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Abstract: Autophagy is involved in the degradation of melanosomes and the determination of
skin color. TLR4 and tumor necrosis factor (TNF) signaling upregulates NF-kB expression, which
is involved in the upregulation of mTOR. The activation of mTOR by UV-B exposure results in
decreased autophagy, whereas radiofrequency (RF) irradiation decreases TLR4 and TNF receptor
(TNFR) expression. We evaluated whether RF decreased skin pigmentation by restoring autophagy
by decreasing the expression of TLR4 or TNFR/NF-κB/mTOR in the UV-B-irradiated animal model.
UV-B radiation induced the expressions of TNFR, TLR, and NF-κB in the skin, which were all
decreased by RF irradiation. RF irradiation also decreased phosphorylated mTOR expression and
upregulated autophagy initiation factors such as FIP200, ULK1, ULK2, ATG13, and ATG101 in the
UV-B-irradiated skin. Beclin 1 expression and the expression ratio of LC3-I to LC3-II were increased
by UV-B/RF irradiation. Furthermore, melanin-containing autophagosomes increased with RF
irradiation. Fontana-Masson staining showed that the amount of melanin deposition in the skin was
decreased by RF irradiation. This study showed that RF irradiation decreased skin pigmentation by
restoring melanosomal autophagy, and that the possible signal pathways which modulate autophagy
could be TLR4, TNFR, NF-κB, and mTOR.

Keywords: melanosomal autophagy; autophagosome; radiofrequency microneedling; ultraviolet B;
skin pigmentation

1. Introduction

Melanin is a nitrogen-containing pigment made from the melanin precursor L-tyrosine
and is deposited in melanosomes, which are subcellular lysosome-like organelles [1]. Both
keratinocytes and melanocytes are involved in melanogenesis in the skin: melanocytes
produce the melanin and deliver it to the keratinocytes for skin protection [2].

Human skin color is determined by the balance between melanin synthesis and
degradation [3]. Microenvironment alterations caused by ultraviolet (UV) radiation, free
radicals, and inflammation change this balance, and such changes eventually result in
either skin depigmentation or hyperpigmentation [4,5].

Melanogenesis is initiated by UV via the melanocortin-1 receptor [6]. By binding the
α-melanocyte-stimulating hormone (α-MSH) to MC1R, the melanocyte-inducing transcrip-
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tion factor (MITF) is activated and increases tyrosinase, which is a rate-limiting enzyme of
melanogenesis [6].

Autophagy is a vital cellular catabolic system for maintaining tissue homeostasis that
eliminates aggregated or misfolded proteins and dysfunctional organelles [7]. Autophagy
is also involved in melanosome degradation. Melanosomes are degraded by autophagy
after being transferred from melanocytes to keratinocytes [8]. Moreover, melanosomes
accumulated in melanocytes due to disrupted transport are also degraded by autophagy [9].

Solar UV upregulates the mammalian target of the rapamycin complex (mTORC),
which inhibits unc-51-like autophagy-inhibiting kinase (ULK) 1 and decreases the complex
formation of ULK1 with autophagy-related protein (ATG) 13 and the 200 kDa family-
interacting protein (FIP200), thereby decreasing autophagy [10].

The activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB) as an upstream target of mTORC1 inhibits autophagy [11–13]. Furthermore, the
canonical NF-κB pathway is activated by pro-inflammatory pathways like the tumor
necrosis factor (TNF) receptors, Toll-like receptors (TLR), and antigen receptors [14,15].
TNF has been shown to induce NF-κB activation, thereby decreasing autophagy in various
cancer cells such as Ewing’s sarcoma, breast, and leukemia cancer cell lines. Conversely,
the downregulation of NF-κB reactivates the autophagy process [11,16]. TLR4, an upstream
target of NF-κB, is also known to dysregulate mTORC-dependent autophagy [17].

UV-B increases the production of various inflammatory molecules such as interleukin
(IL)-1α, IL-1β, IL-6, IL-8, and TNF-α in keratinocytes [18–20]. UV-B-irradiated keratinocytes
also secrete high-mobility group box 1 (HMGB1), which is a ligand of TLR4 [21]. These
proteins are associated with post-inflammatory hyperpigmentation, which results from the
overproduction or irregular dispersion of melanin [22].

