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Monomer dissociation and subsequent misfolding of the transthyretin (TTR) is one of the
most critical causative factors of TTR amyloidosis. TTR amyloidosis causes several human
diseases, such as senile systemic amyloidosis and familial amyloid cardiomyopathy/
polyneuropathy; therefore, it is important to understand the molecular details of the
structural deformation and aggregation mechanisms of TTR. However, such molecular
characteristics are still elusive because of the complicated structural heterogeneity of TTR
and its highly sensitive nature to various environmental factors. Several nuclear magnetic
resonance (NMR) spectroscopy and molecular dynamics (MD) studies of TTR variants
have recently reported evidence of transient aggregation-prone structural states of TTR.
According to these studies, the stability of the DAGH β-sheet, one of the twomain β-sheets
in TTR, is a crucial determinant of the TTR amyloidosis mechanism. In addition, its
conformational perturbation and possible involvement of nearby structural motifs
facilitates TTR aggregation. This study proposes aggregation-prone structural
ensembles of TTR obtained by MD simulation with enhanced sampling and a multiple
linear regression approach. This method provides plausible structural models that are
composed of ensemble structures consistent with NMR chemical shift data. This study
validated the ensemble models with experimental data obtained from circular dichroism
(CD) spectroscopy and NMR order parameter analysis. In addition, our results suggest that
the structural deformation of the DAGH β-sheet and the AB loop regionsmay correlate with
the manifestation of the aggregation-prone conformational states of TTR. In summary, our
method employing MD techniques to extend the structural ensembles from NMR
experimental data analysis may provide new opportunities to investigate various
transient yet important structural states of amyloidogenic proteins.
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INTRODUCTION

TTR is a transporter of the thyroid hormone, thyroxine (T4), and
holo-retinol binding protein (Ingbar, 1958). It is one of the
abundant proteins in human plasma (3–5 μM) and
cerebrospinal fluid (0.25–0.5 μM) (Stabilini et al., 1968;
Schreiber et al., 1990). In its native state, TTR has a
β-sandwich structure consisting of two β-sheets, CBEF and
DAGH. In addition, this protein maintains a homotetrameric
complex, on which two hydrophobic binding pockets for T4 are
constructed (Blake et al., 1978). In addition, TTR is also well
known for its amyloidogenic propensity, causing several
detrimental human diseases, such as senile systemic
amyloidosis and familial amyloid polyneuropathy/
cardiomyopathy (Westermark et al., 1990; Coelho, 1996).
Several biophysical analyses have shown that disruption of the
tetrameric complex and subsequent release of monomeric species
facilitates aggregation including amyloid fibril formation in TTR
(Johnson et al., 2012). Dissociation of amyloidogenic monomers
can be caused by several factors, including genetic mutations
(Adams et al., 2019), post-translational modification (Poltash
et al., 2019; Leri et al., 2020), and proteolysis by proteases,
(Mangione et al., 2018; Peterle et al., 2020).

Despite its physiological and pathological importance, the
molecular details of TTR aggregation remain elusive. A recent
solution-state NMR study revealed that monomerization of TTR
causes destabilization of the C-terminal β-stand H, making its
neighboring β-stand G more accessible and vulnerable to
amyloidogenesis (Oroz et al., 2017). It was previously shown
that the TTR (105–115) peptide originating from the β-stand G is
highly amyloidogenic (Gustavsson et al., 1991). A recent MD
study reported a consistent result in which destabilization of the
edge at the DAGH β-sheet, namely the β-stands D and H, is
responsible for the amyloidogenic propensity of TTR (Zhou et al.,
2019; Childers and Daggett, 2020). Furthermore, a series of
computational studies have suggested that the DAGH β-sheet
may experience structural deformation to reconstruct
aggregation-prone α-sheet-like structures (Steward et al., 2008;
Childers and Daggett, 2019). Lim et al. employed solid-state NMR
techniques to show that destabilization of the DAGH β-sheet may
be caused by the conformational change in the AB loop region
(Lim et al., 2016b). From TTR aggregates, they found that the
native contact between Leu17 and Pro24 residues in the AB loop
was lost, suggesting that non-native distortion of the AB loopmay

concur with amyloid fibril formation. The structural plasticity of
the AB loop has been noted in prior solution-state NMR studies
along with unstable structural features of the DAGH β-sheet (Lim
et al., 2013; Das et al., 2014). However, there is still a significant
gap between direct evidence and theoretical predictions to fully
elucidate the molecular details of structural deformation and the
resultant aggregation of TTR. In particular, a recent cryo-electron
microscopic study of patient-derived TTR amyloid fibrils
indicated that TTR should undergo global structural
deformation during amyloidogenesis (Schmidt et al., 2019).

