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Objective. Idiopathic inflammatory myopathies (IIM) demonstrate characteristic clinical phenotypes depending on
the myositis-specific antibody (MSAs) present. We aimed to identify common or MSA-specific immunological path-
ways in different immune cell types from peripheral blood by transcriptome analysis.

Methods. We recruited 33 patients with IIM who were separated into the following groups: 15 patients with active
disease at onset and 18 with inactive disease under treatment. All patients were positive for MSAs: anti–melanoma
differentiation-associated gene 5 (MDA5) antibody (Ab) in 10 patients, anti-Mi-2 Ab in 7, and anti-aminoacyl-transfer
RNA synthetase (ARS) Ab in 16. The patients were compared with 33 healthy controls. Twenty-four immune cell types
sorted from peripheral blood were analyzed by flow cytometry, RNA sequencing, and differentially expressed gene
analysis combined with pathway analysis.

Results. The frequencies of memory B cell types were significantly decreased in active patients, and the frequency
of plasmablasts was prominently increased in active patients with anti-MDA5 Ab in comparison with healthy controls.
The expression of type I interferon (IFN)-stimulated genes of all immune cell types was increased in the active, but not
inactive, patients. Endoplasmic reticulum stress-related genes in all IIM memory B cells and oxidative phosphorylation-
related genes in inactive IIM double negative B cells were also increased, suggesting prominent B cell activation in IIM.
Furthermore, active patients with anti-MDA5 Ab, anti-Mi-2 Ab, or anti-ARS Ab were distinguished by IFN-stimulated
and oxidative phosphorylation-related gene expression in plasmablasts.

Conclusion. Unique gene expression patterns in patients with IIM with different disease activity levels and MSA
types suggest different pathophysiologies. Especially, B cells may contribute to common and MSA-specific immuno-
logical pathways in IIM.

INTRODUCTION

Idiopathic inflammatory myopathies (IIM) are rare systemic

autoimmune diseases, and their precise etiologies remain unknown.

These myopathies are heterogenous and include dermatomyositis

(DM), juvenile DM, clinically amyopathic DM, inclusion bodymyositis,

polymyositis (PM), and immune-mediated necrotizing myopathies

(1). Although only anti-Jo-1 antibody (Ab) is included in the classifi-

cation criteria, it is widely recognized that the presence of myositis-

specific Ab (MSAs) and myositis-associated Ab can help identify
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subgroups of IIM (2). Clinically common MSAs include Abs
against melanoma differentiation-associated gene 5 (MDA5), Mi-2,
aminoacyl-transfer RNA synthetase (ARS) including Jo-1, transcrip-
tional intermediary factor 1γ, nuclear matrix protein 2, signal
recognition particle, and 3-hydroxy-3-methylglutaryl-CoA reduc-
tase. Recently, genome-wide association studies confirmed that
alleles of the human leucocyte antigen 8.1 ancestral haplotype and
other genes such as PTPN22 are important risk factors for IIM (3).

IIM pathogenesis is influenced by both genetic and environ-
mental factors; however, the precise immune dysregulation
underlying disease progression remains unclear. A role of adap-
tive and innate immunity was suggested by immunohistochemical
analyses of muscle biopsy samples from patients with myositis.
Infiltration of CD4 T cells, CD8 T cells, B cells, and dendritic cells
has been identified in inflamed muscles (4,5), and gene expres-
sion profiles of muscle biopsy samples are unique depending on
the type of myositis (6).

The expression of type I interferon (IFN)–stimulated genes is
significantly increased in patients with DM compared with patients
with PM, not only in muscles but also in peripheral blood (7,8). How-
ever, the clinical presentation of DM is clearly different from that of
systemic lupus erythematosus (SLE), which is characterized by
increased type I IFN–stimulated genes in immune cells. Therefore,
it is difficult to explain the pathogenesis of IIM by type I IFN alone.
Although muscle inflammation is a specific feature of IIM, immune
cell types in peripheral blood might provide an immunological basis
for inflammatory processes in muscle. In this study, we conducted
immune cell phenotyping of as many as 24 immune cell types of
peripheral blood mononuclear cells (PBMCs), by purifying the cells,
in patients with IIM with different MSAs (anti-MDA5, anti-Mi-2, and
anti-ARS Ab) and healthy controls (HCs), and we performed RNA
sequencing (RNA-seq). In addition to comparing gene expression
profiles between patients with IIM and HCs, we investigated the
transcriptional differences in patients with IIM at active disease onset
without treatment according to MSA expression, to determine the
MSA-specific biological processes involved in disease progression.