Radiofrequency (RF) irradiation has been shown to decrease IL-6, IL-8, and HMGB1
expression in UV-B-irradiated keratinocytes [21], as well as the expressions of NF-κB,
TNF-α, and TLR4 in the UV-B-irradiated animal model, thereby decreasing keratinocyte
proliferation and pigment accumulation [21]. RF could decrease skin pigmentation by
modulating skin inflammation through the downregulation of various pro-inflammatory
signals like NF-κB, TNF-α, and TLR4.

It is well known that UV-B irradiation increases various inflammatory cytokines
and increases NF-κB, which eventually decreases melanosomal autophagy and increases
skin pigmentation. Even though it is known that RF could decrease skin pigmentation,
research concerning the mechanism of how skin pigmentation could be decreased by RF
has mainly been focused on modulating inflammation. We thought it could be possible
that RF decreases skin pigmentation by decreasing skin inflammation, which eventually
leads to an increase in melanosomal autophagy. We hypothesized that RF downregulates
TNF-α and TLR4, thereby downregulating NF-κB, and decreasing mTOR expression to
restore melanosomal autophagy. In this study, we investigated the effects of RF irradiation
on autophagy and skin pigmentation in the UV-B radiation animal model.

2. Results
2.1. RF Decreased the Expressions of TNFR, TLR4, and NF-κB

First, we evaluated whether RF irradiation decreased the expressions of TNFR, TLR4,
and NF-κB in the UV-B-irradiated human primary epidermal keratinocytes (HEKn cells).
The expressions of TNFR, TLR4, and NF-κB were significantly increased by UV-B radia-
tion in HEKn cells, whereas RF irradiation significantly decreased them at 24 h after RF
irradiation (Figure 1A–D).
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Figure 1. Downregulation of the expressions of TNFR, TLR4 and NF-κB by RF irradiation. (A) HEKn 
were irradiated either with UV-B (200 mJ/cm2) or with UV-B/RF (2 MHz, 10 W for 100 ms) in vitro, 
or otherwise not irradiated (control). The mRNA expression levels of (B) TNFR, (C) TLR4, and NF-
κB (D) were determined in HEKn. The mRNA levels in HEKn were measured by qRT-PCR, nor-
malized versus ACTB, and expressed relative to levels in the control group. (E) Mouse skins were 
irradiated either with UV-B (200 mJ/cm2) or with UV-B/RF (2 MHz, 10 W for 100 ms) in vivo, or 
otherwise not irradiated (control 28 days). The mRNA expression levels of (F,G) TNFR, (H,I) TLR4, 
and (J,K) NF-κb were determined in the skin tissue. The mRNA levels in the mouse skins were 
validated by qRT-PCR, normalized versus ACTB, and expressed relative to levels in the control 28 
days group or 1 day after RF irradiation. Data are presented as mean ± SD. **, p < 0.01, vs. control 
(HEKn) or control 28 days (Skin); $, p < 0.05; $$, p < 0.01, vs. UV-B (HEKn) or UV-B 28 days (Skin); 
††, p < 0.01, vs. 1 day after RF irradiation (Mann–Whitney U test). HEKn, human epidermal primary 
keratinocytes; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; RF, radiofre-
quency; TNFR, tumor necrosis factor receptor; TLR4, Toll-like receptor 4; UV-B, ultraviolet-B; UV-
B/RF, UV-B plus RF. 

Figure 1. Downregulation of the expressions of TNFR, TLR4 and NF-κB by RF irradiation. (A) HEKn
were irradiated either with UV-B (200 mJ/cm2) or with UV-B/RF (2 MHz, 10 W for 100 ms) in vitro,
or otherwise not irradiated (control). The mRNA expression levels of (B) TNFR, (C) TLR4, and NF-κB
(D) were determined in HEKn. The mRNA levels in HEKn were measured by qRT-PCR, normalized
versus ACTB, and expressed relative to levels in the control group. (E) Mouse skins were irradiated
either with UV-B (200 mJ/cm2) or with UV-B/RF (2 MHz, 10 W for 100 ms) in vivo, or otherwise
not irradiated (control 28 days). The mRNA expression levels of (F,G) TNFR, (H,I) TLR4, and (J,K)
NF-κb were determined in the skin tissue. The mRNA levels in the mouse skins were validated by
qRT-PCR, normalized versus ACTB, and expressed relative to levels in the control 28 days group or
1 day after RF irradiation. Data are presented as mean ± SD. **, p < 0.01, vs. control (HEKn) or control
28 days (Skin); $, p < 0.05; $$, p < 0.01, vs. UV-B (HEKn) or UV-B 28 days (Skin); ††, p < 0.01, vs. 1 day
after RF irradiation (Mann–Whitney U test). HEKn, human epidermal primary keratinocytes; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; RF, radiofrequency; TNFR, tumor
necrosis factor receptor; TLR4, Toll-like receptor 4; UV-B, ultraviolet-B; UV-B/RF, UV-B plus RF.
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Statistical differences of all factors among the control, UV-B, and UV-B/RF groups
were compared at the end of the experiment (28 days after RF irradiation). The changes of
all factors by time points after RF irradiation were evaluated at 1, 7, and 28 days after RF
irradiation, since we wanted to evaluate how long the RF effect continued. The statistical
difference among time points was also compared (Figure 1E).