Recently, Google DeepMind developed an innovative method,
AlphaFold2, which is a machine learning technique to predict the
structure of monomorphic and globular proteins from a given
sequence (Jumper et al., 2021). AlphaFold2 shows a significant
accuracy for globular proteins; however, it is still unknown
whether AlphaFold2 can determine the structures of highly flexible
proteins, such as intrinsically disordered proteins (IDPs) and
metamorphic proteins, or investigate their dynamical features. On
the other hand, NMR spectroscopy is a useful tool for investigating
structural features of dynamic proteins (Kosol et al., 2013). NMR
techniques, including nuclear Overhauser effect (NOE)-based
techniques, residual dipolar coupling (RDC), paramagnetic
relaxation enhancement, and NMR order parameter analysis,
provide long-range or short-range contact information and the
degree of structural heterogeneity. In addition, several
methodologies using the information of inter-atomic distances or
NMR J-coupling have been developed to define the structural
ensemble of proteins under physiologically relevant conditions
(Meng et al., 2018; Shimomura et al., 2019; Shrestha et al., 2019;
Ferrie and Petersson, 2020; Lincoff et al., 2020). Our previous study
based on NMR chemical shift, MD simulation, and machine learning
technique withmultiple linear regression provided a reliable ensemble
structure of amyloid beta (Yang et al., 2021), the representative
pathogenic IDP (Lin et al., 2019). This method provides the
expected conformational states of highly mobile proteins at atomic
resolution, which is a novel and rigorous approach to investigate
various dynamic features of IDPs and intrinsically disordered regions
(IDRs) of diverse proteins.

The regression approach used de novo structures calculated from
MD simulation and the chemical shift prediction algorithm
(Figure 1). However, the previous approach mainly using 1HN

and 15NH chemical shift information was insufficient to distinguish
the secondary structural features. This is because the distributions of
the chemical shifts of the 1HN and 15NH atoms for the different

TABLE 1 | The regression scores according to the chemical shift prediction algorithms.

Prediction score (regression)

M-TTR T119M M-TTR

UCBSHIFT SHIFTX2 SPARTA+ UCBSHIFT SHIFTX2 SPARTA+

1HN 0.8737 0.8429 0.6479 0.8864 0.8793 0.7471
15NH 0.9146 0.9363 0.8584 0.9465 0.9289 0.8527
13Cα 0.9686 0.9693 0.9226 0.9370 0.9491 0.9380
13Cβ 0.9963 0.9966 0.9969 0.9975 0.9968 0.9972
Total 0.7711 0.7623 0.5116 0.7843 0.7728 0.5959
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secondary structures are statistically overlapped (Yu et al., 2011).
This study improved the previous regression approach by
introducing chemical shift information of the 13Cα and 13Cβ
atoms; the chemical shift of 13Cα and 13Cβ show significant
correlation with the secondary structure of proteins. We
successfully introduced the general scaling process into the
regression, irrespective of the type of used atom, which increases
the accuracy of the regression approach. We revealed the reliable
ensemble structure of twomonomeric and highly-dynamic variants
of TTR, M-TTR (F87M/L110M), and T119MM-TTR (F87M/
L110M/T119M), and identified the minor yet reliable ensemble

structure using the regression approach. The newly determined
M-TTR and T119MM-TTR ensembles provide novel and
unprecedented insights into TTR aggregation mechanisms.

METHOD

Experimental Data Acquisition
Circular Dichroism Measurement
Human recombinant TTR samples were prepared as previously
described in the prior studies (Kim et al., 2016; Oroz et al., 2017).

FIGURE 1 | Schematic flow of the regression approach for NMR chemical shift. It includes the generation of structural library, chemical shift prediction, and themain
regression scheme for ensemble prediction.
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For CD measurement, the concentration of the protein samples
was adjusted to 20 μM in a buffer consisting of 50 mM 2-
(N-morpholino)ethanesulfonic acid (MES) pH 6.5, 100 mM
NaCl, and 1 mM dithiothreitol. Cuvettes of 0.5 mm pathlength
were used, and the measurement was performed at 25°C. The CD
data for protein samples were obtained by subtracting the
spectrum of the buffer-only sample.

Order Parameter Calculation
The NMR chemical shift data for M-TTR and T119MM-TTR
were obtained from BMRB entry ID 25986 and 25,987,
respectively (Kim et al., 2016; Oroz et al., 2017). In this study,
the deposited chemical shift datasets were first verified using
freshly prepared protein samples. Subsequently, the order
parameters were calculated using TALOS-N by feeding the
experimental chemical shifts of 1HN,

15NH,
13CO, 13Cα, and

13Cβ (Shen and Bax, 2013).

Molecular Dynamics Simulation
System Preparation
All systems were built using the LeaP program, and all
simulations were performed using the AMBER20 MD
simulation package (Case et al., 2020). The Amber ff99SBildn
force field (Lindorff-Larsen et al., 2010) was used for all
simulations. Hydrogen atoms were constrained using the
SHAKE algorithm (Ryckaert et al., 1977; Miyamoto and
Kollman, 1992). The NMR solution structures of M-TTR and
T119MM-TTR were used for MD simulations (PDB code: 2NBO
(Oroz et al., 2017) and 2NBP (Kim et al., 2016), respectively). The
generation of M-TTR and T119MM-TTR structures with AB
loop rebuilding were performed using MODELLER 10.0 (Webb
and Sali, 2016). The loop refinement process of the AB loop was
applied to the positional restraint which makes the distance
between the Leu17 and Pro24 residues to be 20 ± 1 Å. To use
ionic strength effects, the salt concentration was 150 mM based
on Debye-Hückel screening (Onufriev et al., 2002).

