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Anticipation and delivery of rewards improves memory formation, but little effort has

been made to disentangle their respective contributions to memory enhancement.

Moreover, it has been suggested that the effects of reward on memory are mediated

by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory

improvements to actual reward computations reflected in the activity of the dopaminergic

system, i.e., prediction errors and expected values, is scarce and inconclusive. For

example, different previous studies reported that the magnitude of prediction errors

during a reinforcement learning task was a positive, negative, or non-significant predictor

of successfully encoding simultaneously presented images. Individual sensitivities to

reward and punishment have been found to influence the activation of the dopaminergic

reward system and could therefore help explain these seemingly discrepant results.

Here, we used a novel associative memory task combined with computational modeling

and showed independent effects of reward-delivery and reward-anticipation on memory.

Strikingly, the computational approach revealed positive influences from both reward

delivery, asmediated by prediction error magnitude, and reward anticipation, asmediated

bymagnitude of expected value, even in the absence of behavioral effects when analyzed

using standard methods, i.e., by collapsing memory performance across trials within

conditions. We additionally measured trait estimates of reward and punishment sensitivity

and found that individuals with increased reward (vs. punishment) sensitivity had better

memory for associations encoded during positive (vs. negative) prediction errors when

tested after 20min, but a negative trend when tested after 24 h. In conclusion, modeling

trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors

and expected value computations, provides a comprehensive and biologically plausible

description of the dynamic interplay between reward, dopamine, and associativememory

formation. Our results also underline the importance of considering individual traits when

assessing reward-related influences on memory.
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INTRODUCTION

Information entering the brain is varied and not equally well
represented in memory. For example, aversive and rewarding
events are usually better remembered as compared to neutral
events (Kensinger, 2004; Maren and Quirk, 2004; Shohamy
and Adcock, 2010). Improved memory for such events has
an evolutionary advantage because it increases the chance of
avoiding potential dangers as well as fulfilling crucial needs
that typically engage reward processes, e.g., finding food and
water, shelter, sexual partner. Although not yet fully understood,
the neural mechanisms that enable such memory enhancement
therefore promote survival.

Different aspects of reward have been reported to enhance
memory. For example, recognition memory is enhanced for
images serving as reward-predictive vs. neutral cues (Wittmann
et al., 2005, 2011, 2013; Spaniol et al., 2014), suggesting a
beneficial role of reward anticipation (Adcock et al., 2006).
Memory is also promoted by the delivery of rewards, as
indicated by enhanced recognition memory for items presented
prior to positive vs. negative feedback (Mather and Schoeke,
2011) and high vs. low rewards (Murayama and Kitagami,
2014). Because both reward anticipation and reward delivery
engages the dopaminergic reward system which projects to brain
regions involved in memory processes, such as the hippocampus
(Gabrieli, 1998; Squire et al., 2004), reward-related enhancements
of memory may be determined by dopaminergic influences
on hippocampal plasticity (Lisman and Grace, 2005; Shohamy
and Adcock, 2010; Miendlarzewska et al., 2015). Some attempts
have been made to disentangle the contribution of reward
anticipation and reward delivery to memory formation. For
example, Bialleck et al. (2011) used two categories of neutral
objects as reward-predictive cues in a number comparison task,
in which positive and negative outcomes were delivered. The
authors tested two conditions, one where reward was contingent
on task performance and one where it was not. In the reward-
contingent block, i.e., the condition most similar to previous
studies, recognition memory was found to be modulated by
reward anticipation, but not reward delivery. By contrast, Mather
and Schoeke (2011) reported a main effect of reward delivery on
memory for pictures, but no effect of reward anticipation besides
an interaction with image valence. In this latter study, no reward-
learning occurred because pictures were presented as targets in
a reaction time task and were preceded by reward-anticipatory
cues with specific numbers (0, −0.25, +0.25$) indicating the
value of the trial and followed by reward outcomes indicating hits
or misses. The relationship between memory encoding, reward
delivery, and reward anticipation is still unresolved.

However, because most previous studies averaged memory
performance across trials within conditions of high or low
rewards, significant fluctuations in reward computations
associated with the dopamine system have been ignored.
Specifically, rather than simply differentiating between positive
and negative outcomes or between cues predicting rewards
or neutral outcomes, dopamine neuron activity scales with
the mismatch between actual and predicted outcomes, i.e.,
prediction errors (Schultz and Dickinson, 2000) and the

magnitude of reward-predictive cue values, i.e., expected values
(Tobler et al., 2005). These functional properties may have
implications for the understanding of the links between reward,
dopamine, and memory formation. For example, neutral objects
may acquire reward-predictive values through the pairing with
positive outcomes (Wittmann et al., 2005; Bialleck et al., 2011).
This can be described by a process in which a cue’s expected
value is incremented following outcomes that are better than
predicted, i.e., positive prediction errors, and decremented
following outcomes that are worse than predicted, i.e., negative
prediction errors (Rescorla and Wagner, 1972). Given initially
neutral cues, learning typically develops gradually. In this case,
because dopamine neuron activity tracks the magnitude of
both expected values and prediction errors, a shift in dopamine
activity occurs, whereby activity predominates at the time of
reward delivery early during learning due to large prediction
errors and small expected values, but is later observed at the
time of cue presentation due to small prediction errors and large
expected values (Schultz et al., 1997). Ignoring such fluctuations
in reward makes it difficult to ascertain whether memory
enhancing effects commonly attributed to reward anticipation
are due to reward anticipation as a result of high expected values
assigned to reward-predictive cues, reward delivery owing to
large positive prediction errors, or both.

Two recent studies explicitly addressed the impact of
reward computations on item recognition memory but reported
seemingly discrepant results. Specifically, during a reinforcement
learning task, Davidow et al. (2016) presented task-irrelevant
images at reward delivery and found that adolescents, but not
adults, showed increased recognition memory for images that
had been presented during large prediction errors, whenmemory
was tested immediately after the learning. By contrast, Wimmer
et al. (2014) presented task-irrelevant images together with choice
alternatives during a similar reinforcement learning task, and
reported decreased recognition memory, in adult participants,
for images presented in trials with large prediction errors, when
memory was tested the next day. Potential explanations for these
results may partly relate to the fact that Davidow et al. (2016)
and Wimmer et al. (2014) tested memory immediately after
learning and on the next day, respectively. Thus, the delay period
between memory encoding and testing in Wimmer et al. (2014)’s
study likely included a period of sleep, during which reward
likely interacts with consolidation processes to promote memory
formation (Lansink et al., 2009; Igloi et al., 2015). Moreover,
differences between adolescents and adults may be mediated by
increased reward-related activations of the dopaminergic reward
system in adolescents (Galvan, 2010; Davidow et al., 2016).
Thus, individual differences in the activation of the dopaminergic
reward system, as determined by reward sensitive traits, may
modulate the impact of reward during memory encoding. Yet,
the impact of individual traits on reward-related modulations of
episodic memory formation remains largely unknown.