TNFR expression in UV-B-irradiated skin was significantly higher than those in the
control and UV-B/RF groups. In the UV-B/RF group, TNFR expression was highest at
1 day after RF but decreased with time (Figure 1F,G).

The expressions of TLR4 and NF-κb were significantly increased by UV-B irradiation
and were significantly higher than those in the control and UV-B/RF groups. In the UV-
B/RF group, the expressions of TLR4 and NF-κb were highest at 1 day after RF irradiation
but decreased with time (Figure 1H–K).

2.2. RF Decreased mTOR Expression and Induced the Expression of Autophagy Initiation Factors
in UV-B-Irradiated Skin

The expression ratio of pmTOR to mTOR was significantly higher in the skins of the
UV-B group than those in the control and UV-B/RF groups (Figure 2A,B). In the UV-B/RF
group, the ratio of pmTOR to mTOR was highest at 1 day after RF but also decreased with
time (Figure 2A–C).

The expressions of autophagy initiation factors, such as FIP200, ULK1, ULK2, ATG13,
and ATG101, were significantly lower in the UV-B group than in the control and UV-B/RF
groups. In the UV-B/RF group, the expressions did not differ significantly among the time
points after RF (Figure 2D–M).

2.3. RF Increased Melanosomal Autophagy and Degradation

Beclin 1 expression was significantly lower in the UV-B 28 days group than those in
the control 28 days and UV-B/RF 28 days groups. In the UV-B/RF group, the expression of
Beclin 1 was highest at 1 day after RF (Figure 3A–C).

The expression ratio of precursors of microtubule-associated protein light chain 3
(LC3)-like proteins to LC3-II in the UV-B group was significantly lower than that in the
control 28 days group and the UV-B/RF 28 days group. In the UV-B/RF group, the
expression ratio of LC3-I to LC3-II was highest at 1 day after RF (Figure 3A,D,E).

Melanosomal degradation by autophagy was evaluated by counting the number of
melanin-containing autophagosomes in the transmission electron microscopy (TEM).

Melanin-containing autophagosomes were not observed in the control and UV-B-
irradiated groups. Such autophagosomes observed from 1 day after RF irradiation disap-
peared at 28 days after RF irradiation. The number of melanin-containing autophagosomes
was highest at 1 day after RF irradiation (Figure 3F,G).

2.4. RF Decreased Skin Pigmentation

The areas of black spots in the skin of the UV-B group were significantly greater than
those in the control and UV-B/RF groups 28 days after RF irradiation. In the UV-B/RF
group, the areas of black spots were significantly largest at 1 day after RF (Figure 4A; upper
panel, Figure 4C).

Fontana–Masson staining showed that melanin deposition in the UV-B group was
significantly higher than those in the control and UV-B/RF groups. In the UV-B/RF group,
melanin deposition was significantly highest at 1 day after RF (Figure 4A; lower panel,
Figure 4D,E).

