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Changes in chromosomal structure involving chromosomal rearrangements or copy
number variation of specific sequences can play an important role in speciation. Here,
we explored the chromosomal structure of two hybridizing passerine species; the
common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia
luscinia), using conventional cytogenetic approaches, immunostaining of meiotic
chromosomes, fluorescence in situ hybridization as well as comparative genomic
hybridization (CGH). We found that the two nightingale species show conserved
karyotypes with the same diploid chromosome number of 2n � 84. In addition to
standard chromosomes, both species possessed a small germline restricted
chromosome of similar size as a microchromosome. Just a few subtle changes in
chromosome morphology were observed between the species, suggesting that only a
limited number of chromosomal rearrangements occurred after the species divergence.
The interspecific CGH experiment suggested that the two nightingale species might have
diverged in centromeric repetitive sequences in most macro- and microchromosomes. In
addition, some chromosomes showed changes in copy number of centromeric repeats
between the species. The observation of very similar karyotypes in the two nightingale
species is consistent with a generally slow rate of karyotype evolution in birds. The
divergence of centromeric sequences between the two species could theoretically cause
meiotic drive or reduced fertility in interspecific hybrids. Nevertheless, further studies are
needed to evaluate the potential role of chromosomal structural variations in nightingale
speciation.
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INTRODUCTION

Despite an increasing number of sequenced avian genomes
(Jarvis et al., 2014; Zhang et al., 2014; Feng et al., 2020), we
still know relatively little about the organization of the genomes
into chromosomes and to what degree the chromosomal
structure (i.e., number, size and collinearity of chromosomes)
varies among species. It has been proposed that changes in
chromosomal structure, including chromosomal translocations,
inversions and copy number variations, may play an important
role in the origin of reproductive isolation between species
(White, 1978; Rieseberg, 2001; Wellenreuther et al., 2019;
Zhang et al., 2021). For example, chromosomal translocations
may cause problems with chromosome pairing, recombination
and segregation during meiosis, which can lead to hybrid sterility
(White, 1978; King, 1993; Homolka et al., 2007). Structural
changes, such as inversions, may facilitate speciation by
reducing the recombination rate within the structural variant,
which may help to maintain the species-specific traits in the face
of gene flow (Rieseberg, 2001; Ortíz-Barrientos et al., 2002; Butlin,
2005; Hoffmann and Rieseberg, 2008). Finally, copy number
variations may serve as a source of adaptive phenotypic
variation (Perry et al., 2007; Zhou et al., 2011; Iskow et al.,
2012; Bruders et al., 2020; Minias et al., 2020) and, in the case
of copy number variation of the centromeric repeats, they can
affect chromosome segregation during meiotic division (Akera
et al., 2019), which may, in the extreme case, cause sterility in
hybrids (Hurst and Pomiankowski, 1991; Phadnis and Orr, 2009;
Zhang et al., 2015). Despite the assumed importance of structural
variants in speciation, there are still relatively few studies
comparing chromosomal structure between closely related
species in the early stages of divergence (Hooper and Price,
2015, 2017; Hooper et al., 2019; Weissensteiner et al., 2020).

Among terrestrial vertebrates, birds have relatively stable
karyotypes, usually composed of approximately 40 pairs of
chromosomes, which include around 10 macrochromosomes
and 30 mostly indistinguishable microchromosomes
(Christidis, 1990; Pichugin et al., 2001; Masabanda et al., 2004;
Griffin et al., 2007; Ellegren, 2010; Nanda et al., 2011; Degrandi
et al., 2020a). In addition to size, macrochromosomes and
microchromosomes differ in their GC content, gene density,
recombination rate and substitution rate (Auer et al., 1987;
Rodionov et al., 1992; Smith et al., 2000; Burt, 2002; Axelsson
et al., 2005). Although the number and size of chromosomes is
quite conserved in birds, indicating that interchromosomal
rearrangements are rare in this group, intrachromosomal
rearrangements such as inversions can occur relatively
frequently (Aslam et al., 2010; Völker et al., 2010; Ellegren,
2013; Hooper and Price, 2017; Rodrigues et al., 2017). There is
also evidence for relatively frequent copy number variations
among birds (Skinner et al., 2014). All birds possess a ZW sex
determination system (ZZ for male; ZW for female) with a large Z
chromosome and usually smaller heterochromatic W
chromosome (dos Santos et al., 2015; Schartl et al., 2016;
Barcellos et al., 2019). In addition, it has been revealed that
passerines possess an additional chromosome in their germ cells,
the so-called germ-line restricted chromosome (GRC) (Pigozzi

and Solari, 1998; Kinsella et al., 2019; Torgasheva et al., 2019).
This chromosome is eliminated from the somatic cells during
early development; being maintained only in the germline. In
some passerines the GRC represents a big macrochromosome,
while in others, a small microchromosome (Torgasheva et al.,
2019). However, the size of this chromosome has only been
characterized in 16 species so far and it is not clear how often it
differs among closely related species (Torgasheva et al., 2019).