One final issue addressed by the present study is the current
research bias toward using item recognition paradigms combined
with monetary rewards. Recognition memory is just one facet
of episodic memory and it seems unlikely that only monetary
rewards should determine whether one memory is prioritized
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over others. For example, memorizing that a spouse prefers
roses over tulips depends on the formation of associative
memories, and such associations are shaped by aspects of
social reward, such as the spouse’s differential facial expression
when receiving roses or tulips (see Figure 1). Social rewards
evoke similar patterns of activity in the dopaminergic reward
system as primary or monetary rewards. For example, presenting
happy smiley faces increases activity in the ventral striatum,
as compared to sad ones, and the mismatch between receiving
a happy smiley face and the expectation of receiving it, i.e.,
the prediction error, is encoded in the dopaminergic midbrain
(Aberg et al., 2015). Moreover, because associative memory
formation depends on brain structures in the medial temporal
lobe, including the hippocampus (Gold et al., 2006; Mayes et al.,
2007), it is plausible to assume that dopaminergic influences
on hippocampal plasticity also enhances associative memory
formation.

To address these raised issues, the present study combines a
novel associative memory task with a computational approach
and estimates of trait reward and punishment sensitivity. In
brief, during each encoding trial, participants learned character-
object preferences by guessing which of two items a cartoon
character preferred. Positive and negative feedback indicated
whether selected objects were preferred or not preferred, and
was also used to test the impact of reward delivery on memory
encoding. Reward anticipation was experimentally manipulated
by varying the ratio between the number of positive and
negative feedbacks assigned to different characters. For example,
characters assigned high reward anticipation received positive
feedback in 8 out of 10 trials while those assigned to medium
and low reward anticipation received positive feedback in 5/10
and 2/10 trials, respectively. Character-object associations were
then tested after either 20 min or after 24 h. A computational
approach incorporating computational characteristics of reward,
namely trial-by-trial changes of expected value and prediction
error, allowed us to decipher the respective contributions of
reward anticipation and reward delivery on associative memory
formation beyond simple averaging procedures. Individual
differences in reward and punishment sensitivity was estimated
via a French short version of the Sensitivity to Punishment and
Sensitivity to Reward Questionnaire (SPSRQ).

MATERIALS AND METHODS

Participants
Twenty-six right-handed participants participated in the
study. All participants provided written and informed consent
according to the ethical regulations of the Geneva University
Hospital and the study was performed in accordance with
the Declaration of Helsinki. Data from one participant were
excluded due to failing to adhere to task instructions, i.e., data
from 25 participants were included in the statistical analyses (20
females; mean age± SEM: 24.62± 1.08).

Associative Memory Task
Encoding
Each trial started with the presentation of a fixation cross, after
which the face of a cartoon character was presented together with

FIGURE 1 | Shaping associative memory via positive and negative

feedback. The problem of buying a spouse the right type of flowers becomes

trivial by remembering the positive and negative associations between the

spouse and each type of flower. In this example, a rose elicits a smile which

causes a positive association while a tulip causes sadness, thus creating a

negative association.

two objects (Figure 2A). Participants were instructed that the
character preferred one object in each pair and they had to guess
the preferred object by pressing a left or a right button with their
right hand. Following selection, a positive feedback (happy smiley
face) or negative feedback (sad smiley face) indicated whether the
participant had guessed the preferred or the non-preferred object.
Participants were instructed that they would later be tested on
the preferences. Positive and negative feedbacks were therefore
equally valid in terms of learning to discriminate between the
preferred and the non-preferred object in each pair.

Each pair of objects was presented once for each character
and participants encoded 10 preferences for each character before
encoding 10 preferences for the next character, and so forth. In
total, participants learned 10 character-object preferences for six
different characters, resulting in a total of 60 trials.

In accordance with standard procedures, memory between
different conditions of reward-delivery and anticipation was
tested by collapsing memory performance across trials within
a condition. Specifically, the influence of reward delivery was
tested by comparing average memory performance for trials with
positive and negative feedbacks (Figure 2B), while the impact of
reward anticipation was assessed by comparing average memory
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FIGURE 2 | Stimuli and Procedure. (A) During encoding trials, a cartoon character was presented together with two objects. Participants guessed which of the two

objects the character preferred and positive or negative feedback indicated whether the selected object was preferred or not preferred. During testing, trials were

identical to the encoding with the exception that a confidence rating was performed instead of receiving feedback. (B) The impact of reward delivery on memory

encoding was assessed through two types of feedback, positive and negative. (C) The impact of reward anticipation on memory encoding was assessed by

manipulating the ratio between the number of positive and negative feedback assigned to a character. Specifically, characters were divided into three different

categories.

performance for characters assigned to different feedback ratios
(Figure 2C). The feedback ratios were manipulated in a pre-
determined fashion such that the feedback presented in a trial did
not depend on the actual selection. For example, for characters
assigned to high reward anticipation positive feedback was
presented in 8/10 trials, while feedback was positive in 5/10 and
2/10 trials for characters assigned to medium and low reward
anticipation (Figure 2C). In total, two characters were assigned
to each of three levels of reward anticipation (high, medium,
and low; Figure 2C). Moreover, because the feedback ratios
were determined probabilistically, the reward anticipatory value
of each character fluctuated from trial to trial. This allowed
studying how subtle fluctuations in reward, as estimated by
a computational model (see Section Computational approach
below), influenced associative memory formation.

Testing
During testing, the procedure was identical to the training with
the exception that feedback was no longer provided (Figure 2A).
Participants were instructed to select the preferred object in
each pair. This could be accomplished by recalling and selecting

the preferred object, or by recalling and rejecting the non-
preferred object. Instead of receiving feedback, participants rated
the confidence of their selection as “a Guess,” “Quite certain,” or
“Certain.”