PATIENTS AND METHODS

Study cohort. The IIM cohort comprised 33 patients with
IIM. All patients fulfilled the criteria of Bohan and Peter for DM
and PM (9) or the modified definition for CADM proposed by
Sontheimer (10). Positivity for MSAs, including anti-MDA5, anti-
Mi-2, and anti-ARS Ab, was assessed. We defined active patients
with IIM as those recruited at disease onset without any treatment
and inactive patients with IIM as those with a complete clinical
response over 6 consecutive months with no evidence of disease
activity while still receiving myositis therapy (11). Patients with IIM
coexisting with malignancy, rheumatoid arthritis, and other connec-
tive tissue disease were excluded. The clinical characteristics of the
patients are summarized in Supplementary Table 1. All HCs were
age- and sex-matched volunteers. The study was approved by

the ethics committee of the University of Tokyo (G10095), and
written informed consent was obtained from all participants.

Sample preparation. Our IIM cohort is part of the larger
ImmuNexUT cohort (12). Briefly, human PBMCs were isolated from
whole blood by centrifugation over Ficoll, and each immune cell
type was sorted using a flow cytometer (FACS Aria Fusion
[BD Biosciences]). The precise gating strategy used is presented in
Supplementary Table 2. Neutrophils were purified using the MACSx-
press Neutrophil Isolation Kit, human, and MACSxpress Erythrocyte
Depletion Kit (Miltenyi Biotec). We collected 5000 cells per cell type.

RNA-Seq. Total RNA was isolated using the MagMAX kit
(Thermo Fisher Scientific) following the manufacturer’s protocol.
Neutrophils were collected using Trizol LS reagent (Invitrogen),
and total RNA was extracted using the RNeasy micro kit
(QIAGEN). Sequencing libraries were constructed using the
SMART-seq v4 Ultra Low Input RNA Kit (Clontech), and sequenc-
ing was performed using the HiSeq 2500 system (Illumina) with
100 bp paired-end reads. Sequencing data in binary base call for-
mat was converted to FASTQ format using bcl2fastq2 v2.20.0 from
Illumina. FASTQ files were aligned to the human genome within the
UCSC Genome Browser (GRCh38; GenBank assembly GCA_
000001405.18) using STAR (v2.5.3). HTSeq-count (v0.11.2) was
used to generate gene counts. Samples with a Phred quality score
of more than 20 were selected using the FASTX-Toolkit (v0.0.14).
Geneswere filtered to include those with raw read counts of at least
10 in at least 10% of each cell type library. The correlation coeffi-
cients between each pair of samples from the same cell type was
calculated, and if the average of those correlation coefficients was
less than 0.9, the sample was also removed from the analysis.

Identification of differentially expressed genes
(DEGs) and pathway analysis. Genes with a read count of
less than 10 in 90% or more of the samples were excluded. We
used the edgeR (v3.18.1) package to calculate DEGs; run batch
effects were removed, and raw count data were normalized by
the trimmed mean of M values approach. The resulting P values
were adjusted for multiple hypothesis testing and filtered to retain
DEGs with a q-value less than 0.05. ClusterProfiler was used to
assess the enrichment of genes in biological pathways.

Calculation of signature score. To calculate the signa-
ture score of the gene set, we applied singular value decomposi-
tion after removing batch effects using ComBat software (13)
and calculated the gene set eigengene, defined as the first singu-
lar vector of the expression matrix corresponding to the gene set.
We used the singular value decomposition of the gene set as the
signature score. The type I IFN signature genes (ISG) score was
calculated using the response to type I IFN (GO:0034340) gene
set (66 genes after removing human leucocyte antigen genes)
from AmiGO 2, and the oxidative phosphorylation (OXPHOS)
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signature score was calculated using the hallmark oxidative phos-
phorylation gene set (200 genes).