To date, somatic karyotypes of approximately 1,000 avian
species (i.e., 10% of all bird species) have been described using
mostly classical cytogenetic techniques such as G- and C-
banding and Giemsa staining (reviewed in Degrandi et al.,
2020a). Such techniques enable rough estimation of the
diploid chromosome number as well as the detection of large
chromosomal translocations or inversions. However,
distinguishing smaller-scale chromosomal rearrangements and
counting the number of microchromosomes is usually
challenging. Moreover, karyotypes from somatic cells do not
allow for the detection of the GRC. The development of
molecular cytogenetic methods, such as fluorescence in situ
hybridization (FISH) and whole chromosome probes (Griffin
et al., 1999), made more detailed cross-species comparisons of
chromosomal structure possible, but have so far only been
applied to relatively few avian species, with chicken probes
mostly being used as a reference (reviewed in Kretschmer
et al., 2018; Degrandi et al., 2020a). In addition,
immunostaining of the synapsed chromosomes during meiosis
provides a useful approach for detection of the GRC and
comparing the chromosomal structure among species (Hale
et al., 1988; Torgasheva et al., 2019).

Based on the FISH technique Kallioniemi et al. (1992)
developed a new fine scale molecular cytogenetic method
called comparative genomic hybridization (CGH). This
method allows for the detection of unbalanced chromosomal
rearrangements (i.e., duplications, deletions, and copy number
variation) between two sources of DNA. Originally the method
was designed to detect chromosomal changes in tumor cells
compared to normal cells (Kallioniemi et al., 1992). Later, it
was used for sex chromosome detection using male and female
DNA (e.g., Koubová et al., 2014; Pokorná et al., 2014). Finally, an
interspecific design was developed to detect chromosomal
rearrangements between species (Bi and Bogart, 2006;
Symonová et al., 2015; de Oliveira et al., 2019). In most CGH
studies done in birds, the chicken genome has been used as a
reference with a microarray-based CGH platform (array-CGH)
(Skinner et al., 2009, 2014; Völker et al., 2010). To our knowledge,
no interspecific CGH comparisons have been performed to detect
copy number variation between closely related bird species.

In this study, we compared the karyotypes of two closely
related passerines species, the common nightingale (Luscinia
megarhynchos) and the thrush nightingale (Luscinia luscinia),
that diverged ∼1.8 Mya (Storchová et al., 2010) and currently
hybridize in a secondary contact zone spanning Central and
Eastern Europe (Reifová et al., 2011a). These species are separated
by incomplete reproductive isolation, which is mainly caused by
female-limited hybrid sterility (Reifová et al., 2011b; Mořkovský
et al., 2018) and partial ecological divergence in sympatry (Reif
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et al., 2018; Sottas et al., 2018, 2020). In addition, divergence in
sperm morphology might contribute to postmating prezygotic
isolation (Albrecht et al., 2019). Of these species, the common
nightingale’s karyotype has been previously described using
classical cytogenetic analysis of the somatic metaphases
(Bozhko, 1971). However, the karyotype of the thrush
nightingale has yet to be determined.

Here we performed a cytogenetic analysis of the nightingale
karyotypes to test whether changes in chromosomal structure
might be linked to reproductive isolation between the species. To
do so, we applied conventional and molecular cytogenetics
methods to mitotic and meiotic spreads. These methods
included C-banding, immunofluorescence staining of synapsed
pachytene chromosomes, physical mapping of telomeric and 18S
rDNA probes using FISH, and finally CGH.

MATERIALS AND METHODS

Sampling Procedure
The sampling of the two nightingale species was carried out in
allopatric regions (where only one of the two species occurs) to
avoid possible sampling of interspecific hybrids. The common
nightingale was sampled in South-western Poland by the Odra
river, near the town Brzeg Dolny (N 51.2602°, E 16.7440°). The
thrush nightingale was sampled in North-eastern Poland by the
Narew river, near the town Łomża (N 53.1621°, E 22.1246°). In
total, we sampled four common nightingales (one male, three
females) and two thrush nightingales (one male, one female) for
mitotic spreads and twomales of each species for meiotic spreads.
The birds were euthanized by a standard cervical dislocation and
the tibia and testes were immediately dissected for the
preparation of mitotic and meiotic chromosomal spreads,
respectively. In addition, we collected a blood sample from the
brachial vein from one female of each species. The blood sample
was later used for DNA isolation and preparation of species-
specific DNA probes for the interspecific comparative genomic
hybridization (CGH) experiment. All individuals were sampled
in May 2019, during the breeding season, and were captured
using mist nets or collapsible traps. The work was approved by
the General Directorate for Environmental Protection, Poland
(permission no. DZP-WG.6401.03.123.2017.dl.3).