We also evaluated changes of melanin synthesis by RF with α-MSH-treated human
epidermal melanocytes (HEMn) (F). The expression of MC1R and MITF were signifi-
cantly increased by treating α-MSH, however those were significantly decreased by RF
(Figure 4G,H). Melanin content that was evaluated with a melanin assay was significantly
increased by treating α-MSH, however it was decreased by RF (Figure 4I). Images from
TEM also showed that α-MSH increased melanin in the HEMn and melanin was decreased
by RF (Figure 4J).
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in vivo, or otherwise not irradiated (control 28 days); (D–M) The mRNA expression levels of (D,E) 
FIP200, (F,G) ULK1, (H,I) ULK2, (J,K) ATG13, and (L,M) ATG101 were determined in autophagy 
initiation response-related factors in skin tissue. All mRNA levels were measured by qRT-PCR, nor-
malized versus ACTB, and expressed relative to levels in the control 28 days group or 1 day after 
RF irradiation. Data are presented as mean ± SD. **, p < 0.01, vs. control 28 days; $$, p < 0.01, vs. UV-
B 28 days; ††, p < 0.01, vs. 1 day after RF irradiation (Mann–Whitney U test). ATG, autophagy-related 
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Figure 2. Activation effects of autophagy initiation response by RF irradiation in the UV-B-exposed
animal model. (A) mTOR and pmTOR expression (arrows) in the epidermis of the UV-B-exposed
mouse skins were assessed immunohistochemically (scale bar = 100 µm); (B,C) Quantitative ratios of
representative mTOR and pmTOR images. Mouse skins were either with UV-B or with UV-B/RF
in vivo, or otherwise not irradiated (control 28 days); (D–M) The mRNA expression levels of (D,E)
FIP200, (F,G) ULK1, (H,I) ULK2, (J,K) ATG13, and (L,M) ATG101 were determined in autophagy
initiation response-related factors in skin tissue. All mRNA levels were measured by qRT-PCR,
normalized versus ACTB, and expressed relative to levels in the control 28 days group or 1 day after
RF irradiation. Data are presented as mean ± SD. **, p < 0.01, vs. control 28 days; $$, p < 0.01, vs.
UV-B 28 days; ††, p < 0.01, vs. 1 day after RF irradiation (Mann–Whitney U test). ATG, autophagy-
related protein; mTOR, mechanistic target of rapamycin complex; pmTOR, phosphorylated mTOR;
RF, radiofrequency; ULK, unc-51-like autophagy activating kinase 1; UV-B, ultraviolet-B; UV-B/RF,
UV-B plus RF.
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Figure 3. Activation of autophagosomes by RF irradiation in the UV-B-exposed animal model. (A) 
The expression levels of autophagy-related factors in skin tissue were assessed by Western blot; (B–
E) Quantitative graphs of representative Western blot images. The protein expression levels were 
normalized to β-actin; (F) Quantitative graphs of representative TEM images; (G) Changes in au-
tophagosome (arrows) numbers with time after RF irradiation were observed under TEM. Data are 
presented as mean ± SD. **, p < 0.01, vs. control (HEKn) or control 28 days (Skin); $, p < 0.05; $$, p < 
0.01, vs. UV-B (HEKn) or UV-B 28 days (Skin); †, p < 0.05; ††, p < 0.01, vs. 1 day after RF irradiation 
(Mann–Whitney U test). LC3, microtubule-associated protein 1A/1B-light chain 3; RF, radiofre-
quency; TEM, transmission electron microscopy; UV-B, ultraviolet-B; UV-B/RF, UV-B plus RF. 