Minimization and Equilibration
Each system was minimized with 5,000 steepest descent and a
maximum of 2,500 conjugate gradient minimization steps. After
the minimization steps, the systems were heated for 10 ns with
2 fs time step from 20 K to each target temperature. The
temperature was regulated by a Langevin thermostat with
1.0 ps−1 collision frequency.

Replica Exchange Molecular Dynamics
To generate an ensemble structure, replica exchange molecular
dynamics (REMD) (Sugita and Okamoto, 1999) were performed
using the PMEMD program in AMBER20 (Case et al., 2020).
Each temperature value for the T-REMD simulation was
generated using a temperature generator for REMD
simulations (Patriksson and Van Der Spoel, 2008). For
M-TTR and M-TTR with AB loop rebuilding, each system
with a total of 16 replicas was simulated with a temperature
range of 300–507 K. For T119MM-TTR and T119MM-TTR
with AB loop rebuilding, each system with a total of 16
replicas was simulated with a temperature range of 300–480 K.

During all simulations, exchanges were attempted every 2 ps, and
each ensemble was simulated for 1 µs The total sampling time for
each system was 16 µs The final average exchange ratios were
14.3, 14.2, 18.9, and 18.8%, respectively.

Molecular Dynamics Trajectory Analysis
All trajectories were processed and analyzed using CPPTRAJ
(Roe and Cheatham, 2013) provided by the AMBER20 package
(Case et al., 2020). All snapshots of the trajectories were visualized
using VMD (Humphrey et al., 1996). For each mutant TTR, the

FIGURE 2 | Evaluation of exploring reaction coordinate space and AB
loop rebuilding. (A) The representation of two main β-sheet structures in the
native state of TTR. The CBEF and DAGH β-sheets are colored as blue and
red, respectively. These secondary structures are determined by the
proportion of β-sheet satisfying more than 50% in the structural library. (B)
M-TTR (PDB code: 2NBO) and (C) T119M M-TTR (PDB code: 2NBP) (left)
The comparisons of initial structures between original and AB loop-rebuilt
structure. AB loop regions are colored as red and cyan, respectively.
Hydrogen bonds within AB loop are colored as blue. (right) The density map
according to AB loop distance and the ratio of CBEF and DAGH β-sheets. AB
loop distance represents the distance between L17 and P24. Density heap
maps (top) using an original replica with lowest temperature and (bottom)
using selected structural library which includes the 3 lowest temperature
replicas of both original and AB loop rebuilding T-REMD and 20 NMR
ensemble structures.

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 7668304

Yang et al. Ensemble Prediction of Amyloidogenic Transthyretin

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


six trajectories in the three lowest temperature replicas with and
without AB loop rebuilding and 20 NMR ensemble structures
were used in the contact map and secondary structure analysis.
The contact maps were calculated by the distance between Cα-Cα
atoms with a threshold of 7.5 Å. The secondary structure was
analyzed using the STRIDE program (Frishman and Argos,
1995). The proportion P of secondary structures for each
residue is calculated as followed equation:

Pi(ξ) � ∑N
n δζ in�ζ
N

,

Z � {α − helix, β − sheet, 310 − helix, coil, turn}
Z is a set of secondary structure types. The proportion of

specific secondary structure ζ ∈ Z for residue i is calculated by the
total number of conformations which satisfies the secondary
structure of nth conformation ζ in � ζ in N conformational
state of the structural library (N � 600,020). And we defined
the set B composed of specific residues which satisfy more than
50% proportion of β-sheet structure for each residue (Figure 2A).
Finally, the proportion of β-sheet structure for each conformation
is defined as:

Pn(β − sheet) � ∑L
i ∈ B δζ in�β−sheet

|B|

Chemical Shift Prediction
All visualized results of chemical shift prediction were performed
using UCBSHIFT (Li et al., 2020). The other chemical shift
prediction algorithms such as SHIFTX2 (Han et al., 2011) and
SPARTA+ (Shen and Bax, 2010) were also performed. The
chemical shifts of backbone atoms (1HN,

13Cα,
13Cβ, and

15NH)
for proteins were selectively used. The prediction was performed
at pH 7.5. The residues whose 1HN,

13Cα,
13Cβ, and

15NH atoms
were not fully assigned, including proline and glycine, were
selectively eliminated. The input structures for chemical shift
prediction were obtained from six replicas: the top three lowest
temperatures of T-REMD for each original and AB loop
rebuilding system, and the published NMR solution structure.
Each trajectory gives us 100,000 structures; therefore, a total of
600,000 and 20 NMR solution structures were used for chemical
shift prediction.

Regression Approach
The multiple linear regression of the predicted chemical shifts
was based on a previous study on amyloid beta molecules (Yang
et al., 2021). We only used the fully assigned residues for 1HN,
13Cα,

13Cβ, and
15NH atoms. All regressions were performed using

NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020)
modules, and all visualizations were performed using matplotlib
(Hunter, 2007) in Python 3.6.