Mitotic Chromosome Preparation and
C-Banding
Bone marrow from the tibias of each bird was flushed out using a
syringe needle with D-MEM medium (Sigma Aldrich) and
cultivated in 5 ml of D-MEM medium (Sigma Aldrich) with
75 µl of colcemid solution (Roche) for 40 min at 37°C. After that,
the cells were hypotonized in pre-warmed 0.075 M KCl solution
for 25 min at 37°C. Finally, cells were washed four times with
fixative solution (methanol:acetic acid, 3:1) and then stored at
−20°C prior to use.

Chromosomal spreading was done using the air-drying
technique followed by conventional Giemsa staining (5%
Giemsa in 0.07 M phosphate buffer, pH 7.4). The C-banding

method was applied for visualization of constitutive
heterochromatin according to Sumner (1972). More
specifically slides with chromosomal spreads were aged at 60°C
for 1 h then successively soaked in 0.2 N HCl for 20 min at room
temperature then in 5% Ba(OH)2 solution for 4–5 min at 45°C
and subsequently in 2× SSC for 1 h at 60°C, with intermediate
washes in distilled water. Finally, metaphases were mounted with
4′,6-diamidino-2-phenylindole (DAPI) in mounting medium
Vectashield (Vector laboratories).

Meiotic Chromosome Preparation and
Immunostaining
Synaptonemal complex (SC) spreads were prepared from the
testes of reproductively active males following Peters et al. (1997).
Briefly, the left testis was cut into two pieces and placed in
hypotonic solution (30 mM Tris, 50 mM sucrose, 17 mM
trisodium citrate dehydrate and 5 mM EDTA; pH 8.2) for
50 min. The testis tissue was then disaggregated in 200 µl of
100 mM sucrose and the resulting cell suspension was applied in
40 µl drops and spread onto a slide previously treated with 1%
PFA and 0.15% of Triton X100 (Sigma Aldrich). All slides were
placed in a humid chamber for 90 min and washed for 2 min in
1× PBS. Slides were directly used for immunostaining.

Immunostaining was performed according to Moens et al.
(1987) using the following primary antibodies: rabbit polyclonal
anti-SYCP3 antibody (ab15093, Abcam) recognizing the lateral
elements of the synaptonemal complex (dilution 1:200), and
human anticentromere serum (CREST, 15-234, Antibodies
Incorporated) binding kinetochores (dilution 1:50). The
corresponding secondary antibodies were Alexa-594-
conjugated goat anti-Rabbit IgG (H + L) (A32740, Invitrogen;
dilution 1:200) and Alexa-488-conjugated goat anti-Human IgG
(H + L) (A-11013, Invitrogen; dilution 1:200). Primary and
secondary antibodies were diluted in PBT (3% BSA and 0.05%
Tween 20 in 1× PBS) and incubated in a humid chamber for
90 min. Slides were washed three times in 1× PBS and dehydrated
through an ethanol row (50, 70 and 96%, 3 min each). Finally, all
slides were dried and stained with DAPI in mounting medium
Vectashield (Vector laboratories).

Fluorescence In Situ Hybridization (FISH)
With Telomeric and 18S rRNA Probes
Telomeric repeat probe (TTAGGG)n was applied to meiotic and
mitotic spreads using FISH. In both experiments, the telomeric
repeat sequences were detected using a commercial kit probe
directly labelled with Cy3 (DAKO). We followed the
manufacturer’s instructions, with the hybridization extended
to 1.5 h.