Statistical analysis. Statistical analyses were performed
using the Wilcoxon rank sum test when the sample size was
greater than five. For multiple testing, Bonferroni’s method was
used to calculate corrected P values, and P < 0.05 was judged
to be statistically significant. Using our expression data, false dis-
covery rate (FDR)-based hierarchical clustering was performed.

RESULTS

Changes in cell frequencies were most apparent in
B cell types. Using multiparameter flow cytometry, we found
alterations in the frequencies of several immune cell types among
the parental cell lineage (Figure 1A and B). In comparisons of
patients with active IIM, patients with inactive IIM, andHCs, patients
with active IIM showed significantly decreased frequencies of
unswitched memory B cells (USM B) and switched memory B cells
(SM B) compared with HCs (P < 0.0000001 and P < 0.0000001,
respectively) and patients with inactive IIM (P < 0.0001 and
P < 0.00001, respectively). This result strongly suggests a
common and essential role of memory B cells in IIM activity.
Moreover, patients with active IIM with anti-MDA5 Ab showed a

significant increase in plasmablast frequency compared with
HCs (P < 0.0001), an additional B cell–related feature. For immuno-
logical types other than B cells, the frequency of plasmacytoid den-
dritic cells (pDCs) was significantly increased in active patients
compared with HCs, especially in patients with anti-MDA5 Ab
(P < 0.0001), suggesting a potential association of these cells with
increased type I IFN activity. Compared with HCs, patients with
active anti-MDA5 Ab had decreased frequencies of nonclassical
monocytes, potentially consistent with the monocyte activation
indicated by an increased ferritin concentration reported in the sera
of patients with anti-MDA5 Ab. In addition, the frequencies of USM
B and SM B were decreased in patients with active IIM harboring
each MSA (Figure 1B). Collectively, the frequency of memory B
cells demonstrated the most remarkable difference discriminating
patients with active IIM from patients with inactive IIM. The frequen-
cies of cell types in each patient are presented in Supplementary
Figure 1.

Patients with active IIM are characterized by
up-regulation of genes associated with type I IFN, cell
cycle, and endoplasmic reticulum stress in B cells. Using
next-generation sequencing, we performed transcriptome analysis
and identified DEGs between active patients and HCs, as well as
according to the MSA expressed. As shown in Figure 2A and B,

Figure 1. (A and B) The frequencies of each immune cell type among the parental cell lineage. From top to bottom, B cell, CD4 T cell, CD8 T cell,
dendritic cell (DC), and monocyte (Mono) data are presented. The mean cell frequencies in healthy controls (HCs) and patients with inactive or
active idiopathic inflammatory myopathy (IIM) are shown in (A). The mean cell frequencies in myositis-specific antibody (MSA)-positive patients with
IIM according to active and inactive disease status are shown in (B). ARS, aminoacyl-transfer RNA synthetase; CL, classical; CM, central memory;
DN B, double negative B; EM, effector memory; Fr. II eTreg, fraction II effector regulatory T; Int, intermediate; MDA5, melanoma differentiation-
associated gene 5; mDC, myeloid DC; NC, non-classical; pDC, plasmacytoid DC; SM B, switched memory B; TEMRA, terminally differentiated
effector memory; Tfh, follicular helper T; Th1, T helpler 1; USM B, unswitched memory B.
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pathway analysis of DEGs in active patients versus HCs revealed
up-regulation of type I IFN–stimulated genes in all immune cell types
(Cluster A) and up-regulation of cell cycle–related genes in T helper
1 cells (Th1), effector memory CD8 T cells (EM CD8), and double
negative B cell (DN B) types (Cluster B). In DN B, USM B, and SM
B types, genes related to endoplasmic reticulum (ER) stress were
enriched among the DEGs (Cluster C). In monocyte types, neutro-
phil activation-annotated pathways were enriched among the
DEGs, and up-regulated expression of monocyte activation-related
genes—such as S100 proteins (S100A8, S100A9, S100A12),

FCGR3B, and CXCR2—was detected (Cluster D). Therefore,
active patients share common immunological pathways.

