRNA gene.¹⁹ However, inconsistent outcomes between these two markers are frequently encountered (24.4%, 42 of 172).⁹ As a common genomic locus used in species identification, the rate of species-level identification of ITS was 81.55%.² Hence, more makers are needed to resolve this inconstancy and to further improve species identification.

To be a qualified marker for species differentiation, the target gene should be a single-copy gene in the genome and should be conserved among species, but with enough random sequence variations. Therefore, extremely conserved genes or highly variable genes are not eligible. As a single-copy gene in 144 Mycobacterium genomes (Table S1), chvD works well in discriminating Mycobacterium species without ambiguous identification. Compared to chvD, 16S rRNA had higher homology within our tested mycobacteria (ie, 94.3%–100% compared to 86.05%–100%). According to our findings, chvD presented excellent potential as a supplementary marker to 16S rRNA in identification of *Mycobacterium* species. In this study, the 64 recruited reference strains resulted in 2016 paired comparisons (2016=[n_{a1}+n(n-1)d/2]; a1=1, n=63, d=1), and *chvD* successfully differentiated 99.01% (1996 of 2016) of them when using 97% sequence similarity as the cutoff value. Furthermore, the mean sequence identity of the chvD gene was 93.67%, which is significantly lower than the 16S rRNA genes (96.6%), indicating a higher discriminatory power of chvD.²⁰ Phylogenetic analysis and tree construction further increased the resolution of chvD compared to the cutoff value method. Among the 179 clinical isolates, 97.21% (174 of 179) were identified correctly by chvD gene blast. One M. gordonae clinical strain was incorrectly identified as M. paragordonae at species level, which may have been caused by the high degree of intraspecies variability in M. gordonae.²¹ Additionally, at the subspecies level, four (10.26%) M. abscessus subspecies abscessus of 39 M. abscessus complexes were incorrectly identified as M. abscessus subspecies bolletii by chvD blast. M. abscessus subspecies bolletii was described as a new member of M. abscessus complex in 2009, 22 and often infects patients with cystic fibrosis.²³ In China, M. abscessus subspecies bolletii is rarely isolated,²⁴ and none was detected in the 1755 NTM isolates from the year 2014 to 2021 in our laboratory. Therefore, these four isolates, identified as M. abscessus subspecies bolletii by chvD. need to be reconfirmed by other more powerful approaches, such as whole-genome sequencing and MALDI-TOF.

Table 2 Comparison of mycobacteria identified by 16S rRNA/ITS/hsp65/rpoB gene sequencing and chvD sequencing among the 179 clinical isolates^a

Primary identification (n) ^b		Primary identifica	tion (n) ^b					
	First choice		Second choice					
	Identification (n)	Match	Identification (n)	Match				
M. intracellulare subspecies intracellulare (69)	M. intracellulare subspecies intracellulare (1)	100%	M. intracellulare subspecies chimaera (1)	98.74%				
	M. intracellulare subspecies intracellulare (2)	96.69%	M. intracellulare subspecies chimaera (2)	98.59%				
	M. intracellulare subspecies intracellulare (2)	99.53%	M. intracellulare subspecies chimaera (2)	98.43%				
	M. intracellulare subspecies. intracellulare (1)	99.37%	M. intracellulare subspecies chimaera (1)	98.26%				
	M. intracellulare subspecies intracellulare (11)	99.22%	M. intracellulare subspecies chimaera (2)	98.11%				
			M. intracellulare subspecies chimaera (9)	98.10%				
	M. intracellulare subspecies intracellulare (46)	99.06%	M. intracellulare subspecies chimaera (1)	98.10%				
			M. intracellulare subspecies chimaera (38)	97.95%				
			M. intracellulare subspecies chimaera (6)	97.94%				
			M. intracellulare subspecies chimaera (1)	97.93%				
	M. intracellulare subspecies intracellulare (5)	98.90%	M. intracellulare subspecies chimaera (3)	97.79%				
			M. intracellulare subspecies chimaera (2)	97.78%				
	M. intracellulare subspecies intracellulare (1)	98.59%	M. intracellulare subspecies chimaera (1)	97.62%				
M. abscessus subspecies abscessus (19)	M. abscessus subspecies abscessus (4)	100%	M. abscessus subspecies bolletii (4)	97.87%				
	M. abscessus subspecies abscessus (9)	99.83%	M. abscessus subspecies bolletii (9)	98.04%				
	M. abscessus subspecies abscessus (2)	99.30%	M. abscessus subspecies bolletii (2)	98.22%				
	M. abscessus subspeciesbolletii (4)	99.30%	M. abscessus subspecies abscessus (4)	98.23%				
M. abscessus subspecies. massiliense (20)	M. abscessus subspecies massiliense (19)	99.66%	M. abscessus subspecies abscessus (4)	97.93%				
	M. abscessus subspecies massiliense (1)	99.49%	M. abscessus subspecies abscessus (5)	97.75%				