Data Scaling
The scale of the chemical shift varies according to nuclear type.
The scaling function f is introduced to solve the scale-difference
problem. It is extended by including the additional 13Cα and

13Cβ

atoms compared to the previous method (Yang et al., 2021). The
scaling function for each atom is expressed as follows:

f: R→R

f(xi) � loga( xi − ymin

ymax − ymin
) + 1 + θ

xi is the chemical shift of a specific atom. ymin and ymax are the
minimum and maximum values of the reference chemical shift for
the same atom, respectively. a and θ is hyperparameter for
minimizing a regression error ϵ. The constants a and θ are
determined from the regression for the min-max scaled chemical
shift. The basis of min-max scaling is the scale of the reference
chemical shift for each atom, similar to the above term in the log
function. a is constant in [1.1, 10], irrespective of the atom type. The
determining constant θ is based on a previous hyperparameter fine-
tuningmethod for 1HN chemical shifts (Yang et al., 2021). Thus, θ is
negligible for other atoms without 1HN atoms. The hyperparameter
tuning process was performed using the parallelized limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithm (Gerber, 2020). The scaling function has an obvious
inverse function because it is a one-to-one function. Thus, the
coefficients of the multiple linear regression after scaling can be
equally applied to the original regression without scaling.

Multiple Linear Regression
For the interpretation of coefficients as probabilities or
appearance of protein structures, we used non-negative least
squares (NNLS) regression algorithms that solve the Karush-
Kuhn-Tucker (KKT) condition for the non-negative least squares
problem with an additional normalization method to make the
sum of coefficients to be 1.

y � ŷ + ϵ � w1X1 + w2X2 +/ + wnXn + ϵ

∑n
i

wi � 1

y denotes the experimental chemical shift reference. ŷ is the predicted
chemical shift among the ensemble of proteins.Xi is the chemical shift
of the protein structure among the ensemble of proteins. The set Xi}{
is the generated protein structure library from the MD simulation or
other possible methods. wi}{ are the coefficients. In this condition, it
represents the appearance or probability of each state. n is the number
of input chemical shifts from the prediction. ϵ is error value to be
minimized. The minimization process was performed using the
sequential least squares programming (SLSQP) algorithm in the
SciPy optimization module (Virtanen et al., 2020).

Feature Selection and Coefficient Normalization
The normalization of coefficients is also used in the previous
method (Yang et al., 2021).

S � {wj}Nj�1 such thatwj ≥ ε · wm,wm � max
w∈S

S

S is the set of significant coefficients. ε is a small positive value
(10–5) as the threshold of selection; the previous study took the
same value as a reasonable cutoff (Yang et al., 2021). wm is the
maximum element of the set S, which is equal to the maximum
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element of the entire coefficient set. An additional regression with∑n
i
wi � 1 constraint was performed on set S using the SLSQP

algorithm.

Data Scoring
The scoring method for the regression was based on the
coefficient of determination, denoted R2.

R2 � 1 − RSS
TSS

RSS � ∑r
k�1

(yk − ŷk)2, TSS � ∑r
k�1

(yk − �y)2
RSS and TSS are the residual sum of squares and total sum of

squares, respectively. �y is the mean value of reference. ŷi denotes the
predicted chemical shift. r is the number of residues in the protein.
The total score combining the scores of all the atoms is as follows:

R2
total � ∏

atom ∈A
R2
atom, A � {1HN,

15NH,
13Cα,

13 Cβ}
Structure Clustering
After the regression, principal component analysis (PCA) and
k-means clustering were performed for the predicted TTR
ensemble. The PCA was based on the Cα-Cα contact map
with a 7.5 Å cutoff distance.

Nuclear Magnetic Resonance Order
Parameter Analysis
The NMR order parameter S2 was computed using the isotropic
reorientational eigenmode dynamics (iRED) method (Prompers
and Brüschweiler, 2002) in CPPTRAJ (Roe and Cheatham, 2013).
The input ensemble preparation from the regression approach
used copying the feature conformations and duplicating each
conformation in proportion to its regression coefficient. The final
composition of the input ensemble included 1,000 structures. All
analyses, except proline residues, were used to consider N-H
atom vectors for each residue. The order parameters of the NMR
ensemble for both M-TTR and T119MM-TTR were calculated
using NMR solution structures.

Calculation of Chemical Shift Prediction
Error and Nuclear Magnetic Resonance
Order Parameter Difference
The Euclidean distance in the projection space of the scaling
function between NMR experimental data and the prediction of
the regression is calculated as follows:

f(Δδatom) � f(δreg atom) − f(δrefatom)
‖f(Δδ)‖ �

�������������∑
atom ∈A

f(Δδatom)
√

δreg is the predicted value of the chemical shift from the
regression. δref is a published chemical shift from the BMRB
database for M-TTR and T119MM-TTR. δatom is the nuclear-
wise chemical shift.

The difference in the NMR order parameter S2 between the
predicted ensemble from the regression and the NMR ensemble is
defined as follows: ∣∣∣∣ΔS2∣∣∣∣ � ∣∣∣∣∣S2reg − S2ref

∣∣∣∣∣
RESULTS

Generation of Structural Library
The aim of our regression approach is to select the important
conformations that comprise the protein ensemble in the possible
conformation pool. In the free-energy landscape mapping of the
conformational states of a system, a globular protein commonly
has a sharp, stable state. Therefore, the major ensemble of
globular proteins shows a similar conformation, including the
backbone positions of the α-helix or β-sheet secondary structures.
Thus, the major ensemble of globular proteins can sufficiently
represent the entire conformation of the protein. However, this
statement is not equally true to dynamic soluble proteins,
including IDPs or locally spanned IDRs. The ensemble of the
dynamic protein includes many minor state conformations. As a
result, the conventional approach often fails to sufficiently reflect
minor yet important conformational states. In contrast, our
regression approach incorporating NMR chemical shift
information can provide a reliable protein ensemble with
extended consideration for minor states. NMR chemical shifts
collectively reflect appearances and mobile features of all
ensemble states at atomic resolution. Therefore, our approach
is an accurate and efficient strategy to constrain the MD-based
ensemble pool without inadequate removal of relevant
conformational states.