Subclinical DN B and SM B signatures persist in
patients with inactive IIM under treatment. The fact that
patients with IIM in the inactive phase also relapse at a certain
rate suggests that a significant level of immune modification
persists even in the inactive phase. It is important to identify
these persistent immune modifications as they may interfere
with drug-free remission. While DEGs between inactive

Figure 2. (A) Differentially expressed gene (DEG) analysis of patients with active idiopathic inflammatory myopathy (IIM) versus healthy controls
(HCs). The top 300 DEGs calculated in each immune cell type were selected and subjected to FDR-based hierarchical clustering. Red: genes
up-regulated in patients with IIM versus HCs. Purple: genes down-regulated in patients with IIM versus HCs. The numbers of DEGs in each
immune cell type are presented as a bar graph on the right. Orange: genes up-regulated in patients with IIM versus HCs. Blue: genes down-
regulated in patients with IIM versus HCs. (B) Pathway analysis of clusters A, B, C, and D identified in Figure 2A performed using ClusterProfiler.
CL, classical; CM, central memory; CD16p, CD16 positive; DN B, double negative B; EM, effector memory; FDR, false discovery rate; Fr. II eTreg,
fraction II effector regulatory T; Int, intermediate; MDA5, melanoma differentiation-associated gene 5; mDC, myeloid DC; NC, non-classical; NK,
natural killer, Neu, neutrophil; pDC, plasmacytoid DC; SM B, switched memory B; TEMRA, terminally differentiated effector memory; Tfh,
follicular helper T; Th1, T helpler 1; USM B, unswitched memory B.
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patients and HCs were relatively few compared with those
between active patients and HCs, DEGs between inactive
patients and HCs were prominent in DN B and SM B
(Figure 3A), suggesting an essential role of these cell types in
IIM. Pathway analysis of the DEGs in DN B showed enrichment
of OXPHOS-related genes (Figure 3B). Genes encoding multi-
ple proteasomal subunits were enriched among the DEGs in
SM B, indicating increased degradation of unnecessary or
damaged proteins related to cellular stress. Notably, type I
IFN–stimulated genes were not enriched among any DEGs in
any immune cell type. Whereas SLE exhibits strong residual
IFN signaling even in the inactive phase (14), the absence of
strong residual IFN signaling in the inactive phase of IIM may
be related to the difference in pathogenesis between IIM
and SLE.

Identification of activation-related immunological
pathways specific to each MSA. Next, to identify activation-
related immunological pathways specific to each MSA, we
analyzed DEGs between active and inactive patients in each
MSA-positive patient group. Although the DEGs between active
and inactive patients with each MSA type were especially
increased in EM CD8 T cells, the implicated pathways were not
identical among the different MSAs (Figure 4A). Cell cycle–
related pathways were enriched among the DEGs in EM CD8 T
cells from patients with anti-MDA5 Ab or anti-Mi-2 Ab, whereas
proteasomal subunit genes were enriched mainly among the
DEGs from patients with anti-ARS Ab (Figure 4B). Type I IFN–

stimulated genes were enriched among plasmablast DEGs in
active versus inactive patients with anti-MDA5 Ab, whereas
ATP synthesis–related genes, which consisted mostly of elec-
tron transport chain complex genes, were enriched among plas-
mablast DEGs in active versus inactive patients with anti-ARS
Ab, suggesting increased OXPHOS (Figure 4C). Innate immune
cell types (natural killer cells and monocytes) exhibited a larger
number of DEGs between active and inactive patients with
anti-MDA5 Ab. The number of DEGs between active and inac-
tive patients with anti-ARS Ab was also increased in Fraction II
effector regulatory T cells (Fr II. eTregs), with enrichment of T cell
activation genes (data not shown).

Oxidative phosphorylation is a characteristic of
plasmablasts in patients with active IIM with anti-
MDA5 Ab. Next, to identify the pathways specifically associ-
ated with each MSA in detail, we directly compared different cell
populations according to the MSA type. We identified the DEGs
in active patients according to the MSA expressed: anti-MDA5
versus anti-Mi-2, anti-MDA5 versus anti-ARS, and anti-Mi-2
versus Anti-ARS. In particular, we focused on plasmablasts
because these cells are directly related to Ab production, and
the increase in plasmablast frequency was the most significant
in active patients with anti-MDA5 Ab. The number of DEGs in
plasmablasts was increased in active patients with anti-MDA5
Ab or anti-ARS Ab compared with active patients with antiMi-2
Ab (Figure 5A). Consistent with the DEG comparison between
active and inactive patients according to MSA, OXPHOS