1	

M. kansasii (22)	M. kansasii (22)	100%	M. gastri (21)	96.04%
			M. gastri (I)	96.03%
M. avium (8)	M. avium subspecies avium/M. avium subspecies silvaticum (4)	100%	M. scrofulaceum (4)	90.84%
	M. avium subspecies silvaticum (1)	99.49%	M. avium subspecies avium (1)	99.49%
	M. avium subspecies silvaticum (2)	99.32%	M. avium subspecies avium (2)	99.32%
	M. avium subspecies avium/M. avium subspecies silvaticum (1)	99.15%	M. gordonae (I)	90.78%
M. Fortuitum (9)	M. fortuitum (1)	99.68%	M. porcinum (1)	94.63%
	M. fortuitum (1)	98.43%	M. porcinum (1)	94.48%
	M. fortuitum (4)	98.27%	M. porcinum (4)	94.70%
	M. fortuitum (2)	97.96%	M. porcinum (2)	94.37%
	M. fortuitum (1)	97.16%	M. porcinum (1)	94.54%
M. arupense (2)	M. arupense (I)	99.38%	M. nonchromogenicum (1)	91.47%
	M. arupense (I)	99.06%	M. nonchromogenicum (1)	91.11%
M. marseillense (2)	M. marseillense (1)	99.85%	M. intracellulare subspecies chimaera (1)	96.67%
	M. marseillense (1)	98.75%	M. intracellulare subspecies chimaera (1)	97.48%
M. parascrofulaceum (I)	M. parascrofulaceum (1)	99.84%	M. scrofulaceum (1)	97.96%
M. porcinum (1)	M. porcinum (1)	99.22%	M. peregrinum (1)	95.69%
M. vulneris (1)	M. vulneris (1)	97.46%	M. intracellulare subspecies chimaera (1)	93.99%
M. tuberculosis complex (16)	M. africanum/M. microti/M. tuberculosis_H37Ra (13)	100%	M. bovis (12)	99.85%
			M. bovis/M. tuberculosis_H37Rv/M. africanum (1)	99.84%
	M. africanum/M. microti/M. tuberculosis_H37Ra (I)	99.84%	M. bovis/M. tuberculosis_H37Rv (I)	99.69%
	M. microti/M. tuberculosis_H37Ra (2)	99.85%	M. africanum (2)	99.84%

Table 2 (Continued).

Primary identification (n) ^b		Primary identificat	cion (n) ^b					
	First choice		Second choice					
	Identification (n)	Match	Identification (n)	Match				
M. neoaurum (I)	M. neoaurum (I)	99.22%	M. septicum (1)	89.87%				
M. paragordonae (2)	M. paragordonae (1)	99.66%	M. gordonae (1)	92.16%				
	M. paragordonae (1)	97.43%	M. gordonae (1)	92.18%				
M. gordonae (6)	M. gordonae (3)	99.15%	M. paragordonae (3)	91.97%				
	M. gordonae (2)	94.22%	M. paragordonae (2)	92.56%				
	M. paragordonae (1)	92.91%	M. gordonae (1)	92.18%				

Notes: a Numbers in parentheses represent the number of isolates identified as a particular species. bIdentification based on sequencing of at least two of the following: 16S rDNA, 16–23S rRNA gene internal transcribed spacer (ITS), and rpoB and hsp65 genes.

Dovepress Yu et al

In this study, the homologous *chvD* gene demonstrated robust capacity in identification of RGM and SGM species. Five SGM species — *M. celatum, M. terrae, M. arupense* and *M. nonchromogenicum* — were allocated to the RGM group in the phylogenetic tree. The general rationale showed that RGM have two rRNA gene operons, while SGM have only one.²⁵ Surprisingly, SGM species (*M. terrae* and *M. celatum*) have been reported to contain two rRNA genes, which suggests that these two species could be intermediate transition species between SGM and RGM. In addition, *M. trivial* and *M. nonchromogenicum* belong to the *M. terrae* complex. This complex is often placed into the group of RGM based on *hsp65*, *dnaK and secA*1,^{21,26} as well as *rpsA*, which we previously reported as a novel potential marker for *Mycobacterium* species identification.²⁷ Consistently, the *M. terrae* complex (*M. terrae, M. arupense*, and *M. nonchromogenicum*) was placed between RGM and SGM based on *tmRNA* sequences in phylogenetic tree²⁸ and allocated to the RGM group in the phylogenetic tree by 16S rRNA. Overall the *M. terrae* complex may phylogenetically be an intermediate transition species between SGM and RGM, according to this and other studies.