To consider important conformations in a sufficient size, we
performed MD simulations with enhanced sampling and
temperature replica exchange molecular dynamics (T-REMD)
to fully explore the conformational space of the protein
(Figure 1). The number of input conformations for the
regression should be sufficiently large to obtain important
conformations. In this process, we refer to a set of possible
conformational states as a structural library. T-REMD makes
the structural library for M-TTR and T119MM-TTR. However,
we considered the possibility of insufficient exploration of the
MD simulation because of the large size of TTR. Therefore, we
analyzed the amount of exploration of the reaction coordinate
space with the proportion of CBEF and DAGH β-sheets and
related AB loops. In the present study, we put a particular focus
on the AB loop, because it was proposed as an important
structural element contributing to the stability of the DAGH
β-sheet. A prior solid-state NMR study evidenced that TTR lost
the native-like AB loop conformation (Lim et al., 2016b); we
consider this observation important and appropriate because it is
made with actual aggregates of TTR, not in an un-aggregated
soluble state. The contact between the AB loop and DAGH
β-sheet is calculated by the distance between Leu17 and Pro24
residues, and we call this term the short AB loop distance. From
this analysis, we confirmed that a single simulation could not
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sufficiently explore the states in which the DAGH β-sheet was
stable, and the AB loop distance was large (Figure 2).
Considering the previous evidence, we generated the artificial
structures of M-TTR and T119MM-TTR to satisfy the AB loop
distance, and the average proportion of DAGH β-sheets became
large (Figure 2). We used the top three lowest temperature
replicas from the T-REMD simulation with the AB loop
rebuilding structure for each M-TTR (Supplementary Figures
S1). In addition, we considered the NMR ensemble structures of
M-TTR and T119MM-TTR as the major ensemble states. After
combining all structures into the structural library, we prepared
the input structures to map the possible conformational space.

Determination of Transthyretin Ensemble
Using the Multiple Linear Regression for
Nuclear Magnetic Resonance Chemical
Shift
After generating the structural library, we predicted the NMR
chemical shift from each structure in the library. A previous study
showed that UCBSHIFT (Li et al., 2020), a chemical shift
prediction algorithm, provides better regression quality for
IDP-like protein, e.g., amyloid-beta (Yang et al., 2021).
UCBSHIFT might be a good prediction algorithm for the
mobile C-terminal region of TTR to perform the regression.
We prepared the prediction dataset of NMR chemical shifts for all
conformations in the structural library using UCBSHIFT. The
regression used a total of 600,020 chemical shift sets. The previous
study used only the chemical shift values of 1HN and 15NH atoms
for the regression. We have added the chemical shift of the
additional 13Cα and 13Cβ atoms. During the regression, we
neglected the partially assigned residues for 1HN,

13Cα,
13Cβ,

and 15NH atoms, such as proline and glycine residues. The
regression solves the minimization problem on the KKT
condition with an additional constraint satisfying the sum of
coefficients to be one, which uses a non-negative least squares
(NNLS) algorithm and additional optimization. To satisfy the
revised KKT condition, we interpreted the regression coefficients
as the appearance of the conformations in the ensemble. During
the minimization of regression, we introduced a hyper-parameter
θ to optimize the 1HN chemical shift, which depends on the
reference chemical shift. The hyper-parameters θ of M-TTR and
T119MM-TTR were set to 0.0661 and 0.0431 ppm, respectively.
The constants a as the logarithm base in the scaling function were
selected in [1.1, 10]. As a result, a values were set to 10. Finally,
multiple linear regression analysis provided the probability of
each conformational state in the structural library.

As a result, the regression provided a fitted NMR chemical
shift to the experimental reference. We used simple regression
analysis to score the regression: the coefficient of determination
(R2), which is a statistical measure that shows the proportion of
variation. The atom scores for 1HN,

13Cα,
13Cβ, and

15NH atoms
were 0.8737, 0.9686, 0.9963, and 0.9146 in M-TTR, and 0.8864,
0.9370, 0.9975, and 0.9465 in T119MM-TTR, respectively. The
13C‒15NH and 1HN‒

15NH chemical shift plots comparing the
experimental and predicted data are shown in Figure 3. The
chemical shift error for each atom is also shown in

Supplementary Figure S2. After the regression, we compared
the original NMR ensemble with the predicted TTR ensemble
using regression (Figure 4). The regression provided possible
local conformations. We partitioned the conformational
ensemble from the regression into clusters using k-means
clustering in the two-dimensional principal component plane
based on the Cα-Cα contact map (Supplementary Figure S3).
The major ensembles of both M-TTR and T119MM-TTR
include the NMR ensemble conformations as the center of
cluster. The second predominant M-TTR cluster show the
rigid H β-stand with an increased conformational
homogeneity. Notably, the less populated M-TTR cluster
exhibit the relaxed β-barrel-like conformation, which satisfies
the long AB loop distance between Leu17 and Pro24 residues.
These β-barrel conformations have a native-like β-sandwich
template including the CBEF and AG β-sheets except that it
has a very long D β-strand which connects the CBEF and AG
β-sheets into a circular barrel shape. This observation raises an
intriguing possibility that disruption of the AB loopmay correlate
with overall structural perturbation and subsequent aggregation
of TTR. On the other hand, the prediction ensembles of
T119MM-TTR are similar to those of the previously
established with NMR spectroscopy except for a slight
difference in the EF loop and the D β-strand. This observation
is consistent with the previous studies where T119MM-TTR
maintains more homogeneous structural states than M-TTR
(Lim et al., 2013; Kim et al., 2016).