Procedure
To determine whether reward-influences on memory formation
were present after short (Bialleck et al., 2011; Mather and
Schoeke, 2011; Davidow et al., 2016) and/or long over-night
delays between encoding and recall (Wittmann et al., 2005,
2011, 2013; Murayama and Kitagami, 2014; Wimmer et al.,
2014), each participant performed two encoding-testing sessions.
Participants in one group (n = 13, 13 females; mean age ± SEM:
25.44 ± 0.94) first encoded character-object preferences and
then performed an unrelated visual discrimination task (lasting
approximately 20min) after which memory for the preferences
were tested. After a break new character-object preferences were
encoded followed by the unrelated visual discrimination task, but
memory for these new preferences was tested 24 h later. Another
group of participants (n = 12, 7 females; mean age ± SEM:
23.79± 1.27) performed the encoding-testing sessions in reverse
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order, i.e., they first performed the session with a 24 h delay
between encoding and recall, and then the one with a 20min
delay. Of note, neither feedback nor reward was provided during
the visual task to avoid any interference with associative memory
formation. Moreover, new characters and pairs were presented in
each session to prevent memory interference between sessions.
Before the experiment, participants performed a training version
of the task to get familiarized with the experimental paradigm.
Six character-item preferences were encoded (three with positive
and three with negative feedback) and tested after a brief break.
The characters and the object-pairs used for the training were not
included in the experiment proper.

Statistical Analyses
Behavior
We first used standard procedures in the field, i.e., averaging
performance across trials within each condition, to assess the
impact of reward anticipation and delivery on memory. We
thus calculated the proportion of correct selections/rejections for
each condition (Character types; Feedback types). Differences
between conditions were analyzed using ANOVAs and Monte-
Carlo permutation tests (MC-tests). MC-tests are less sensitive to
violations of normality and are therefore more suitable for small
sample sizes as compared to the traditional t-test (Howell, 2013).
We then applied a computational approach in order to account
for trial-by-trial fluctuations in memory formation as a function
of reward delivery and reward anticipation, as described below.

Computational Approach
Reward-related enhancements of memory formation have been
attributed to dopaminergic influences on hippocampal plasticity
(Wittmann et al., 2005; Adcock et al., 2006; Shohamy and
Adcock, 2010). Two specific aspects of reward are known to scale
with dopamine neuron activity, i.e., expected value (the level of
anticipated reward) and prediction error (the mismatch between
actual and predicted outcomes). Specifically, phasic dopamine
neuron activity increases when expected values increase (Tobler
et al., 2005) and when outcomes are better (more positive) than
predicted (Schultz et al., 1997). Thus, in an attempt to elucidate
the relationship between specific reward computations and
associative memory formation, expected values and prediction
errors were incorporated into a novel computational model of
associative memory.

Each character type in the present study is defined through
its repeated associations with positive and negative feedback,
with the underlying assumption that different feedback ratios
will yield different expected values. This learning process can be
described by a Q-learning rule (Watkins and Dayan, 1992). In
each trial t, the expected value Vc of character c is updated based
on the prediction error δ, i.e., the mismatch between the actual
outcome r (here set to 1 and 0 for positive and negative outcomes,
respectively) and the expected value Vc, scaled by the learning
rate α:

δ(t) = r(t)− Vc (t)

Vc (t + 1) = Vc (t) + α · δ(t)

These concepts were then incorporated into an associative
memory model which assumes that the probability of encoding a
character-object association depends on the reward R(t) provided
in each trial t, i.e., the magnitude of the expected value Vc(t) and
the prediction error δ(t), as well as a constant C0. The probability
pMemory(t) of encoding information presented in a trial t is
described through a logistic function:

pMemory (t) =
1

1+ e−R(t)

To determine which aspect of reward that contributes to memory
formation, different models were confronted:

A “Baseline” model without any reward contribution: R (t) =
C0

A “δ” model with a contribution of only signed prediction
error: R (t) = C0 + Cδ · δ (t)
A “V” model with a contribution of only expected value:
R (t) = C0 + CV · Vc (t)
A “δ+V” model with contributions from signed prediction
error and expected value: R (t) = C0 + CV · Vc (t) + Cδ · δ (t)

One reviewer pointed out the involvement of the noradrenergic
system in bothmemory formation and the encoding of “surprise,”
i.e., unsigned prediction errors. Potential noradrenergic
contributions to memory formation were therefore tested in two
additional models:

A “|δ|” model with a contribution of only unsigned prediction
error: R (t) = C0 + C|δ| · |δ (t) |
A “|δ|+V” model with contributions from unsigned
prediction error and expected value: R (t) = C0+CV · Vc (t)+
C|δ| · |δ (t) |

CV , Cδ , and C|δ| are scale factors that determine the respective
contribution of expected value, signed prediction error, and
unsigned prediction error to the memory encoding probability.
The free parameters C0, CV , Cδ , C|δ|, and α were fitted to each
participant’s data through maximum likelihood estimation, i.e.,
by minimizing the negative log-likelihood estimation function
(LLE) for logistic regression:

LLE = −

n
∑

t = 1

y (t) ∗ log pMemory (t) +
(

1− y (t)
)

∗ log (1− pMemory (t))

y(t) is the observed outcome (i.e., hit/miss) in each trial t.
Minimization of the log-likelihood was performed in two steps.
First, for each model the LLE was calculated for the complete
parameter space in steps of 0.01, i.e.,−2:0.01:2 for all scale factors
Cx and 0:0.01:1 for α. A more refined search was then performed
via a Nelder-Mead simplex method (Nelder and Mead, 1965), in
which the parameter search space was centered on the optimal
values obtained from the first step with boundaries set to ±0.01
around these values.

Model fits were compared using the Akaike Information
Criterion (AIC; Akaike, 1974) which accounts for different
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numbers of fitted variables k:

AIC = 2 ∗ k+ 2 ∗ LLE

Questionnaires
Individual differences in the sensitivity to reward and
punishment modulate the balance between approach and
avoidance learning (Smillie et al., 2007; Aberg et al., 2016).
To investigate whether such trait characteristics also influence
associative memory formation, we administered a questionnaire
estimating reward and punishment sensitivity, i.e., a French
version of the Sensitivity to Punishment and Sensitivity to
Reward Questionnaire (SPSRQ; Lardi et al., 2008) previously
shown to be related to the balance between learning from
positive (vs. negative) feedback in a reinforcement learning task
(Aberg et al., 2016). Six of the participants were unable to fill out
the questionnaires because they were not native French speakers,
thus these data were collected on 19 out of the 25 participants.
Correlations between memory performance and traits were
investigated using the Spearman rank-correlation coefficient ρ.
A sensitivity bias score was calculated as the z-scored Sensitivity
to Reward minus the z-scored Sensitivity to Punishment, i.e.,
z-score SR-SP (Aberg et al., 2016).