The distribution of 18S rDNA genes was analyzed on mitotic
spreads using FISH. The 18S rDNA probe was generated by PCR
amplification and nick-translation labelling according to the
protocol of Cioffi et al. (2009). The template genomic DNA
originated from a reptile species, slow-worm (Anguis fragilis),
and the PCR product was 1,456 bp in length (sequence is
provided in Supplementary Table 1). The probe showed high
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sequence similarity with the rDNA of several bird species, Gallus
gallus (97.73%), Hirundo rustica andMotacilla alba species (both
97.11%), and thus was considered similar enough to detect the
distribution of 18S rDNA clusters in the nightingale species.
Slides were aged for 1 h at 60°C, then treated with RNase for 1 h at
37°C and washed three times for 5 min in 2× SSC. Chromosomes
were treated with pepsin for 3 min at 37°C and then fixed for
10 min in 1% formaldehyde solution. Slides were dehydrated in
an ethanol row (70, 85 and 96%, 3 min each) and air-dried. The
chromosomes were denatured in 75% formamide/2× SSC at 76°C
for 3 min followed by dehydration in an ethanol row. Meanwhile,
the probe was denatured at 80°C for 6 min and chilled on ice for
10 min prior to the hybridization. The probe-chromosome
hybridization was performed overnight at 37°C. Post-
hybridization washes were performed three times for 5 min in
50% formamide/2× SSC at 37°C and washed twice for 5 min in 2×
SSC and finally for 5 min in 4× SSC/0.05% Tween 20 (Sigma
Aldrich). Slides were first incubated for 30 min at 37°C with 4×
SSC/5% blocking reagent (Roche), then the probe signal was
detected by 4× SSC/5% blocking reagent mixed with fluorescein
conjugated avidin (Vector laboratories) for 30 min at 37°C,
followed by three washes in 4× SSC/0.05% Tween 20 for
5 min. Slides were then incubated with biotinylated anti-avidin
(Vector laboratories) for 30 min at 37°C, followed by a second
round of fluorescein conjugated avidin treatment for signal
amplification. Slides were finally washed in 4× SSC/0.05%
Tween 20 twice for 5 min, dehydrated through an ethanol row
and air-dried. Chromosomes were stained with DAPI in
mounting medium, Vectashield (Vector laboratories).

Comparative Genomic Hybridization (CGH)
The CGH experiment was performed with (i) common
nightingale and (ii) thrush nightingale metaphase
chromosomes. In both cases, equal concentrations of DNA
probes from the common nightingale and the thrush

nightingale were hybridized to the chromosomes (Figure 1)
following the procedure described in Symonová et al. (2015)
with slight modification. The DNA probe was labelled by
biotin (detected by streptoavidin-FITC, green) in the
common nightingale and digoxigenin (detected by
antidigoxigenine-rhodopsine, red) in the thrush nightingale.
In both experimental designs, the green signal suggests a
higher copy number of a particular repetitive sequence in
the common nightingale, while the red signal indicates a
higher copy number in the thrush nightingale. An
intermediate yellow/orange signal suggests the same copy
number in both species. Finally, a green signal in one
design, while red in the other, indicates the presence of
species-specific sequence (Figure 1).

Genomic DNA for the preparation of probes was extracted
from blood samples using DNeasy Blood and Tissue Kit
(Qiagen). The probes were prepared by nick translation
(Abbott Laboratories) according to the manufacturer’s
protocol and labelled with biotin-dUTP (Roche) and
digoxigenin-dUTP (Roche). The nick translation took place
at 15°C for 2 h. From each sample, 1 µg of DNA was co-
precipitated overnight at −20°C with an additional 5 µl of
salmon sperm DNA (10 mg/ml, Sigma Aldrich), 3 µl of 3 M
sodium acetate (pH 5.2) and 2.5 volume of 96% ethanol. After
precipitation, the dry pellets were resuspended in 11 µl of
hybridization buffer for each slide (50% formamide in 2×
SSC, 10% dextran sulfate, 10% sodium dodecyl sulfate and
1× Denhardt’s buffer, pH 7.0), denatured at 86°C for 6 min
and then chilled on ice for 10 min prior to hybridization.

Metaphase slides were prepared by treatment with RNase and
pepsin before being fixed with 1% formaldehyde, dehydrated
through an ethanol row (70, 85 and 96%, 3 min each) and air-
dried. Chromosomes were then denatured in 75% formamide/2×
SSC at 76°C for 3 min and dehydrated again in an ice cold ethanol
raw (70, 80 and 96%, 3 min each). Finally, 11 µl of the probe mix

FIGURE 1 | Design and possible outcomes of the interspecific comparative genomic hybridization (CGH) experiment. The genomic probe of the common
nightingale (L. megarhynchos) (stained green) and the thrush nightingale (L. luscinia) (stained red) were hybridized on the metaphase of common nightingale (A) and
thrush nightingale (B). Whereas in the first three outcomes the same repetitive sequences exist in both species and the color reflects differences in their copy number, the
last outcome points to the existence of species-specific repetitive sequences.
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was applied to each slide and hybridization took place at 37°C for
48 h. The same probe mix was applied to metaphases of both
nightingale species in the two CGH designs.

Post-hybridization washes were performed two and three
times in 50% formamide/2× SSC and 1× SSC at 44°C,
respectively. Each slide was incubated with 100 μl of 4× SSC/
5% blocking reagent (Roche) at 37°C for 30 min and then with
100 μl of detection mix containing 4× SSC/5% blocking reagent,
2 μl of streptavidin-FITC (Vector Laboratories) and 1 μl of anti-
digoxigenin-rhodamine (Roche) at 37°C for 1 h. The slides were
subsequently washed in 4× SSC/0.01% Tween 20 (Sigma Aldrich)
at 44°C, dehydrated through an ethanol row (70, 85 and 96%,
3 min each) and air-dried. Finally, the chromosomes were
counterstained with DAPI in mounting medium Vectashield
(Vector laboratories).