Finally, to strictly consider the implication of choosing
different algorithms for chemical shift prediction, we
performed the regression approach with SHIFTX2 and
SPARTA+ (Supplementary Figure S4). Upon comparing the
regression quality using R2 score (Table 1), we found that the
total regression scores for the four atoms are 0.7711, 0.7623 and
0.5116 in M-TTR, and 0.7843, 0.7728 and 0.5959 in T119MM-
TTR with the order of UCBSHIFT, SHIFTX2, and SPARTA+,
respectively. In the perspective of the regression score,
UCBSHIFT is slightly more appropriate than the others for
our regression approach, as we concluded in our previous
study (Yang et al., 2021).

Validation of the Transthyretin Ensemble
Predictions
Analysis of the Secondary Structures
To quantitatively measure the composition of the secondary
structures of M-TTR, we used CD spectroscopy with BeStSel
(Beta Structure Selection) analysis (Micsonai et al., 2015), which
provides the proportion of the secondary structures from the CD
spectra using a machine learning approach (Figure 5A). After
BeStSel analysis, we compared the secondary structure
composition of the predicted ensemble from the regression
with the BeStSel results (Figure 5B). Combining all results, we
confirmed that our prediction for the TTR ensemble give the
most similar results to the BeStSel analysis (Figure 5 and
Table 2). In particular, our prediction provided a more
reliable β-sheet proportion analysis result for M-TTR than
that from the previous NMR ensemble. Subsequent detailed
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analysis of the results for M-TTR identified that the major
difference between our prediction and NMR ensemble is the
existence of the C-terminal H β-strand and two short β-strands in
residues 21–22 and 54–57. This corroborates that our approach is
effective to provide an additional conformational ensemble,
which NMR-based ensemble failed to accommodate. In
contrast, T119MM-TTR showed that the β-sheet residues
from the prediction are mostly consistent with the β-sheet
residues of the NMR ensemble. Supplementary Figure
provide a comparison between before and after the regression
of the secondary structure (Supplementary Figure S5) and the
contact map analysis (Supplementary Figure S6). After the
regression, the composition of the β-sheet was more
manifested than before the regression. This indicates that our
regression procedure can efficiently select the relevant and
meaningful conformational features.

Analysis of the Nuclear Magnetic Resonance Order
Parameter
To verify the predicted M-TTR and T119MM-TTR ensembles, we
performed a comparative analysis of the NMR order parameter,
representing the amount of fluctuation of the N-H bond vector.
We prepared the regression ensemble by copying the feature

conformations and duplicating each conformation in proportion to
its regression coefficient composed of 1,000 structures. We calculated
the NMR order parameter for each residue using N-H vectors, except
for proline residues. Combining all NMR order parameter data, we
could check the highly conserved regions which compose the specific
secondary structures in the solutionNMR ensemble (Figure 6A). Our
regression ensemble is more consistent to the experimental order
parameter except for a few loop regions of both M-TTR and
T119MM-TTR. The order parameter analysis for the NMR
ensemble showed that the order parameter for the residues around
the secondary structure was close to 1. Therefore, the NMR ensemble
has more stationary secondary structures and consistent alignment of
N-H vectors than the experimental conditions. Each mutant TTR
ensemble derived from our prediction was more consistent to its
experimental order parameter than the NMR ensemble. In particular,
the C-terminal regions of both mutant TTRs maintain the similarities
of NMR order parameters between experimental data and prediction.
These observations again support the superiority of our approach to
reflect the actual structural conformations than the NMR-based
ensemble selection.

We verified the correlation between the difference in the NMR
order parameters and the chemical shift prediction error
(Figure 6B and Supplementary Figure S2). The chemical

FIGURE 3 | The result of the chemical shift regression approach. Experimental NMR chemical shift (red open circle) and predicted chemical shift (black filled
circle) using regression approach for (A)M-TTR and (B) T119M M-TTR are displayed in 2D plane. Chemical shifts for the same residues are linked with dotted line. The
chemical shift prediction for 15NH,

13Cα, and
13Cβ atoms (left) and for 15NH and 1HN atoms (right) are respectively plotted. All visualized regression results are obtained

with UCBSHIFT. The regression score for each atom is represented in Table 1.
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shift error was calculated using the Euclidean metric in the
projection space of the scaling function. The projection space
maintains the relative position of each residue in the chemical
shift for each atom. From this analysis, we acknowledged that the
tendency of the absolute difference of NMR order parameter and
the tendency of the chemical shift error in the projection space of
the scaling function are similar to each other (Figure 6B),
although the quality of regression according to the structural
library is robust (Supplementary Figure S7). This observation
implies that the chemical shift prediction error is a major limiting
factor to have more accurate results with our approach.