RESULTS

Memory Performance
An initial ANOVA on memory performance did not reveal any
main effect of Group (participants first tested after 20min vs.
first tested after 24 h) or significant two-, three-, four-, or five-
way interactions between the factor Group and factors Feedback
type (positive, negative feedback), Character type (low, medium,
high positive vs. negative feedback ratio), Confidence level (guess,
quite certain, certain), or Delay (20min, 24 h; all p > 0.1). Thus,
the factor Group was removed from all subsequent analyses.

Memory Tested after 20 min
A three-way repeated measures ANOVA with factors Feedback
type (positive, negative feedback), Character type (high, medium,
low feedback ration), and Confidence level (guess, quite certain,
certain) revealed amain effect of Feedback type [F(1, 24) = 21.345,
p = 0.004] because character-object preferences encoded during
positive feedback (mean ± SEM: 0.777 ± 0.020) were better
remembered as compared to those encoded during negative
feedback (mean ± SEM: 0.624 ± 0.036, p < 0.001; Figure 3A).
Moreover, there was a trend for an effect of Character type
[F(2, 48) = 3.975, p= 0.061] because character-object preferences
encoded for characters associated with a high feedback ratio
(mean ± SEM: 0.756 ± 0.024) were better remembered as
compared to those associated with a low feedback ratio (mean
± SEM: 0.632 ± 0.031, p < 0.001) and marginally better as
compared to those associated with a medium feedback ratio
(mean ± SEM: 0.714 ± 0.029, p = 0.098). Memory performance
between characters associated with medium and low feedback
ratios was also significant (p = 0.018; Figure 3B). There was
also a significant main effect of Confidence level [F(2, 48) =

44.348, p < 0.001] because memory performance was higher

for Certain (mean ± SEM: 0.852 ± 0.027) as compared to
Quite certain responses (mean ± SEM: 0.653 ± 0.029, p
< 0.001) and Guesses (mean ± SEM: 0.524 ± 0.028, p <

0.001). Memory performance for Quite certain responses was
also better as compared to Guesses (p = 0.001) (Figure 3C).
No two- or three-way interactions were significant (all p >

0.13), therefore suggesting independent influences of reward
anticipation (Character type) and reward delivery (Feedback
type) on memory formation. In addition, this means there was
no reward-modulation of the relationship between subjective
confidence levels and memory performance.

The effect of Character type was confirmed in a subsequent
analysis where the linear regression slopes between memory
performance and character types were calculated separately for
positive and negative feedback. A paired MC-test revealed that
the slopes did not differ between positive feedback (mean± SEM:
0.039 ± 0.026) and negative feedback (mean ± SEM: 0.028 ±

0.022, p = 0.762). However, the average slope across feedback
types (mean ± SEM: 0.062 ± 0.016) was significantly different
from 0.0 (p < 0.001), indicating a significant overall effect of
Character type on memory performance.

Memory Tested after 24 h
A three-way repeated measures ANOVA with factors Feedback
type (positive, negative feedback), Character type (high, medium,
low feedback ratio), and Confidence level (guess, quite certain,
certain) revealed nomain effect of Feedback type [F(1, 24) = 1.933,
p = 0.178], although a paired MC-test revealed that associations
encoded during positive feedback (mean ± SEM: 0.680 ± 0.027)
was significantly better as compared to those encoded during
negative feedback (mean ± SEM: 0.580 ± 0.032, p = 0.022;
Figure 3D). The effect of Character type was not significant
[F(2, 48) = 0.394, p= 0.677], as confirmed by pairedMC-tests, i.e.,
high (mean ± SEM: 0.662 ± 0.029) vs. low (mean ± SEM: 0.614
± 0.027, p = 0.212), high vs. medium (mean ± SEM: 0.616 ±

0.027, p= 0.156), and low vs. medium feedback ratios (p= 0.973;
Figure 3E). The main effect of Confidence level was significant
[F(2, 48) = 19.709, p < 0.001) because memory performance was
higher for Certain (mean ± SEM: 0.829 ± 0.034) as compared
to Quite certain responses (mean ± SEM: 0.599 ± 0.029, p
< 0.001) and Guesses (mean ± SEM: 0.493 ± 0.029, p <

0.001). Memory performance for Quite certain responses was
also better as compared to Guesses (p = 0.019) (Figure 3F).
There were no significant two- or three-way interactions (all p >

0.644). Moreover, there was no difference in the regression slopes
relating memory performance to different Character types for
positive feedback (mean ± SEM: −0.003 ± 0.028) as compared
to negative feedback (mean ± SEM: 0.006 ± 0.027, p = 0.738).
The regression slopes calculated across feedback types (mean ±

SEM: 0.024± 0.018) were also not significantly different from 0.0
(p= 0.223).

As when memory was tested after 20min, memory
performance was graded by confidence levels, i.e., Certain
> Quite certain > Guess, also when tested after 24 h. Together
these results replicate the robust relationship between confidence
levels and memory accuracy (De Zubicaray et al., 2011; Qin et al.,
2011; Kuchinke et al., 2013). Because there were no significant
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FIGURE 3 | Behavioral results (Mean ± SEM). (A) Main effect of Feedback type when tested after 20min. Memory performance was higher for character-item

associations encoded with positive as compared to negative feedback. (B) Main effect of Character type when tested after 20min. Memory performance for

character-object associations scaled with the positive vs. negative feedback ratio. (C) Main effect of Confidence level when tested after 20min. Performance was

highest when the memory for character-item associations was rated as Certain, as compared to those rated as Quite certain, which were better recalled than

Guesses. (D) Main effect of Feedback type when tested after 24 h. Memory performance was higher for character-object associations encoded with positive feedback

as compared to negative feedback. (E) Memory performance did not differ between Character types when tested after 24 h. (F) Main effect of Confidence level when

tested after 24 h. Performance was highest when the memory for character-item associations was rated as Certain, as compared to those rated as Quite certain,

which were better recalled than Guesses. •p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, ns = not significant (p > 0.05).

interactions between Confidence levels and the Feedback or
Character types when memory was tested after 20min or after
24 h, these results are not discussed any further.