Figure 3. Activation of autophagosomes by RF irradiation in the UV-B-exposed animal model. (A) The expression levels
of autophagy-related factors in skin tissue were assessed by Western blot; (B–E) Quantitative graphs of representative
Western blot images. The protein expression levels were normalized to β-actin; (F) Quantitative graphs of representative
TEM images; (G) Changes in autophagosome (arrows) numbers with time after RF irradiation were observed under TEM.
Data are presented as mean ± SD. **, p < 0.01, vs. control (HEKn) or control 28 days (Skin); $, p < 0.05; $$, p < 0.01, vs.
UV-B (HEKn) or UV-B 28 days (Skin); †, p < 0.05; ††, p < 0.01, vs. 1 day after RF irradiation (Mann–Whitney U test). LC3,
microtubule-associated protein 1A/1B-light chain 3; RF, radiofrequency; TEM, transmission electron microscopy; UV-B,
ultraviolet-B; UV-B/RF, UV-B plus RF.
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Figure 4. Reduction in melanin accumulation via autophagy activation by RF irradiation. (A) Pig-
mentation changes in UV-B-exposed mouse skin were assessed 1, 7, and 28 days after RF irradiation 
(upper row). Melanin content was assessed by FM staining (lower row; scale bar = 100 µm); (B,C) 
Quantitative graphs of representative mouse skin images and (D,E) representative FM staining im-
ages; (F) HEMn were treated either with α-MSH (200 µM) or with α-MSH/RF (2 MHz, 10 W for 100 
ms) in vitro, or otherwise not irradiated (control); (G,H) The mRNA expression levels of MC1R (F), 
and MITF (G) were identified in the skin tissue. All mRNA levels were measured by qRT-PCR, 
normalized versus ACTB, and expressed relative to levels in the control; (I) Melanin content was 
measured in HEMn after RF irradiation; (J) Changes in melanin after RF irradiation were observed 
with TEM. Data are presented as mean ± SD. **, p < 0.01, vs. control 28 days (skin) or control (HEMn); 
$, p < 0.05; $$, p < 0.01, vs. UV-B 28 days (Skin) or α-MSH (HEMn); †, p < 0.05; ††, p < 0.01, vs. 1 day 
after RF irradiation (Mann–Whitney U test). α-MSH, alpha-melanotropin; FM, Fontana-Masson 
staining; HEMn, human epidermal melanocyte; NF-κB, nuclear factor kappa-light-chain-enhancer 
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Figure 4. Reduction in melanin accumulation via autophagy activation by RF irradiation. (A) Pigmen-
tation changes in UV-B-exposed mouse skin were assessed 1, 7, and 28 days after RF irradiation (upper
row). Melanin content was assessed by FM staining (lower row; scale bar = 100 µm); (B,C) Quan-
titative graphs of representative mouse skin images and (D,E) representative FM staining images;
(F) HEMn were treated either with α-MSH (200 µM) or with α-MSH/RF (2 MHz, 10 W for 100 ms)
in vitro, or otherwise not irradiated (control); (G,H) The mRNA expression levels of MC1R (F),
and MITF (G) were identified in the skin tissue. All mRNA levels were measured by qRT-PCR,
normalized versus ACTB, and expressed relative to levels in the control; (I) Melanin content was
measured in HEMn after RF irradiation; (J) Changes in melanin after RF irradiation were observed
with TEM. Data are presented as mean ± SD. **, p < 0.01, vs. control 28 days (skin) or control (HEMn);
$, p < 0.05; $$, p < 0.01, vs. UV-B 28 days (Skin) or α-MSH (HEMn); †, p < 0.05; ††, p < 0.01, vs. 1 day
after RF irradiation (Mann–Whitney U test). α-MSH, alpha-melanotropin; FM, Fontana-Masson
staining; HEMn, human epidermal melanocyte; NF-κB, nuclear factor kappa-light-chain-enhancer
of activated B cells; MC1R, melanocortin 1 receptor; MITF, micropthalmia-associated transcription
factor; RF, radiofrequency; TEM, transmission electron microscopy; TNFR, tumor necrosis factor
receptor; TLR4, Toll-like receptor 4; UV-B, ultraviolet-B; UV-B/RF, UV-B plus RF.
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3. Discussion

Even though melanin protects the skin against UV radiation [23], excessive accumu-
lation of melanin leads to hyperpigmentation-related disorders like melasma or freckles,
which cause cosmetic problems [24]. Autophagy helps determine skin color by modulating
melanosome degradation in keratinocytes [8]. Autophagic activity is related to the degree
of skin pigmentation wherein keratinocytes in lighter skin are more able to degrading
melanosomes than keratinocytes in darker skin [25]. A previous study showed that LC3B
expression and autophagy were more decreased in melanocytes of melasma lesions than in
unaffected areas of the skin [26]. NF-κB is activated by UV radiation [27]. The expressions
of TNF-α and TLR4 are also increased by UV radiation [17–20], both of which downreg-
ulate autophagy by activating NF-κB [14,19,20]. In our study, we evaluated whether RF
irradiation reduced skin pigmentation by restoring autophagy, which was decreased by
UV-B radiation. We found that RF irradiation downregulated the expressions of TNFR,
TLR4, and NF-κB, thereby increasing autophagic activity, an effect that was observed up to
28 days after RF irradiation.

Autophagy is initiated by the generation of double membrane-bound autophago-
somes. In the autophagic process, autophagosomes form autolysosomes by merging with
lysosomes [28]. Various stresses activate AMP-activated protein kinase (AMPK) and inhibit
the mTOR, which consequently initiates autophagy by upregulating the FIP200, ULK 1,
ATG13, and ATG101 [29]. After the initiation of autophagy, phagophore nucleation fol-
lows, which involves various proteins like ATG6 (Beclin 1), ATG14, and vacuolar protein
sorting-associated protein 15 (Vps15) [29]. The next stage of nucleation is phagophore
elongation. During elongation, precursors of LC3-like proteins are cleaved to produce
LC3-II. By conjugation with phosphatidylethanolamine, the cytosolic form of LC-I becomes
LC-II, which is an autophagosome-bound form [29]. LC3-II enhances targeted degradation
of aggregated proteins or injured cellular organelles by interacting with adaptor proteins,
such as p62 [10]. Thus, LC3-II is frequently used to measure autophagic flux [30].