DISCUSSIONS

Protein aggregation and amyloidosis are among the most critical
events associated with various detrimental pathological processes
in humans (Chiti and Dobson, 2017). Although several studies

have been conducted to understand the related mechanisms, their
mechanistic details are still lacking. This is attributed to the highly
heterogeneous and dynamic structural states of proteins in their
aggregation-prone states (Kelly, 1996; Yang et al., 2021). To
overcome these challenges, NMR spectroscopy (Daskalov
et al., 2021; Dyson and Wright, 2021) and MD simulation
techniques (Prabakaran et al., 2021; Strodel, 2021) are the two
major methodologies that significantly contributed to advancing
our understanding of the aggregation and amyloidosis
mechanisms of various proteins. Indeed, NMR spectroscopy
has been a major technique for investigating the mobile
structural features of IDPs and amyloidogenic proteins, such
as amyloid beta (Crescenzi et al., 2002), tau (Mukrasch et al.,
2009), and α-synuclein (Ulmer et al., 2005). In contrast, MD
simulations provides physical movements of atoms with the
evolution of femtosecond dynamics. It determines the forces
and potential energies of interatomic interactions by solving
Newton’s equations of motion, which can determine the

FIGURE 4 | The comparisons of the predicted ensembles with the NMR ensemble. (A) (left) The NMR ensemble of M-TTR (PDB code: 2NBO) has the large
amount of fluctuation in the C-terminal region (right) There are 3 major clustered ensembles which are predicted from the regression approach. Cluster 1 shows NMR
ensemble-like shape with the atomic variability of the C-terminal region. Cluster 2 shows the rigid H β-strand. Cluster 3 shows novel β-barrel-like ensemble which satisfies
non-native long distance between L17 and P24 residues. (B) (left) The NMR ensemble of T119M M-TTR (PDB code: 2NBP) has less fluctuation in the C-terminal
region (right) Predicted ensemble clusters show significant fluctuation in the C-terminal region. Cluster 1 shows the exposure of the G β-strand by released C-terminus.
Cluster 2 shows the stationary H β-strand similar to the NMR ensemble. Color labels; α-helix (red), 310 helix (magenta), β-sheet (blue), turn (lime) and coil (white).
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thermodynamically stable structure of the protein. Several MD-
based studies have investigated the dynamics and aggregation
mechanisms of amyloidogenic proteins, such as amyloid beta
(Tran and Ha-Duong, 2015), tau (Leonard et al., 2021),
α-synuclein (Otaki et al., 2018), and other proteins (Meli et al.,
2008; Spagnolli et al., 2020).

TTR has been an important target of various structural studies
because of its physiological and pathological importance. The native
tetrameric structure of TTR is maintained to exert its physiological
role as a carrier of thyroid hormones and retinol-binding proteins,
whereas the amyloidogenic propensities manifest upon its
monomerization (Johnson et al., 2012). Recent NMR spectroscopic

studies have shown that M-TTR stabilizes heterogeneous states, in
which the C-terminal β-strand becomes highly mobile (Oroz et al.,
2017). However, this study could not exclude the possible multiple
structural states of this β-stand and the subsequent structural
rearrangement. Moreover, it is not clear how its disordered nature
correlates with the aggregation-prone property of TTR. It is also
noteworthy that the NMRdata for determining theM-TTR structural
models were obtained under a pressurized condition (0.5 kbar) (Oroz
et al., 2017), implying that even more diverse structural heterogeneity
may manifest in a physiological condition.

There are many in silicomethods to determine the structure of
IDPs, such as amyloid-beta (Saravanan et al., 2020). Meng et al.

FIGURE 5 | The comparison of secondary structures between NMR ensemble and predicted ensemble from the regression approach. (A) The CD spectra for
M-TTR (solid line) and T119M M-TTR (dotted line) (B) The secondary structure proportion for all MD trajectories (MD average), predicted ensemble (prediction), NMR
ensemble (NMR) and BeStSel prediction using CD spectra (BeStSel). The residual secondary structures of both (C)M-TTR and (D) T119M M-TTR.Color labels α-helix
(red), β-sheet (blue), turn (gray) and coil (white).

TABLE 2 | The secondary structure proportion for each TTR ensemble.

Secondary structure proportion (%)

Secondary
structure

M-TTR T119M M-TTR

Before
regression

After
regression

NMR
ensemble

BeStSel Before
regression

After
regression

NMR
ensemble

BeStSel

α-helix 6.2 5.7 5.1 4.5 5.2 6.2 6.0 5.2
β-sheet 23.7 41.5 31.0 39.3 22.2 43.4 41.0 44.1
Turn 35.6 28.3 32.2 10.9 35.7 29.0 24.7 9.7
Coil 34.5 24.5 31.7 45.3 36.9 21.3 28.3 41.0
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(2018) attempted to obtain molecular-level insight and a
distinguishable conformational ensemble of the IDP-like
protein using MD simulation with single-molecule Förster
resonance energy transfer spectroscopy. Other studies used the
interatomic distance information from NOEs and RDCs or scalar
coupling information to reveal the ensemble of soluble proteins
(Meng et al., 2018; Shimomura et al., 2019; Shrestha et al., 2019;
Ferrie and Petersson, 2020; Lincoff et al., 2020). Our studies used

NMR chemical shift data to determine the conformational state of
the protein ensemble. Several methodologies have been developed
to use chemical shift data with fragment-based approaches
(Cavalli et al., 2007; Nerli et al., 2018; Chandy et al., 2020).
Our novel method uses a different approach to extend the
experimental observation of NMR spectroscopy using MD
simulations. It gives each conformation of the selected
ensemble, which is not restricted to any structural constraints.