Computational Approach
To explain these behavioral results in light of specific reward
computations associated with the dopaminergic system, a
computational approach was applied. Because previous studies
indicate influences of both reward anticipation and delivery of

rewards on memory formation, and because dopamine activity
tracks the magnitude of reward anticipation, i.e., expected value,
and reward delivery, i.e., prediction errors, we predicted that a
model combining these two concepts would provide the best fit
to behavioral data. Moreover, to confirmwhether expected values
and/or prediction errors contributed significantly to the memory
formation, the values of the fitted scale factors of the best fitting
model were compared to the null hypothesis of no influence, i.e.,
that their respective average value is equal to 0.
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Memory Tested after 20min
Average fitted parameters and AIC values for the different
models are displayed in Table 1. Comparing AIC values using
paired MC-tests revealed that the “δ+V” model, incorporating
contributions from signed prediction errors (δ) and expected
values (V), provided the best fit as compared to the other models
(δ+V vs. Baseline, p< 0.001; δ+V vs. δ, p= 0.011; δ+V vs. V, p=
0.005; δ+V vs. |δ|, p< 0.016; δ+V vs. |δ|+V, p< 0.020). The fit of
the δ+Vmodel to behavioral data is shown in Figure 4A (dashed
lines).

To confirm that reward-learning had occurred, the final
expected values of each character type, as estimated through
the “δ+V” model, are displayed in Figure 4B. Paired MC-tests
revealed that characters associated with high reward anticipation
(i.e., high feedback ratios) had obtained a higher final expected
value (mean ± SEM: 0.816 ± 0.045) as compared to characters
with medium (mean ± SEM: 0.575 ± 0.056) and low (mean
± SEM: 0.203 ± 0.046) reward anticipation, who also differed
between each other (all p < 0.006).

Next, it was tested whether the average values of the fitted
scale factors CV and Cδ for the “δ+V” model (see Table 1) were
significantly larger than 0. Indeed, MC-tests revealed that both
CV (p < 0.001) and Cδ (p < 0.001) were significantly larger than
0.0. Because CV and Cδ index the contribution of expected value
and signed prediction error magnitudes tomemory performance,
both of these reward computations contributed to subsequent
memory formation when tested after 20min.

Memory Tested after 24 h
Average fitted parameters and AIC values are displayed in
Table 1. Similar to when tested after 20 min, paired MC-tests
showed that the “δ+V” model provided the best fit to behavioral
data (δ+V vs. Baseline, p < 0.001; δ+V vs. δ, p = 0.001, δ+V
vs. V, p = 0.014; δ+V vs. |δ|, p < 0.023; δ+V vs. |δ|+V, p <

0.046). The fit of the “δ+V” model to behavioral data is shown
in Figure 4C.

The expected values of each character type, as estimated
through the “δ+V” model, are displayed in Figure 4D. Paired
MC-tests revealed that expected values for characters associated
with high reward anticipation had obtained a higher final
expected value (mean ± SEM: 0.732 ± 0.064) as compared to
characters with medium (mean ± SEM: 0.534 ± 0.067) and low
(mean ± SEM: 0.181 ± 0.043) reward anticipation, who also
differed between each other (all p < 0.032).

Moreover, the average values for CV (p < 0.013) and Cδ (p
< 0.017) for the “δ+V” model (see Table 1) were significantly
larger than 0.0. Importantly, these results indicate that both
expected value and prediction error contributed to memory
formation when tested after 24 h, despite no significant effect
of reward anticipation when memory performance was averaged
across trials (i.e. Character type; Section Memory performance).
Thus, unlike standard analyses, which typically average memory
performance across trials within conditions, our computational
approach, which incorporates trial-by-trial fluctuations in the
magnitude of reward during encoding, was able to clarify how
reward significantly influenced memory formation also when
tested after 24 h. The model is therefore not only more sensitive
but, because it integrates existing physiological constraints to

study how reward affects behavior, it presumably provides a
more accurate description of how reward influences memory
formation.

Effects of Individual Sensitivity to
Reward/Punishment on Memory
Individual differences in the sensitivity to reward and
punishment are reflected in the responsiveness of the
dopaminergic reward system (Simon et al., 2010; Kennis
et al., 2013), and bias the ability to learn from positive and
negative outcomes (Aberg et al., 2016). To test how biases in the
expression of individual traits impact on reward-related memory
enhancements, individual memory performance was correlated
with the differential score between the Sensitivity to Reward and
the Sensitivity to Punishment scales of the SPSRQ.

Memory Tested after 20 min
Individuals with a sensitivity bias favoring reward over
punishment showed better memory for associations encoded
during positive (vs. negative) feedback (ρ = 0.550, p = 0.015;
Figure 5A). Looking at positive and negative feedback separately
revealed no significant correlations between the sensitivity bias
and memory associated with positive (ρ = 0.209, p = 0.391)
or negative feedback (ρ = −0.326, p = 0.173). Testing whether
individual sensitivity biases predicted to what extent memory
performance was influenced by prediction errors, i.e., Cδ , and
expected values, i.e.,CV , showed a significant correlation between
the sensitivity bias and Cδ (ρ = 0.457, p= 0.049) but not with CV

(ρ = 0.008, p= 0.974).

Memory Tested after 24 h
There was a marginally significant negative correlation between
the sensitivity bias and memory for associations encoded during
positive (vs. negative) feedback (ρ = −0.402, p = 0.088;
Figure 5B). This tendency was mostly driven by associations
encoded during negative feedback (ρ = 0.415, p = 0.077), but
not positive feedback (ρ = −0.167, p = 0.496). The sensitivity
bias did not correlate with Cδ (ρ = −0.109, p = 0.657) or CV (ρ
=−0.134, p= 0.584).

Difference between Memory Tested after 20 min and

24 h
Finally, we tested the influence of the sensitivity bias on
the differential memory performance between short and long
delays, i.e., memory tested after 20min (vs. 24 h). An increased
expression of reward (vs. punishment) sensitivity was associated
with relatively better memory for associations encoded during
positive (vs. negative) feedback when tested after 20 min as
compared to 24 h (ρ = 0.550, p = 0.015; Figure 5C). This was
specifically the case for associations encoded during negative
feedback (ρ =−0.476, p= 0.039; Figure 5D), but not for positive
feedback (ρ = 0.250, p= 0.303; Figure 5E).