Figure 3. (A) Differentially expressed gene (DEG) analysis between inactive idiopathic inflammatory myopathy (IIM) patients and healthy controls
(HCs). The numbers of DEGs (FDR < 0.05) in each immune cell type presented as a bar graph. Orange: genes up-regulated in patients with IIM.
Blue: genes down-regulated in patients with IIM. (B) Pathway analysis of DEGs in double negative B cell (DN B) (upper) and switched memory B
cells (SM B) (lower) performed using ClusterProfiler. CL, classical; CM, central memory; CD16p, CD16 positive; DN B, double negative B; EM,
effector memory; FDR, false discovery rate; Fr. II eTreg, fraction II effector regulatory T; Int, intermediate; MDA5, melanoma differentiation-associated
gene 5; mDC, myeloid DC; NC, non-classical; NK, natural killer; Neu, neutrophil; pDC, plasmacytoid DC; SM B, switched memory B;
TEMRA, terminally differentiated effector memory; Tfh, follicular helper T; Th1, T helpler 1; USM B; unswitched memory B.
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pathways were enriched among the DEGs in active patients
with anti-MDA5 Ab versus active patients with anti-Mi-2 Ab, as
well as in active patients with anti-ARS Ab versus active patients

with anti-Mi-2 Ab, whereas type I IFN signaling pathways were
enriched among the DEGs in active patients with anti-MDA5
Ab versus active patients with anti-ARS Ab (Figure 5B). These

Figure 4. (A) Differentially expressed gene (DEG) analysis between patients with active and patients with inactive idiopathic inflammatory myop-
athy (IIM) expressing each myositis-specific antibody (MSA): antimelanoma differentiation associated gene 5 (MDA5) antibody (Ab) (left), anti-Mi-2
Ab (center), and anti-aminoacyl-transfer RNA synthetase (ARS) Ab (right). (B andC) Pathway analysis of DEGs in effecter memory CD8 (EM CD8) T
cells and plasmablasts performed using ClusterProfiler. (B) Anti-MDA5 Ab-positive patients (upper left), anti-Mi-2 Ab-positive patients (upper right),
and anti-ARS Ab-positive patients (lower left) in EM CD8. (C) Anti-MDA5 Ab-positive patients (left) and anti-ARS Ab-positive patients (right) in plas-
mablasts. CL, classical; CM, central memory; CD16p, CD16 positive; DN B, double negative B; EM, effector memory; Fr. II eTreg, fraction II effec-
tor regulatory T; Int, intermediate; MDA5, melanoma differentiation-associated gene 5; mDC, myeloid DC; NC, non-classical; NK, natural killer;
Neu, neutrophil; pDC, plasmacytoid DC; SM B, switched memory B; TEMRA, terminally differentiated effector memory; Tfh, follicular helper T;
Th1, T helpler 1; USM B; unswitched memory B.
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Figure 5. (A)Differentially expressed gene (DEG) analysis in patients with active idiopathic inflammatory myopathy (IIM) according tomyositis-specific anti-
bodies (MSAs). The numbers of DEGs (FDR < 0.05) in each immune cell type in patients with anti-melanoma differentiation-associated gene 5 (MDA5) anti-
bodies (Ab) versus anti-Mi-2 Ab (left), patientswith anti-MDA5Ab vs. anti-aminoacyl-transer RNA synthetase (ARS) Ab (center), and patientswith anti-Mi-2 Ab
versus anti-ARS Ab (right). (B) Pathway analysis of DEGs in plasmablasts calculated in panel A performed using ClusterProfiler. The results from patients with
anti-MDA5 Ab versus anti-Mi-2 Ab (upper left), patients with anti-MDA5 Ab versus anti-ARS Ab (upper right), and patients with anti-Mi-2 Ab versus anti-ARS
Ab (lower left). (C) Plots of the type I IFN signature gene (ISG) score and oxidative phosphorylation (OXPHOS) signature score in plasmablasts. Red: patients
with active IIM with antiMDA5 Ab. Blue: patients with active IIM with anti-Mi-2 Ab. Orange: patient with active IIM with anti-ARS Ab. (D) Principal component
analysis of all DEGs in plasmablasts. All plasmablast DEGs (FDR < 0.05) in patients with active IIM with each MSA type were combined. Red: patients with
active IIM with anti-MDA5 Ab. Blue: patients with active IIM with anti-Mi-2 Ab. Orange: patients with active IIM with anti-ARS Ab. CL, classical; CM, central
memory; CD16p, CD16 positive; DN B, double negative B; EM, effector memory; FDR, false discovery rate; Fr. II eTreg, fraction II effector regulatory T; Int,
intermediate;MDA5,melanomadifferentiation-associated gene 5;mDC,myeloid DC;NC, non-classical; NK, natural killer; Neu, neutrophil; pDC, plasmacytoid
DC; SM B, switched memory B; TEMRA, terminally differentiated effector memory; Tfh, follicular helper T; Th1, T helpler 1; USM B; unswitched memory B.
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three different groups of MSA-positive patients were divided by
the combined ISG and OXPHOS signatures in plasmablasts
(Figure 5C). Principal component analysis using all of the plas-
mablast DEGs detected above was able to discriminate the
three groups of patients (Figure 5D). Pathway analyses of
the 300 genes with the highest factor loading scores from