Various cellular stress signals lead to the activation of mTORC1, which is an up-
stream target of the autophagy core machinery and the inactivation of which initiates
autophagy [31]. mTORC1 inhibition activates ULK1/2 kinase activity, and then ULK1 and
ULK2 phosphorylate ATG13 and FIP200, which are essential subunits of the ULK1/2 kinase
complex [31–33]. In our study, pmTOR expression was increased by UV-B radiation and
conversely decreased by RF radiation. Our findings suggest that RF irradiation promotes
autophagy by inactivating mTOR, which otherwise inhibits autophagy and autophagic
flux. We also evaluated whether RF irradiation contributed to melanosome removal by
autophagy on TEM and found that an increase in the melanin-containing autophagosomes
was observed from 1 day to 7 days after RF irradiation. Melanin deposition in the skin was
increased by UV-B but decreased by RF radiation. Increased skin melanin accumulation
is resulted from decreased melanin removal and increased melanin synthesis. Thus, we
also evaluated whether changes of melanin synthesis by RF might also involve decreasing
melanogenesis, and which possible mechanism might decrease inflammatory signal path-
ways such as TNF by RF. For evaluating exact mechanisms for decreasing melanogenesis
by RF, further study is needed.

Various treatments have been suggested to reduce melanin accumulation, such as the
use of hypopigmentation agents, which include tyrosinase inhibitors such as hydroquinone
and arbutin, which block melanogenesis [34]. However, such agents are not very effective
and cause irritation [34]. Natural products such as marliolide or ursolic acid have been
found effective in reducing melanin deposition by increasing autophagy [34,35]. These
studies showed that increasing autophagic activity led to melanin degradation and thus
decreased skin pigmentation.

Our study showed that RF irradiation decreased skin pigmentation by increasing
autophagy in skin in the UV-B-irradiated mouse model. RF irradiation decreased the
expressions of TLR4 and TNFR, which in turn decreased mTOR activity, thereby increasing
autophagic activity. Since we did not use knock-out animal models, it is hard to show
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which signal pathways were definitive ones to modulate autophagy by RF. To evaluate the
exact mechanism of decreasing skin pigmentation by RF, future studies with knock-out
animal models are needed. Moreover, this is a preclinical study which is too early to apply
directly to humans.

Nevertheless, our results showed RF leads to increased autophagy which is associated
with reduced melanin accumulation in the animal model. Our findings suggest that
RF irradiation is a promising method of decreasing skin pigmentation by modulating
autophagy.

4. Materials and Methods
4.1. In Vitro Model and RF Irradiation

Human primary epidermal keratinocytes (HEKn; American Type Culture Collection,
ATCC, Manassas, VA, USA) were maintained with a keratinocyte growth kit (ATCC,
Manassas, VA, USA). For establishing the in vitro model in HEKn, the cells were exposed
to UV-B (200 mJ/cm2) for 5 min, irradiated with RF (POTENZA, Jeisys Medical Inc., Seoul,
Korea; 2 MHz, 10 W, 100 ms), and incubated for 24 h (Figure 1A).

Human primary epidermal melanocytes (HEMn; ATCC, Manassas, VA, USA) were
grown in Dermal Cell Basal Medium (ATCC, Manassas, VA, USA) with a melanocyte
growth kit (ATCC, Manassas, VA, USA). For establishing the in vitro model in HEMn, the
cells were treated with 200 nM α-MSH (Sigma Aldrich, St. Louis, MO, USA) and kept in an
incubator at 37 ◦C in an atmosphere of 5% CO2 for 24 h. Then, the cells were irradiated
with RF, and incubated for 48 h (Figure 4F).

4.2. Measurement of Melanin Content in Cells

To assess melanin content in HEMn, the cells were seeded at 1 × 104 cells/well in 96-
well plates and incubated for 24 h. After applying α-MSH and RF, the cells were harvested
by centrifugation at 12,000× g for 20 min and dissolved in 100 µL of 10% dimethyl sulfoxide
(DMSO) and 1N NaOH solution for 20 min at 95 ◦C. Absorbance at 490 nm was measured
with a microplate reader (Molecular Devices).