All the included 64 reference strains were distinguished by the *chvD* phylogenetic tree. Some paired species, such as *M. senegalense* and *M. thermoresistibile, M. austroafricanum* and *M. terrae*, are known to be not properly separated from each other by other markers alone, such as 16S rRNA, ITS, *rpoB* and *hsp65*.²⁷ The *chvD* sequence identity between the above species was 88.37% and 87.99%, respectively. Thus, the data suggest that *chvD* had an advantage in resolving certain species over 16S rRNA, ITS, *rpoB* and *hsp65* when used as sole marker.

Even with the suboptimal resolution, the 16S rRNA gene is still frequently firstly selected because it has been well recognized and its sequence dataset is highly abundant. To increase the resolution, at least one additional maker, such as ITS, *rpoB*, *hsp65*, *rpsA* (previously reported by us) and *chvD* (in this study) are recommended to be used as a supplementary maker. Integration of different loci would be helpful to avoid conflicting or dubious outcome yields. Furthermore, other results of species identification, including biochemical tests, high-performance liquid chromatography (HPLC), and matrix-assisted laser desorption ionization—time of flight (MALDI-TOF) mass spectrometry, could be used for increasing the precision of diagnoses.

There were some limitations in our study. Firstly, the analyses were from culture-positive isolates and not DNA extracted directly from clinical samples. The performance of the homologous *chvD* gene in species identification should be further evaluated in clinical samples. Secondly, some uncommon yet clinically relevant species like *M. chimaera* have not been clearly evaluated owning to no such isolates being able to be collected in our hospital. Thirdly, similar to current DNA markers like 16S rRNA, *chvD* was unable to differentiate members of MTBC owing to the high similarity between MTBC members.

In conclusion, the homologous *chvD* gene is a valuable DNA marker for mycobacterial species identification. For certain specific species, *chvD* manifested better discrimination power than other frequently used DNA markers, which suggests its utility in increasing the resolution of *Mycobacterium* species identification.

Funding

This work was supported by the Tongzhou Science and Technology Project (KJ2022CX041) and Tongzhou Yunhe Plan (YH201905), the Beijing Hospitals Authority Youth Programme (QML20211602), and the Wuhan Municipal Health Commission Scientific research Project (WX17Q33).

Disclosure

Xia Yu, Yingxia He and Yuzhen Gu share first authorship. The authors declare no conflicts of interest.

References

- 1. He Y, Wang JL, Zhang YA, Wang MS. Prevalence of culture-confirmed tuberculosis among patients with nontuberculous mycobacterial disease. Infect Drug Resist. 2022;15:3097–3101. doi:10.2147/IDR.S363765
- 2. Kim SH, Shin JH. Identification of nontuberculous mycobacteria using multilocous sequence analysis of 16S rRNA, hsp65, and rpoB. *J Clin Lab Anal*. 2018;32(1):e22184. doi:10.1002/jcla.22184
- 3. Wassilew N, Hoffmann H, Andrejak C, Lange C. Pulmonary disease caused by non-tuberculous mycobacteria. *Respiration*. 2016;91(5):386–402. doi:10.1159/000445906
- Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416. doi:10.1164/rccm.200604-571ST

Yu et al **Dove**press

5. Tortoli E, Fedrizzi T, Meehan CJ, et al. The new phylogeny of the genus Mycobacterium: the old and the news. *Infect Genet Evol*. 2017;56:19–25. doi:10.1016/j.meegid.2017.10.013