Microscopy and Image Processing
Mitotic spreads were captured with an Axio Imager Z2
microscope (Zeiss) equipped with the automatic Metafer-
MSearch scanning platform and a CoolCube 1 b/w digital
camera (MetaSystems). Meiotic spreads were analyzed using
an Olympus BX53 fluorescence microscope (Olympus)
equipped with a DP30BW digital camera (Olympus). Ikaros
karyotyping software (Metasystems) was used to remove the
background from the metaphase images and to arrange the
karyotypes. The colors of the C-banded metaphase images
were inverted. All color images were captured in black and
white, and later pseudocolored and superimposed using Adobe
Photoshop software (version CC 2017).

A total of 18 and 17 metaphases from bone marrow were
analyzed for the common nightingale and the thrush nightingale,
respectively. TheW chromosome was detected by C-banding due
to its heterochromatic character. The Z chromosome was
identified by comparing the female (ZW) and male (ZZ)
metaphases. The size of each bivalent and its arm ratio was
measured using the LEVAN plugin in the program ImageJ
(Schindelin et al., 2012). Depending on the position of the
centromere, we distinguished for each macrochromosome
whether it was telocentric, acrocentric, submetacentric or
metacentric chromosomes (Levan, 1964). For
microchromosomes, the telocentric/acrocentric categories and
submetacentric/metacentric categories were merged as they
were difficult to distinguish clearly. The Z chromosome was
identified among bivalents based on its relative size to the
other macrochromosomes identified on the mitotic spreads.
Chromosomes were measured in 15 pachytene cells in each
species.

The metaphase chromosomes with applied CGH were
analyzed using Photoshop (version CC 2017). For each CGH
design, three cells were analyzed and compared. The
centromeric red and green signals of the nine largest
macrochromosomes and the sex chromosomes were
measured using the histogram color tools. Each metaphase
was measured three times to reduce the technical error
associated with the signal measurement. The color ratio was
calculated using the median value of both colors, after their
normalization using the total red and green signal color.

RESULTS

Mitotic and Meiotic Karyotypes
Both species showed a more or less continuous decrease in
chromosome size without a clear distinction between
macrochromosomes and microchromosomes (Figure 2). We
categorized the 10 largest chromosome pairs including the sex
chromosomes to be macrochromosomes with the remaining
chromosomes considered to be microchromosomes. Because
the mitotic chromosomes were not always well spread, it was
difficult to estimate the diploid chromosome number from
metaphase spreads. This was especially true with respect to the
number of microchromosomes. We thus calculated the diploid
chromosome number for both species based on immunostained
meiotic spreads (Hale et al., 1988; del Priore and Pigozzi, 2020).
Both the common nightingale and the thrush nightingale
consistently displayed 42 bivalents, establishing a diploid
chromosome number of 84 for each species (Figure 3). In

FIGURE 2 | Karyotypes of the common nightingale (L. megarhynchos)
(A) and the thrush nightingale (L. luscinia) (B) females arranged after Giemsa
staining. W chromosome was detected using C-banding. Scale bar � 10 μm.
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addition to these bivalents, both species displayed an extra
univalent chromosome in male germ cells, corresponding to
the GRC (Figure 3). The GRC was stained weaker by anti-
SYCP3 antibody and showed a CREST signal not only in the
centromere, but along the whole chromosome, as has been
described previously in other passerine species (Torgasheva
et al., 2019).

Staining of centromeres in meiotic chromosomes by the
CREST antibody allowed us to estimate the arm ratio for each
chromosome and compare chromosome morphology between
species in a more precise way than was possible with mitotic
chromosomes. The ten largest chromosomes had the same
morphology between the species, suggesting that no
chromosomal rearrangements that would have changed the
position of the centromere occurred on these chromosomes.
In both species, the largest chromosome, SC1, was identified
as acrocentric, SC2 to SC4 as telocentric, SC5 as submetacentric,
SC6 as metacentric and SC7 to SC9 as telocentric. However, SC10
was telocentric in the common nightingale, but acrocentric in the
thrush nightingale (Figure 3; Supplementary Table 2),
indicating that some rearrangements might have occurred on
this chromosome.

Based on the comparison of male and female mitotic spreads,
we identified the Z chromosome as the fourth largest
chromosome in both species and in both species it was
telocentric. The W chromosome was also telocentric, with a
size between the 10th and 11th chromosome in the common
nightingale and between the nineth and 10th chromosome in the
thrush nightingale (Figure 4).