4.3. In Vivo Model and RF Irradiation

Five-week-old male HRM-2 mice (20–25 g) were obtained from Central Lab Animal
Inc. (Seoul, Korea) and cared to adapt for 2 weeks. The mice were housed in cages under
a controlled temperature (23 ◦C) with a 12 h light/dark cycle and free access to food and
water.

After the adaptation period, the mice were randomly divided into five groups as
follows: (1) control (no exposure to UV-B and no irradiated RF), (2) UV-B (exposure to UV-B
at 200 mJ/cm2), (3) UV-B/RF 1d (exposure to UV-B/irradiated RF; sampling proceeds
1 day after RF irradiation), (4) UV-B/RF 7d (exposure to UV-B/irradiated RF; sampling
proceeds 7 days after RF irradiation), (5) UV-B/RF 28d (exposure to UV-B/irradiated RF;
sampling proceeds 28 days after RF irradiation). The mice were exposed to UV-B for 5 min
once every 2 days for 10 days and then for 5 min every day for the next 3 days (total of
13 days) [36]. Subsequently, the mice were irradiated to RF (2 MHz, 10 W for 100 ms) and
then exposed to UV-B every 2 days for 28 days. The skin tissues of mice were harvested
after 1 day, 7 days and 28 days of RF irradiation (Figure 1E).

This study was approved by the Center of Animal Care and Use ethical board of
Gachon University (Approval Number LCDI-2020-0115) and executed in accordance with
the Institutional Animal Care and Use Committee.

4.4. RF Irradiation System

The irradiation system (POTENZA, Jeisys Medical Inc., Seoul, Korea) used for this
study was a bipolar pulse-type electrode array radiofrequency device. An impedance
matching system was used to determine the compensation value by automatically measur-
ing impedance, and RF was applied using a 16 ea (4 × 4) needle tip. RF was administered at
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2 MHz using pulse-type, bipolar, alternating current oscillations in the animal experiment.
Single pulse-type bipolar RF devices were used in the animal experiment and comprised
an on-time pulse duration of 100 ms at a power density of 10 W/pulse. The invasive
microneedle for RF application had a length of 13.6 mm, a diameter of 250 mm, and a
needle-to-needle distance of 1.3 mm, and irradiation and treatment were performed with
a disposable tip of 10 mm × 10mm consisting of 16 electrodes. The tip was approved by
NAMSA (Northwood, OH, USA) after biological compatibility testing.

4.5. Sample Preparation
4.5.1. Extraction of RNA and cDNA Synthesis

The cells and frozen skin tissues were ground using liquid nitrogen and homoge-
nized by the RNAiso Plus reagent (Takara, Shiga, Japan) according to the manufacturer’s
instructions.

The extracted RNA was quantified by the NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) and was converted to cDNA using a PrimeScript 1ST

strand cDNA Synthesis Kit (Takara, Shiga, Japan) for quantitative real-time polymerase
chain reaction (qRT-PCR).

4.5.2. Paraffin-Embedded Tissue Sectioning

The skin tissues that were fixed by 4% paraformaldehyde (Sigma-Aldrich, St. Louis,
MO, USA) were washed for 30 min for embedding. Skin paraffin blocks made using a tissue
processor (Thermo Fisher Scientific, Waltham, MA, USA) were sectioned at 7-µm using a
microtome (Leica, Wetzlar, Germany), and cooked at 37◦C overnight to keep them attached
to the slides. The sectioned slides were passed through xylene and four concentrations of
ethanol (100%, 95%, 80%, and 70%) to deparaffinate them for staining.

4.5.3. Isolation of Protein

The frozen skin tissues were ground using liquid nitrogen and homogenized by the
RIPA buffer (EzRIPA, ATTO, Tokyo, Japan) with proteinase and phosphatase inhibitors.
The homogenized skin tissues were sonicated and then centrifuged at 14,000× g for 15 min
at 4 ◦C After centrifugation, the isolated protein (supernatant liquids) was aliquoted and
quantified by a bicinchoninic acid assay kit (Thermo Fisher Scientific, Inc., Waltham, MA,
USA).

4.6. Quantitative Real-Time Polymerase Chain Reaction

The qRT-PCR mixed a reagent containing the SYBR Green reagent (Takara), 1 µg of
synthesized cDNA template, and a 10 pmol primer (Table S1), which were dispensed into
384-well multi-plates, and then analyzed by the CFX386 Touch Real-Time PCR System
(Bio-Rad, Hercules, CA, USA).