the first and second principal coordinates revealed enrichment

of type I IFN signaling and OXPHOS pathways, respectively

(Supplementary Figure 2), supporting that these MSA-positive

patients can be distinguished by the ISG and OXPHOS

signatures.

DISCUSSION

Our analysis combining flow cytometric and transcriptomic
data revealed common and specific immunological modifications
in IIM, especially in B cells. B cells in patients with active IIM gener-
ally showed transcriptomic modifications related to ISG and ER
stress. In contrast, combination of the ISG and OXPHOS signa-
tures in plasmablasts differentiated patients in the active phase
according to MSA. In parallel with these B cell modifications, cell
activation indicated by increased cell cycling was observed in
T cells including Th1 and EM CD8 T cells.

A decreased frequency of memory B cells might be caused by
their recruitment to muscles and/or their increased rate of differen-
tiation into plasmablasts. In patients with active DM, histological B
cell enrichment in muscles was reported to occur in parallel with
ISG expression, suggesting B cell importance in IIM pathogenesis
(15). Many reports have revealed that type I IFN–stimulated genes
in both PBMCs and skeletal muscles play a crucial role in IIM path-
ogenesis (16). The increased pDC frequency in patients with active
IIM might induce up-regulated type I IFN production, being com-
patible with up-regulated ISG expression in immune cell types in
patients with active IIM. The main source of type 1 IFN, pDCs, were
previously reported to be abundant in DM muscles (5).

The existence of some disease-activity–related, immune-
cell–specific biological pathways other than type I IFN signaling
pathways was suggested by the DEG analysis. Genes related to
cell cycle were up-regulated in Th1 cells, EM CD8 T cells, and
DN B, which might reflect cell proliferation subsequent to
stimulation-induced activation (17). Up-regulation of activation-
related genes in monocytes and ER stress-related genes in
DN B, SM B, and USM B also seemed to reflect myositis
activity. Notably, the expression of IIM-activity–related type
I IFN–stimulated genes was absent in patients with inactive IIM
under treatment. Although the number of DEGs between patients
with inactive IIM and HCs was low, the number in DN B was
relatively high, and pathway analysis of these DEGs revealed
enrichment of OXPHOS-related genes. Considering the main-
tained expression of these genes in DN B under inactive condi-
tions, metabolic rearrangement reflecting subclinical activity

might persist in DN B even after treatment and/or DN B might
provide a useful biomarker of residual disease activity.

Our analysis also revealed MSA-specific gene expression
modifications as well as common modifications in IIM. The DEG
analysis of each MSA-positive patient group with an active versus
inactive disease status suggested that the disease-activity–
related gene signature was differentially regulated depending on
the MSA type. In the plasmablast DEGs of patients with active
IIM, we found differences according to the MSA present: type I
IFN–stimulated genes were enriched in patients with anti-MDA5
Ab, electron transport chain complex genes were enriched
in patients with anti-ARS Ab, and few DEGs were detected in
patients with anti-Mi-2 Ab. Although DEGs in EM CD8 T cells
were abundant in all MSA-positive patients, enrichment of
cell cycle–related genes was found in patients with anti-MDA5
or anti-Mi-2 Ab, whereas proteasomal complex genes were
enriched among the DEGs of patients with anti-ARS
Ab. Moreover, in patients with anti-ARS Ab, the number of DEGs
was higher in Fr. II eTregs than in the other immune cell types.
As Tregs are reportedly important for damaged skeletal muscle
repair in aged mice (18), gene expression changes in Tregs might
reflect ongoing muscle damage, as well as pathogenic pro-
cesses, especially in patients with anti-ARS Ab.