The morphology of the microchromosomes slightly differed
between the two species with 17 acrocentric/telocentric and 15
submetacentric/metacentric microchromosomes in the common
nightingale and 19 acrocentric/telocentric and 13
submetacentric/metacentric microchromosomes in the thrush
nightingale (Figure 3; Supplementary Table 2). The GRC was
present in both nightingale species, with its size corresponding to
a microchromosome.

Distribution of Heterochromatin, 18S rDNA
Genes and Telomeric Repeats in the Two
Species
The distribution of the constitutive heterochromatin revealed by
C-banding displayed the same pattern in the two nightingale

FIGURE 3 | Synaptonemal complex spreads made from testes of the common nightingale (L. megarhynchos) (A) and the thrush nightingale (L. luscinia) (B),
immunostained with antibodies against the lateral elements of the synaptonemal complex, SYCP3 (red) and against centromere proteins (green). The presumed Z
chromosome bivalents are indicated with an asterisk and the germline restricted chromosome (GRC) with an arrowhead. Scale bar � 10 µm.
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species. C-banding signals mainly occurred in the centromeric
regions of macrochromosomes and microchromosomes, but
sometimes the signal covered the entire microchromosome.
The W chromosome displayed a large C-banding signal in
both species, but the signal was slightly larger in the thrush
nightingale than in the common nightingale (Figure 4). In both
species, the Z chromosome had a small heterochromatic band in
the centromeric region (Figure 4).

18S rDNA clusters were consistently located on 10
microchomosomes in both species (Figure 4). The same
number and distribution of the 18S rDNA clusters suggests
that no rearrangements that would include rDNA genes had
occurred between the two species.

The telomeric motif (TTAGGG)n was detected at the terminal
regions of all chromosomes. No interstitial telomeric signal was
detected (Figure 4; Supplementary Figure 1). This can be seen in
both the mitotic (Figure 4) and meiotic spreads (Supplementary
Figure 1).

Divergence of Centromeric Repeats
Between the Two Nightingale Species
In both interspecific CGH experimental designs (i.e., with the
common nightingale and the thrush nightingale metaphases,
Figure 1), the distribution pattern of the probe signal was

similar to that of the heterochromatin from the C-banding
experiment, meaning that the probe signal was brightest in the
centromeric regions of the macrochromosomes and
microchromosomes (Figures 4, 5). In some
microchromosomes, the whole chromosome appeared to be
generating signal, however, due to the small size of
chromosomes and the signal strength of the probes, this might
still only represent centromeric binding.

Interestingly, the centromeric regions of the nine largest
autosomes were mostly green (common nightingale probe) in
the CGH with common nightingale metaphases and red (thrush
nightingale probe) in the CGH with thrush nightingale
metaphases, suggesting sequence divergence of repetitive
elements in the centromeric regions. The exceptions were the
first and fifth chromosome pairs, which showed an increased red
signal in both CGH designs, indicating a higher copy number of
centromeric repetitive elements in the thrush nightingale
genome. The fourth pair produced variable signals across the
three metaphases, making the results difficult to interpret
(Figures 5, 6; Supplementary Table 3).

The whole W chromosome displayed a higher red signal in
both interspecific CGH designs, indicating a higher number of
repetitive elements in the thrush nightingale genome.
Contrastingly, the probe signal in the centromeric region of
the Z chromosome was greener in both the common

FIGURE 4 | Distribution of heterochromatin (A,D), 18S rDNA clusters (B,E) and telomeric repeats (C,F) in the karyotype of the two nightingale species. C-banding
in the common nightingale (L. megarhynchos) (A) and the thrush nightingale (L. luscinia) (D) female karyotypes. Sex chromosomes are indicated in both karyotypes.
rDNA clusters (green) in the common nightingale (B) and the thrush nightingale (E). Arrowheads point to 10 microchromosomes displaying a rDNA signal. Telomeric
repeat sequences (TTAGGG)n (red) in the common nightingale (C) and the thrush nightingale (F). Scale bar � 10 µm.
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nightingale and the thrush nightingale experimental designs
(Figures 5, 6; Supplementary Table 3). Thus, the Z
chromosome seems to have a higher copy number of
centromeric repetitive elements in the common nightingale
compared to the thrush nightingale.

The centromeric regions of microchromosomes were mostly
green in the CGH with the common nightingale metaphases and
red in the CGH with the thrush nightingale metaphases,
suggesting sequence divergence of centromeric repeats on
most microchromosomes (Figure 5).