4.7. 3,3-Diaminobenzidine Staining for Immunohistochemistry Use

The sectioned skin tissue slides were incubated in 3% hydrogen peroxide in methanol
for 30 min at room temperature to block endogenous peroxidase. The tissue slides were
washed using a phosphate-buffered saline (PBS) and then incubated with mTOR antibodies
(1:400; LSBio, Seattle, WA, USA) and pmTOR antibodies (1:50; Santa Cruz Biotechnology
Inc., Dallas, TX, USA) in normal serum for 24 h at 4 ◦C. The slides were rinsed with PBS and
incubated with a biotinylated secondary antibody using the ABC kit (Vector Laboratories
Inc., Burlingame, CA, USA) for 2 h at room temperature. After washing with PBS, the tissue
slides were developed using 3,3′-diaminobenzidine (Sigma-Aldrich) for 15 min to confirm
the brown signal. To identify nuclei, tissue slides were stained in hematoxylin solution
for 1 min, then mounted with dibutylphthalate polystyrene xylene mounting solution
(Sigma-Aldrich). Images of the stained tissues were taken under an optical microscope
(Olympus Optical Co., Tokyo, Japan) and analyzed using ImageJ software (NIH, Bethesda,
MD, USA).
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4.8. Western Blotting

Equal amounts of isolated skin proteins were separated on 8–12% polyacrylamide gels
and transferred to polyvinylidene fluoride membranes (Millipore, Burlington, MA, USA)
by a power station (ATTO, Osaka, Japan). After blocking using 5% skim milk and washing
with Tris-buffered saline with 0.1% Tween 20 (TTBS), the membranes were incubated with
Beclin 1 antibodies (1:2000; Bioss, Woburn, MA, USA), LC3 (1:500; Bioss) and β-actin
(1:1000; Cell Signaling, Danvers, MA, USA) for 12 h at 4 ◦C and then washed with TTBS.
The membranes were then incubated with a secondary antibody (Vector Laboratories,
Burlingame, CA, USA) and rinsed with TTBS. Subsequently, an enhanced chemilumi-
nescence detection reagent (GE Healthcare, Chicago, IL, USA) was used to visualize the
immunoreactive proteins on the membrane.

4.9. Transmission Electron Microscopy

Specimens were fixed for 12 h in 2% glutaraldehyde/2% paraformaldehyde in 0.1 M
phosphate buffer (pH 7.4) and washed in 0.1 M phosphate buffer, post-fixed with 1% OsO4
in 0.1 M phosphate buffer for 2 h, dehydrated with an ascending ethanol series (50%, 60%,
70%, 80%, 90%, 95%, 100%, and 100%) for 10 min each, and infiltrated with propylene
oxide for 10 min.

The fixed samples were embedded using a Poly/Bed 812 kit (Polysciences, Warrington,
PA, USA) and polymerized in an electron microscope oven (DOSAKA, Katsumi, Japan) at
65 ◦C for 12 h. The block was equipped with a diamond knife in the ultramicrotome, cut
into 200 nm sections, and stained with toluidine blue for optical microscopy.

The region of interest was then cut into 80 nm sections using the ultramicrotome,
placed on copper grids, double stained with 3% uranyl acetate for 30 min and 3% lead citrate
for 7 min, and observed under a TEM (JEOL, Tokyo, Japan) equipped with a Megaview III
CCD camera (Soft Imaging System-Germany) at an acceleration voltage of 80 kV.

4.10. Fontana–Masson Staining

The skin tissues were incubated in Fontana ammoniacal silver solution (ScyTek, West
Logan, UT, USA) overnight at room temperature, subsequently rinsed three times with
distilled water, and then incubated in hypo solution for 3 min. Afterwards, the tissues
were washed in distilled water, counterstained with neutral red stain for 5 min, washed in
distilled water, dehydrated in absolute alcohol, and mounted for observation.

4.11. Statistical Analysis

We performed a Kruskal–Wallis test for comparisons of three groups, followed by a
Mann–Whitney U test as a post hoc test. This study was validated using an unpaired t-test.
All results are presented as mean ± standard deviation, and the statistical significance was
displayed: *, vs. control (HEKn or HEMn) or control 28 days (skin); $, vs. UV-B (HEKn)
or α-MSH (HEMn) or UV-B 28 days (skin); †, vs. UV-B/RF 1 day (skin). All statistical
analyses were performed using SPSS version 22 (IBM Corporation; Armonk, NY, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms221910724/s1, Table S1: Primer list for quantitative polymerase chain reaction used in
this study.
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