Although active patients with anti-MDA5 Ab were character-
ized by their plasmablast phenotype compared with patients with
other MSAs, gene expression was affected mainly in innate
immune cell types during activation in patients with anti-MDA5
Ab. As a high titer of anti-MDA5Abwas reported to be a prognostic
marker of acute death with rapidly progressive interstitial lung dis-
ease (19), anti-MDA5 Ab itself might be closely related to pathogen-
esis, and plasmablast differentiation was accelerated more
prominently in active patients with anti-MDA5 Ab compared with
active patients with other MSAs. In addition, patients with IIM with
anti-MDA5 Ab also showed a decreased frequency of nonclassical
monocytes, which might reflect their recruitment to damaged
organs, such as the lungs, for tissue repair and removal of dam-
aged or dead cells (20). Based on these findings, we focused on
differences in gene expression, especially in plasmablasts, in
patients with active IIM according to MSA type. ISG expression
was highest in patients with anti-MDA5 Ab. Considering that
MDA5 is a protein encoded by the interferon-induced helicase C
domain-containing protein 1 gene (a typical ISG), the production
of anti-MDA5 Ab itself might be closely related to high ISG, underly-
ing their disease progression. Interestingly, we revealed that active
patients with anti-MDA5, anti-Mi-2, or anti-ARS Ab were catego-
rized by their ISG and OXPHOS signatures in plasmablasts, sug-
gesting that ISG expression and metabolic status in plasmablasts
were differentially regulated depending on the MSA type in patients
with active IIM (Figure 6).

Our study has several limitations. First, the number of
patients analyzed was relatively small because this was a single-
center study, and the number of active patients recruited at onset
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was especially small. The MSAs evaluated were limited to anti-
MDA5, anti-Mi-2, and anti-ARS Ab. In addition, some patients
were not positive for any MSAs examined. The low sample num-
ber could have statistically affected the DEG calculations. We did
not perform DEG analysis among MSA-positive patients with
inactive disease activity because the results seemed to be difficult
to interpret as to whether the MSA type or immunosuppressive
treatment had a greater effect. Second, we analyzed immune cell
types among PBMCs only, and we could not rule out the possibil-
ity that pathogenic processes are easier to detect in immune cell
types in damaged muscles. Third, using only transcriptomic data,
it was impossible to demonstrate whether the detected mRNA
expression profiles were truly pathogenic or merely reflect inflam-
matory responses in patients with IIM. Several genome-wide
association studies have revealed as few as approximately 70 sin-
gle nucleotide polymorphisms so far, mainly because of IIM het-
erogeneity, and there are technical barriers to performing
expression quantitative trait locus analysis using limited whole
genome sequencing data.

In conclusion, our findings suggest the importance of B cells
in patients with IIM. The frequencies of PBMC types and disease-
activity–related DEGs support that a certain pathogenic process
occurs during differentiation from DN B to plasmablasts. Patients
with IIM with anti-MDA5 Ab were characterized by a high number
of plasmablasts among PBMCs and a strong OXPHOS signature
that suggested drastic metabolic changes in disease activity

status. We also found that active patients with anti-MDA5, anti-
Mi-2, and anti-ARS Ab could be distinguished by the combined
expression patterns of ISG and OXPHOS signature genes in plas-
mablasts. This is useful not only for potential biomarker applica-
tion but also for comprehending pathogenesis in clinical settings.
We also showed that immune cell–specific biological pathways
differed according to the MSA type during activation. We
acknowledge that our PBMC sample size was too limited for
detecting weak or moderate effects of the MSAs, and a study with
larger sample sizes in combination with muscle biopsy samples
will be needed for future investigation. Our data provide clues for
complex immune cell contributions to IIM pathogenesis. In addi-
tion to B cells, other immune cell types—such as Th1 cells, EM
CD8 T cells, and Fr II. eTregs—might play crucial roles in IIM
pathogenesis.
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