DISCUSSION

In this study, we compared the chromosomal structure in two
closely related passerine species, the common nightingale and the
thrush nightingale, that show partial reproductive isolation
caused mainly by hybrid female sterility and ecological
differentiation (Storchová et al., 2010; Reifová et al., 2011b;
Mořkovský et al., 2018; Reif et al., 2018; Sottas et al., 2018).
We found that the two species have the same diploid
chromosome number 2n � 84 and both possess a micro GRC
in the germ cells. However, a few subtle changes in chromosome
morphology imply that some chromosomal rearrangements
might have occurred between the species. Interestingly, the
interspecific CGH experiment suggests that the two
nightingale species might have diverged in centromeric
repetitive sequences on most chromosomes. Some
chromosomes showed changes in copy number of centromeric
repeats between the species.

Changes in chromosomal structure are assumed to play an
important role in the origin of reproductive isolation. They can

for example impair meiosis in hybrids leading to hybrid sterility,
or suppress recombination linking together species-specific
combinations of alleles, which may help to maintain species
differentiation in the face of gene flow (Rieseberg, 2001; Ortíz-
Barrientos et al., 2002; Butlin, 2005). The two nightingale
species have very similar karyotypes, with 10
macrochromosomes (including the sex chromosomes) and 32
microchromosomes. This observed diploid chromosome
number is consistent with the previously described
chromosome number for the common nightingale (Bozhko,
1971). The diploid chromosome number in other species of the
family Muscicapidae varies between 2n � 64 and 2n � 86
(Udagawa, 1955; Bulatova and Panov, 1973; Mittal and Satija,
1978; Bulatova, 1981; Degrandi et al., 2020a). Thus, although
some large-scale chromosomal rearrangements occurred
between more distantly related species of the Muscicapidae
family, the closely related nightingale species seem to have
the same chromosome number, which is consistent with the
generally slow evolution of bird karyotypes (Christidis, 1990;
Pichugin et al., 2001; Masabanda et al., 2004; Griffin et al., 2007;
Ellegren, 2010; Nanda et al., 2011).

The distribution of constitutive heterochromatin blocks
observed in the nightingale species is typical for passerine
birds (e.g., Kretschmer et al., 2014; Barcellos et al., 2019). The
larger heterochromatin block on the W in the thrush nightingale
suggests that this species might have accumulated more repetitive
sequences on this chromosome compared to the common
nightingale. This was supported by the CGH experiment
demonstrating that the W of the thrush nightingale show a
higher copy number of repetitive sequences than the common
nightingale. Together these results suggest the relatively fast
evolution of the W repetitive content, which might

FIGURE 5 | Interspecific comparative genomic hybridization (CGH) in two nightingale species. Female probes of the common nightingale (L. megarhynchos) and
the thrush nightingale (L. luscinia) were labelled by streptavidin-FITC (green) and anti-digoxigenin-rhodamine (red), respectively, and hybridized on common nightingale
(A–D), and thrush nightingale (E–H) metaphase spreads. The first column displays DAPI images (blue) (A,E); the second column displays metaphases with the common
nightingale DNA probe signal (green) (B,F); the third column displays metaphases with the thrush nightingale DNA probe signal (red) (C,G); the fourth column
displays the merged colors of both genomic DNA probes and DAPI staining (D,H). Scale bar � 10 μm.
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theoretically contribute to reproductive isolation between the
species (Peona et al., 2021).

The rDNA clusters are considered as hotspots of
chromosomal breakage due to their repetitive nature as well
as their intense transcriptome activity (Huang et al., 2008;
Cazaux et al., 2011). In birds, a large variation in the number
of chromosome pairs bearing the 18S rDNA cluster is observed,
ranging from one to six or seven pairs, with the majority of
species displaying only one chromosome pair with rDNA
cluster (Degrandi et al., 2020b). Both nightingale species
showed rDNA FISH signal on five microchromosome pairs,
suggesting that no rDNA associated chromosomal changes have
occurred between these two species. Interestingly, five
chromosome pairs bearing rDNA clusters is the highest
number found in passerines so far (Degrandi et al., 2020b).
In the closest related species, where rDNA has been
cytogenetically localized, Turdus rufiventris and Turdus
albicolis, belonging to the Turdidae family, only three and
two microchromosome pairs, respectively, bear rDNA

(Kretschmer et al., 2014). Such differences in the number of
rDNA clusters might result from chromosome translocations,
transpositions and duplications mediated by transposable
elements or ectopic recombination (Nguyen et al., 2010;
Teixeira et al., 2021).

Telomeric tandem repeats (TTAGGG)n are normally
found at the end of chromosomes but can sometimes be
present also inside the chromosomes. Such interstitial
telomere sites (ITSs) may result from chromosome
translocation or fusions (Nanda and Schmid, 1994; Nanda
et al., 2002), although not all chromosome fusions lead to
ITSs (de Oliveira et al., 2005; Nishida et al., 2008). In birds, a
high number of ITSs have been found in Ratites and
Galliformes (Nanda and Schmid, 1994; Nanda et al., 2002),
however, in passerines only a few or no ITSs have been
identified (Nanda et al., 2002; Derjusheva et al., 2004). No
ITSs were detected in either of the nightingale species,
providing more evidence for a conserved chromosomal
structure in the two species.