- 6. Dávalos AF, Garcia PK, Montoya-Pachongo C, et al. Identification of Nontuberculous Mycobacteria in Drinking Water in Cali, Colombia. Int J Environ Res Public Health. 2021;18(16):8451. doi:10.3390/ijerph18168451
- 7. Baldwin SL, Larsen SE, Ordway D, Cassell G, Coler RN. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl Trop Dis. 2019;13(2):e0007083. doi:10.1371/journal.pntd.0007083
- 8. Brode SK, Marchand-Austin A, Jamieson FB, Marras TK. Pulmonary versus Nonpulmonary Nontuberculous Mycobacteria, Ontario, Canada. Emerg Infect Dis. 2017;23(11):1898-1901. doi:10.3201/eid2311.170959
- 9. Kazumi Y, Mitarai S. The evaluation of an identification algorithm for Mycobacterium species using the 16S rRNA coding gene and rpoB. Int J Mycobacteriol. 2012;1(1):21-28. doi:10.1016/j.ijmyco.2012.01.004
- 10. Kim MJ, Kim KM, Shin JI, et al. Identification of Nontuberculous Mycobacteria in Patients with Pulmonary Diseases in Gyeongnam, Korea, Using Multiplex PCR and Multigene Sequence-Based Analysis. Can J Infect Dis Med Microbiol. 2021;2021:8844306. doi:10.1155/2021/8844306
- 11. Trček J, Barja F. Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. Int J Food Microbiol. 2015;196:137-144. doi:10.1016/j.ijfoodmicro.2014.12.003
- 12. Gupta AK, Katoch VM, Chauhan DS, et al. Microarray analysis of efflux pump genes in multidrug-resistant mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb Drug Resist. 2010;16(1):21-28. doi:10.1089/mdr.2009.0054
- 13. Zhou L, Ma C, Xiao T, et al. A New Single Gene Differential Biomarker for Mycobacterium tuberculosis Complex and Non-tuberculosis Mycobacteria. Front Microbiol. 2019;10:1887. doi:10.3389/fmicb.2019.01887
- 14. Lee JC, Whang KS. Mycobacterium aquiterrae sp. nov., ion of acetic acid bacteria with a focus on the 16S-23S rRNA a rapidly growing bacterium isolated from groundwater. Int J Syst Evol Microbiol. 2017;67(10):4104-4110. doi:10.1099/ijsem.0.002261
- 15. Hall L, Doerr KA, Wohlfiel SL, Roberts GD. Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol. 2003;41(4):1447-1453. doi:10.1128/JCM.41.4.1447-1453.2003
- 16. Pauls RJ, Turenne CY, Wolfe JN, Kabani A. A high proportion of novel mycobacteria species identified by 16S rDNA analysis among slowly growing AccuProbe-negative strains in a clinical setting. Am J Clin Pathol. 2003;120(4):560-566. doi:10.1309/VF401U7H7DHE0FRE
- 17. Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14(10):908-934. doi:10.1111/j.1469-0691.2008.02070.x
- 18. Meghdadi H, Khosravi AD, Hashemzadeh M, Tabandeh MR. New design of multilocus sequence analysis of rpoB, ssrA, tuf, atpE, ku, and dnaK for identification of Mycobacterium species. Mol Biol Rep. 2022;49(8):7967-7977. doi:10.1007/s11033-022-07638-0
- 19. Simmon KE, Kommedal S, Karlsen B, Petti CA. Simultaneous Sequence Analysis of the 16S rRNA and rpoB Genes by Use of RipSeq Software To Identify Mycobacterium Species. J Clin Microbiol. 2010;48(9):3231-3235. doi:10.1128/JCM.00362-10
- 20. Yamada-Noda M, Ohkusu K, Hata H, et al. Mycobacterium species identification-A new approach via dnaJ gene sequencing. Syst Appl Microbiol. 2007;30:453-462. doi:10.1016/j.syapm.2007.06.003
- 21. Zelazny AM, Calhoun LB, Li L, Shea YR, Fischer SH. Identification of Mycobacterium Species by secA1 Sequences. J Clin Microbiol. 2005;43 (3):1051-1058. doi:10.1128/JCM.43.3.1051-1058.2005
- 22. Adékambi T, Drancourt M. Mycobacterium bolletii Respiratory Infections. Emerg Infect Dis. 2009;15(2):302-305. doi:10.3201/eid1502.080837
- 23. Griffith DE, Daley CL. Treatment of Mycobacterium abscessus Pulmonary Disease. Chest. 2022;161(1):64–75. doi:10.1016/j.chest.2021.07.035
- 24. Sun Q, Yan J, Liao X, et al. Trends and Species Diversity of Non-tuberculous Mycobacteria Isolated From Respiratory Samples in Northern China, 2014-2021. Front Public Health. 2022;10:923968. doi:10.3389/fpubh.2022.923968
- 25. Bercovier H, Kafri O, Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun. 1986;136(3):1136–1141. doi:10.1016/0006-291X(86)90452-3
- 26. Dai J, Chen Y, Dean S, Morris JG, Salfinger M, Johnson JA. Multiple-Genome Comparison Reveals New Loci for Mycobacterium Species Identification. J Clin Microbiol. 2011;49(1):144-153. doi:10.1128/JCM.00957-10
- 27. Duan H, Liu G, Wang X, et al. Evaluation of the Ribosomal Protein S1 Gene (rpsA) as a Novel Biomarker for Mycobacterium Species Identification. Biomed Res Int. 2015;2015:271728. doi:10.1155/2015/271728
- 28. Mignard S, Flandrois JP. Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J Med Microbiol. 2007;56(8):1033-1041. doi:10.1099/jmm.0.47105-0

Infection and Drug Resistance

Dovepress

Publish your work in this journal

Infection and Drug Resistance is an international, peer-reviewed open-access journal that focuses on the optimal treatment of infection (bacterial, fungal and viral) and the development and institution of preventive strategies to minimize the development and spread of resistance. The journal is specifically concerned with the epidemiology of antibiotic resistance and the mechanisms of resistance development and diffusion in both hospitals and the community. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/infection-and-drug-resistance-journa