DISCUSSION

The present study addresses the influence of reward delivery
and reward anticipation on associative memory formation.
Participants performed an associative memory task where
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TABLE 1 | Model fits.

Scale factors

Model Model fit

(LLE)

Corrected model fit

(AIC)

Offset

(C0)

Signed

prediction error

(Cδ)

Unsigned

prediction error

(C|δ|)

Expected value

(CV)

Learning rate

(α)

20MIN DELAY

Baseline

(no reward influence)

70.755

± 1.928

143.510

± 3.856

0.721

± 0.075

– – – –

Signed prediction error

(δ)

60.440

± 1.636

126.881

± 3.272

0.735

± 0.071

0.369

± 0.158

– – 0.395

± 0.077

Unsigned prediction error

(|δ|)

61.718

± 1.989

129.436

± 3.979

0.562

± 0.107

– 0.503

± 0.166

– 0.583

± 0.074

Expected value

(V)

61.593

± 2.124

129.186

± 4.247

0.584

± 0.104

– – 0.501

± 0.221

0.372

± 0.064

Signed prediction error and

expected value

(δ+V)*

57.828

± 1.978

123.656

± 3.957

0.350

± 0.132

0.725

± 0.154

– 1.156

± 0.180

0.329

± 0.057

Unsigned prediction error and

expected value

(|δ|+V)

59.625

± 2.143

127.250

± 4.287

0.530

± 0.099

– 0.361

± 0.212

0.360

± 0.239

0.456

± 0.075

24H DELAY

Baseline

(no reward influence)

76.445

± 1.723

154.889

± 3.447

0.496

± 0.026

– – – –

Signed prediction error

(δ)

64.079

± 1.625

134.159

± 3.250

0.507

± 0.073

0.215

± 0.171

– 0.333

± 0.068

Unsigned prediction error

(|δ|)

65.270

± 2.201

136.539

± 4.401

0.417

± 0.108

– 0.292

± 0.202

– 0.404

± 0.085

Expected value

(V)

64.267

± 1.968

134.535

± 3.937

0.402

± 0.117

– – 0.268

± 0.265

0.456

± 0.080

Signed prediction error and

expected value

(δ+V)*

61.165

± 1.985

130.329

± 3.970

0.223

± 0.123

0.469

± 0.173

– 0.729

± 0.274

0.312

± 0.066

Unsigned prediction error and

expected value

(|δ|+V)

62.943

± 2.291

133.887

± 4.582

0.284

± 0.146

– 0.327

± 0.199

0.277

± 0.257

0.433

± 0.078

LLE is the negative log-likelihood estimate. AIC is Akaike’s Information Criterion. The scale factors Cδ, C|δ|, and CV determine the contribution of signed prediction errors, unsigned

prediction errors, and expected value to memory performance, respectively. α is the learning rate for the Q-learning rule. *Denotes the model providing the best fit to behavioral data, as

indicated by significantly lower AIC values (see Section Computational Approach). Mean ± SEM.

character-object associations were learned through positive
and negative feedback. To investigate the influence of reward
anticipation, different characters were associated with different
positive vs. negative feedback ratios, while the influence of reward
delivery was tested by comparing memory for associations
encoded during positive vs. negative feedback. The memory for
character-object associations were tested after a delay of either
20min or 24 h, and the impact of individual sensitivity biases
to reward and punishment was assessed via trait questionnaires.
Critically, a computational approach was used to investigate
the link between memory formation and subtle fluctuations in
expected value and prediction error, two different aspects of
reward known to be associated with the dopaminergic system.
The results are discussed in detail below.

Prediction Error Magnitude Modulates the
Contribution of Reward Delivery to
Memory Formation
Associative memory performance was better for character-
object associations encoded during positive as compared to

negative feedback, a result which extends previous studies
reporting enhanced recognition memory for images associated
with positive vs. negative feedback (Mather and Schoeke, 2011),
and high vs. lowmonetary reward outcomes (Bialleck et al., 2011;
Murayama and Kitagami, 2014).

Because the ability to discriminate between preferred and

non-preferred objects in a character-object pair is equally
dependent on the ability to encode positive, i.e., that an
object is preferred, and negative associations, i.e., that an

object is non-preferred, it might seem surprising that memory
performance was better for positive as compared to negative

associations. However, reward-related enhancements of
memory formation have been attributed to the activation
of the dopaminergic system and associated influences on
hippocampal plasticity (Lisman and Grace, 2005; Shohamy
and Adcock, 2010; Miendlarzewska et al., 2015). Dopamine
neurons do not respond to an outcome unless it is more
positive than predicted, i.e., positive prediction errors, or more
negative than predicted, i.e., negative prediction errors, in
which case there is a “dip” in activity (Schultz et al., 1997).
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FIGURE 4 | Computational modeling results (Mean ± SEM). (A) Memory performance as a function of Feedback and Character types when tested after 20min.

Actual behavior is shown as solid lines while predictions of the best fitting model, i.e., the δ+V model, are displayed as dotted lines. (B) Average final expected value

for different character types when tested after a 20min delay. (C) Memory performance as a function of Feedback and Character types when tested after 24 h.

Predictions of the best fitting model, i.e., the δ+V model, are displayed as dotted lines. (D) Average final expected value for different character types when tested after

a 24 h delay. *p < 0.05, **p < 0.01, ***p < 0.001.

Therefore, in the present study, learning positive associations
may have benefitted from positive prediction errors causing
increased dopaminergic influences on the hippocampus,
while encoding negative associations may have suffered from
reduced dopamine activity caused by negative prediction errors.
Supporting this explanation, the computational approach
showed significant and positive influences of prediction error
magnitudes on memory performance, both when tested after
20min and after 24 h. Additionally and importantly, we
previously showed that the dopaminergic midbrain encodes the
mismatch between actually receiving a happy smiley face and the

expectation of receiving it, i.e., prediction errors (Aberg et al.,
2015).