FIGURE 6 | NMR order parameter and chemical shift prediction error. (A) NMR order parameter S2 for each ensemble of (top) M-TTR and (bottom) T119M M-
TTR is colored as follows: NMR experiment (red), calculation using NMR ensemble (blue), and calculation using the predicted ensemble (gray). (B) Comparison
between NMR order parameter error and chemical shift prediction error. Errors were calculated by the difference between the regression result and NMR experiment
data. Especially, the error calculation of chemical shift prediction was calculated in the projection space by scaling function f .
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As a result, we can obtain diverse conformational states at atomic
resolution in the solution. Moreover, we would like to stress that
this regression methodology may be further improved by
incorporating additional experimental data, such as secondary
structure contents from CD spectroscopy, NOE-based distance
information, and J coupling-based torsion angle data. Finally, the
present study efficiently expands the exploration range of MD
simulation by reflecting the previous experimental observation of
the non-native AB loop distance in aggregated TTR. We think
that the similar strategy can be effective for MD simulation to
explore additional structural abnormality, whose correlation with
aggregation propensity was proposed, e.g., the CD loop
(Klimtchuk et al., 2018; Dasari et al., 2020), the EF helix/loop
(Sun et al., 2018; Ferguson et al., 2021), and the H β-strand (Oroz
et al., 2017).

The significant difference between the structural models
determined from NMR experimental data and the extended
ensembles of M-TTR reported in this study indicates that the
C-terminal β-stand, which was determined to be disordered in the
NMR models, is still highly mobile. However, it also appears that at
least some population of M-TTR may stabilize a native-like β-stand
structure in the C-terminal region. NMR structure determination
procedures are highly dependent on the accurate analysis of NOE
signals, thus limiting the observation of dominant conformations even
in the presence of coexistingmultiple states. It has been suggested that
M-TTR may have several distinctive conformations under native
conditions, as observed in the tetrameric conformation of the X-ray
crystallographic study (Ulmer et al., 2005), the monomeric
conformation of the pressurized NMR study (Oroz et al., 2017),
and the distinctive monomeric conformation of the T119MM-TTR
NMRstudy (Kimet al., 2016). In particular, the extended ensembles of
this study correlate well with the NMR relaxation dispersion results of
WT TTR and M-TTR (Lim et al., 2013; Das et al., 2014), supporting
the superiority of our novel methodology for characterizing structural
heterogeneity. Finally, the extended ensembles exhibited that non-
native loosening of the AB loop accompanies with universal and
significant structural perturbation. The AB loop was previously
proposed as a region whose structural changes are related to the
aggregation of TTR (Lim et al., 2016a). The ensembles indicate that
monomerization of TTR may incur structural deformation in the
C-terminal β-stand and the AB loop, followed by further structural
rearrangement to facilitate amyloid generation.

Our results indicate that T119MM-TTR may have more
homogeneous structural states than M-TTR. This is consistent
with a series of studies in which T119M substitution increased the
overall structural stability of TTR (Hammarström et al., 2003; Lim
et al., 2013; Das et al., 2014). In addition, the present ensembles
provide a couple of intriguing predictions. First, the C-terminal
β-stand harbors reduced yet still significant dynamic features,
explaining why T119MM-TTR is more amyloidogenic than WT
TTR (Lim et al., 2013). Moreover, our results indicate that the M119
sidechain exhibits several distinctive directions in the ensembles. In
previous NMR structural models, the M119 sidechain was positioned
inward, suggesting that hydrophobic interaction of the M119
sidechain with other nearby residues may stabilize the C-terminal
β-stand structures of TTR (Kim et al., 2016). However, the present
structural ensembles show that this residue may have some residual,

dynamic features. Subsequent investigation is evidently necessary to
appreciate how the mobility of M119 (or T119 of WT TTR)
contributes to the aggregation propensity of TTR; yet, our results
imply that this residue- or region-specific dynamics may represent
structural heterogeneity of TTR in its monomeric and aggregation-
prone states. We envision that the models from this study may
provide unprecedented insights to design subsequent experimental
strategies and to advance our understanding to the aggregation
mechanism of TTR.

In summary, these observations support the strength of the current
approach in that the calculated ensembles better represent the residual
structural flexibility and the amyloidogenic propensity of M-TTR and
T119MM-TTR. Although the conformational shape of “real”
amyloidogenic species is of great interest to elucidate the
mechanisms of amyloidogenesis in detail, its direct experimental
observation is challenging due to its heterogeneous and
aggregation-prone nature. We expect that our novel methodology
may provide a powerful and efficient way to appreciate the dynamic
features of amyloidogenic proteins and to reveal the related
mechanistic details regarding their physiology or pathology.
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