The finding that the prediction error magnitude during
encoding correlated positively with memory performance when
tested after a short delay, i.e., 20min, is similar to recently
obtained results (Davidow et al., 2016). Specifically, Davidow
et al. (2016) showed that the prediction error magnitude
positively influenced the incidental encoding of images, when
memory was tested immediately after learning. Interestingly,
this effect was found only in adolescents but not in adults.
Because adolescents show a general increase in the activation of
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FIGURE 5 | Individual differences. (A) When tested after 20min, memory performance for positive vs. negative feedback correlated positively with the sensitivity

bias, i.e., z-scored Sensitivity to Reward (SR) minus z-scored Sensitivity to Punishment (SP). (B) When tested after 24 h, memory performance for positive vs. negative

feedback correlated marginally and negatively with the sensitivity bias. (C) For positive vs. negative feedback, memory performance correlated positively with the

sensitivity bias, when memory was tested after 20min as compared to 24 h. (D) For negative feedback, memory performance correlated negatively with the sensitivity

bias, when memory was tested after 20min as compared to 24 h. (E) For positive feedback, memory performance did not correlate significantly with the sensitivity

bias, when memory was tested after 20min as compared to 24 h. For display purposes non-ranked data and linear regression slopes are shown.

the dopaminergic reward system (Galvan, 2010; Van Leijenhorst
et al., 2010; Davidow et al., 2016), as do adults with an
increased expression of reward sensitive traits (Simon et al.,
2010; Kennis et al., 2013), we predicted that individuals with an
increased sensitivity for reward over punishment should display
a stronger positive influence from prediction error magnitudes
on subsequent memory performance, a prediction that was
confirmed by the present results.

Our result that prediction error magnitudes correlated
positively with memory performance when tested after 24 h
contrasts with a recent study reporting a negative correlation
between prediction error magnitude and memory performance
for incidentally encoded images when memory was tested on
the next day (Wimmer et al., 2014). Overnight delays between
encoding and testing are likely to include sleep, thus offering an

opportunity for sleep-related memory consolidation processes to
occur (Diekelmann et al., 2009; Perogamvros and Schwartz, 2012;
Rasch and Born, 2013; Igloi et al., 2015). One possible explanation
for Wimmer et al. (2014)’s results is that consolidation processes
enhanced and decremented memories encoded during negative
and positive prediction errors, respectively. Furthermore, the
activation of the dopaminergic reward system during sleep
is important for memory consolidation (Perogamvros and
Schwartz, 2012), and the degree of this activation is related
to the expression of reward-related behaviors and traits during
wakefulness (Perogamvros et al., 2012, 2015). Accordingly,
consolidation processes dependent on the activation of the
dopaminergic reward system could interact with individual traits
to modulate memory formation during sleep. Supporting these
speculations, we found that an increased sensitivity to reward
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over punishment was associated with increased memory for
associations encoded during negative feedback when tested after
24 h, as compared to 20min. Because some evidence suggests that
sleep-related consolidation processes promote weakly encoded
memories (Diekelmann et al., 2009; Oudiette et al., 2013;
Rasch and Born, 2013), it is tempting to speculate that the
memory encoding strength is directly related to the prediction
error magnitude. Unfortunately, the present study was not
designed to investigate sleep-related memory effects and further
research is therefore needed to elucidate how individual traits
influence reward-related memory processes during sleep. At
the very least, the present results demonstrate the importance
of considering individual traits when assessing reward-related
memory enhancements.

Of note, other neurotransmitters such as noradrenalin and
acetylcholine have also been implicated in learning and episodic
memory formation (Doya, 2002; Harley, 2004; Tully and
Bolshakov, 2010; Mather et al., 2016). Particularly relevant in the
context of prediction errors is the noradrenergic system, with
noradrenergic neurons in the locus coeruleus showing increased
activity following events and outcomes that are either better
or worse than predicted, thus encoding a notion of “surprise”
or unexpected uncertainty (Harley, 2004; Yu and Dayan, 2005;
Dayan, 2012; Clewett et al., 2014). Because noradrenergic
neurons project to regions involved in memory formation
and reward, including the hippocampus, the amygdala, and
the dopaminergic midbrain, it could be predicted that the
noradrenergic system enhances memory formation for any
surprising event, and that the degree of surprise is determined
by the magnitude of the unsigned prediction error. However, two
computational models incorporating unsigned “noradrenergic”
prediction errors provided inferior fits to behavioral data, as
compared to a model incorporating signed “dopaminergic”
prediction errors. Accordingly, the source of reward-related
memory enhancements in the present study is more likely to be
dopaminergic than noradrenergic.

Reward Anticipation Determines Memory
Formation through Magnitude of Expected
Value
Character-object associations for character types assigned to
higher feedback ratios, i.e., more frequent positive vs. negative
feedback, were better remembered as compared to those assigned
to lower feedback ratios when tested 20 min, but not 24 h, after
encoding.

Previous reports indicate enhanced memory formation for
images signaling upcoming rewards (Wittmann et al., 2005;
Bialleck et al., 2011), possibly due to increased reward
anticipation (Adcock et al., 2006). While the present study did
not test recognition memory for reward-predictive stimuli, i.e.,
the images of characters, the results are well in line with studies
showing enhanced recognition-memory for other information
presented in trials with high reward anticipation (Adcock et al.,
2006; Spaniol et al., 2014).

The finding that memory performance was enhanced for
character types associated with high feedback ratios after short,

but not long time-delays, is in accordance with previous
studies reporting effects of reward anticipation after short time-
delays, i.e., up to 30min (Bialleck et al., 2011; Mather and
Schoeke, 2011), but contrasts with studies showing influences
of reward anticipation on memory formation when memory
is tested after long delays, i.e., >20 h (Wittmann et al.,
2005, 2011, 2013; Murayama and Kitagami, 2014). While the
reason for these rather discrepant results between studies
are unclear, one explanation could be derived from the
notion that dopamine plays an important role for memory
consolidation processes (Lisman et al., 2011). Specifically, unlike
most previous studies that used item recognition paradigms
paired with monetary rewards, the present study investigated
associative memory and provided happy or sad smiley faces as
feedback. Thus, it could be suggested that, in most experimental
contexts, monetary rewards may be more motivationally salient
causing increased dopaminergic responses, which would then
have a stronger impact on dopamine-dependent consolidation
processes, ultimately leading to longer-lasting memory-benefits
of reward anticipation (Shohamy and Adcock, 2010; Igloi et al.,
2015).

Another explanation could be related to the fact that averaging
memory performance across trials for specific reward conditions
(such as different Character types in the present study) ignores
the fine temporal distribution of delivery and anticipation of
reward within and across conditions. In particular, the repeated
pairing of a neutral cue, i.e., the face of a character type, with
positive and rewarding outcomes causes a gradual increase in
the reward predictive value of the cue, while conversely causing
a gradual reduction of prediction errors at reward delivery.
Indeed, using a computational approach that provides estimates
of trial-wise fluctuations in these reward-related parameters,
we demonstrate a significant influence of expected value on
memory formation, both after 20min as well as after 24 h,
therefore indicating contributions of reward anticipation over
both short and long delays. Further evidence supporting this
explanation comes from robust findings showing that dopamine
neuron activity does not reflect the absolute magnitude of
reward, but instead tracks the magnitude of expected values
and prediction errors. Specifically, reward-learning causes a
shift in the dopaminergic response from the time of reward
delivery to the presentation of a reward-predictive cue (Schultz
et al., 1997). Thus, given that dopamine activity promotes
memory formation (Lisman and Grace, 2005; Shohamy and
Adcock, 2010; Lisman et al., 2011), a plausible speculation is that
changes in memory encoding as a function of fluctuations in
the magnitude of prediction error and expected value relate to
similar fluctuations in the activity of the dopaminergic system.
Given that the contributions of these very specific and important
reward computations to memory formation have been largely
ignored in the literature, the present results significantly extend
previous research by providing a more accurate description
of the link between reward, the dopamine system, and
memory.

Notably, two recent studies used computational approaches
to study the impact of reward anticipation on the incidental
encoding of images during reinforcement learning tasks, but
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report no impact of reward anticipation, i.e., the expected value
of a chosen alternative (Wimmer et al., 2014) or a reward-
predictive cue (Davidow et al., 2016), on subsequent image
recognition memory. One main difference between these studies
and ours is that those previous studies looked at recognition
memory while we used an associative memory paradigm.
Moreover, we presented the associated objects together with
the reward-predictive cue, i.e., the character face, during both
the encoding and the test phase. Accordingly, it cannot be
excluded that, besides its impact on memory encoding, the
presence of a reward-predictive cue enhanced memory retrieval
as well. Surprisingly few studies looked at the impact of reward
and the dopamine system on memory retrieval. However,
while memory retrieval is not enhanced by performance-based
incentives alone (Han et al., 2010; Elward et al., 2015), the
presentation of previously rewarded objects may contribute to
the reinstatement of “non-strategic, reward-related processes”
during memory retrieval (Kuhl et al., 2010; Halsband et al., 2012).
Moreover, pattern completion, i.e., memory retrieval based on
partial inputs, depends on intact dopamine function (Li et al.,
2010). Additionally, presenting items associated with high (vs.
low) rewards was found to engage the hippocampus and the
dopaminergic midbrain during both encoding and retrieval
(Wolosin et al., 2012). Together, these results suggest that
previously rewarded objects may reinstate the reward context
that was present during memory encoding, thus providing
additional input which could enhance the memory retrieval
process.

The present results may provide some insights concerning
recent interesting findings by Mather and Schoeke (2011)
showing that positive outcomes enhanced memory encoding
also in subsequent trials. Specifically, a better than expected
reward outcome (e.g., a positive feedback) may enable rewards
to temporally extend their influence on memory formation by
increasing expectations of rewards in subsequent trials. Notably,
Mather and Schoeke (2011) found that this lingering effect of
reward was significant for recognition memory but not when
tested via free recall. It could be speculated that the absence of
reward-related cues during free recall impeded memory retrieval
processes by preventing the reinstatement of reward contexts.
However, these results should be interpreted with caution due
to the very low number of recalled items. More research is
needed to further validate the lingering effects of reward on
memory formation, and to disentangle the contribution of
reward to memory encoding from its influence on retrieval
processes.

Finally, most previous studies addressing the impact of
reward on memory formation looked at item recognition
memory or source memory. Here we show that anticipation
and delivery of reward also enhances associative memory
formation, thus extending previous results obtained via
recognition memory paradigms. Altogether, these findings
are in accordance with lesion studies suggesting that item
recognition memory and associative memory depend on the
same hippocampal neural circuitry (Stark and Squire, 2001; Stark
et al., 2002), but see (Brown and Aggleton, 2001; Yonelinas et al.,
2001).

Limitations
The present behavioral results provide some first insights about
the involvement of specific neurotransmitters in reward’s impact
on memory formation. As mentioned previously, dopamine,
acetylcholine, and norepinephrine have all been linked to
enhanced memory encoding (Doya, 2002; Harley, 2004; Lisman
and Grace, 2005; Tully and Bolshakov, 2010; Lisman et al.,
2011; Mather et al., 2016). Thus, to determine the involvement
of specific neurotransmitter systems in reward-related memory
formation, the computational approach outlined in the present
study needs to be combined with pharmacology and/or
neuroimaging.

Another limitation of the present study can be derived
from recent evidence indicating significant gender differences
in learning and memory (Herlitz et al., 1997; Piefke et al.,
2005; Pauls et al., 2013), reward sensitivity (Chian-Shang et al.,
2007; Byrne and Worthy, 2015), reward-related decision making
(Mather and Lighthall, 2012), and dopamine function (Cosgrove
et al., 2007; Riccardi et al., 2011). Because participants in the
present study were mostly females, and information regarding
their menstrual cycle was not obtained, the impact of gender or
sex hormones cannot be accounted for here.

CONCLUSION

Here we first use standard procedures, i.e., averaging memory
performance across trials within conditions, to describe
independent contributions to associative memory formation
from reward delivery at short (20min) and longer term
(24 h), as well as from reward anticipation selectively at short
term (20min, but not when tested after 24 h). By contrast,
a novel computational approach, which considers trial-by-
trial fluctuations in the magnitude of prediction errors and
expected values, revealed that reward delivery (as mediated
by prediction error magnitude) and reward anticipation (as
mediated by expected value magnitude) contribute to memory
formation, both when tested after 20min and after 24 h. Because
this approach incorporates fundamental aspects of reward
computations well-known to be reflected in dopamine neuron
activity, it not only provides a more sensitive, but also a more
accurate description of the link between reward, dopamine, and
memory formation, than behavioral measures averaged across
trials alone.

By clarifying how memory formation may be significantly
modulated by distinct reward processing mechanisms and
individual trait-dispositions, the present study also provides
valuable insights for fields beyond basic neuroscience, such as for
education or rehabilitation strategies. In particular, our findings
highlight the importance of tailoring learning contexts on an
individual basis, as well as the potential drawbacks when not
doing so (as is the case in most of today’s educational settings).
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