FIGURE 6 | Ratio of the green and red signal intensity at centromeric regions from the interspecific comparative genomic hybridization (CGH) experiment with the
common nightingale (L. megarhynchos) metaphases (A) and the thrush nightingale (L. luscinia) metaphases (B). Log2 color ratio is shown for nine macrochromosomes
and the sex chromosomes. Values lower than zero represent higher signal of common nightingale probes (green) and values higher than zero represent higher signal of
thrush nightingale probes (red). Bar charts are based on the Log2 ratio with error bars representing the standard error.
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It has been shown that the GRC, an extra chromosome occurring
in the germline of songbirds (Pigozzi and Solari, 1998, 2005), is
highly variable in its size among species (Torgasheva et al., 2019;
Malinovskaya et al., 2020). Torgasheva et al. (2019) compared the
size of this chromosome in 16 passerine species belonging to nine
families and showed that in 10 of them the GRC is a big
macrochromosome, while in six it is a small microchromosome.
Our results showed that both nightingale species had a small GRC,
comparable in size to a microchromosome.

Despite the same chromosome number in the two nightingale
species, we observed a few small changes in the centromere
position on one macrochromosome and several
microchromosomes, suggesting that some intrachromosomal
rearrangements might have occurred between these two
species. More detailed analyses of nightingale karyotypes and
their genomic sequence will be needed, however, to confirm the
existence of structural variants between the two species and
determine their size and content. We should also note that
our cytogenetic approach cannot detect smaller chromosomal
rearrangements, which do not change the position of the
centromere, result in ITSs or change the number of rDNA
clusters. Analysis of high-quality chromosome-level genome
assemblies of the two species could shed more light on the
possible smaller-scale structural changes between the species.

Another interesting difference in the chromosome structure of
the two nightingale species was revealed by the interspecific CGH
experiment. This experiment suggested that some chromosomes
have different copy numbers of centromeric repeats between the two
species. In addition, many macrochromosomes and
microchromosomes displayed higher conspecific signals in the
CGH experiment, suggesting that the two species have diverged
in their centromeric repeat sequences. Our observation is consistent
with other studies in birds (Ellegren et al., 2012), as well as other taxa
(Haaf andWillard, 1997; Bensasson et al., 2008; Pertile et al., 2009; de
Sassi et al., 2021; Oliveira et al., 2021), showing fast evolution of
centromeric sequences. For example, comparison of the whole
genome sequences of two closely related species of Ficedula
flycatchers, which also belong to the Muscicapidae family,
revealed that the centromeres were among the most differentiated
regions of the genome between the species (Ellegren et al., 2012).

The rapid divergence of the centromeric sequences or their copy
number, between species is assumed to be the result of centromere-
associated female meiotic drive, where some centromeric
sequences can bias their transmission to the egg, leaving others
to end up in the polar bodies (Henikoff, 2001; Pardo-Manuel de
Villena and Sapienza, 2001). This can lead to a swift fixation of
particular centromeric sequences in the population and a fast
divergence of centromeric repeats, or their copy number,
between the species. However, distorting the transmission ratio
can sometimes be harmful to the organism, for example, if it is
linked to the sex chromosomes and leads to a sex ratio distortion.
In such cases, it is often associated with the evolution of drive
suppressors (McLaughlin and Malik, 2017). Interestingly, while
most large autosomes showed species-specific sequences in our
CGH experiment, sex chromosomes showed differences in the
copy number of centromeric repeats, but not species-specific
sequences. This suggests that the evolution of centromeric

repeats on the sex chromosomes might be constrained by the
sex ratio effect of sex chromosome linked meiotic drive.

It has been demonstrated that divergence of centromeric
sequences between species may lead to female meiotic drive in
interspecific hybrids (Chmátal et al., 2014; Akera et al., 2019;
Knief et al., 2020). Theoretically, the divergence of centromeres
could, in an extreme case, also cause the sterility of female hybrids
and thus contribute to reproductive isolation between species
(Hurst and Pomiankowski, 1991; Phadnis and Orr, 2009; Zhang
et al., 2015). In nightingales, consistent with Haldane’s rule
(Haldane, 1922), F1 hybrid females are sterile, while F1 males
are fertile (Reifová et al., 2011b; Mořkovský et al., 2018). It is thus
possible that divergence in centromeric sequences between the
two nightingale species could contribute to female-limited hybrid
sterility. Further studies of centromere composition in the two
nightingale species should be done to explore this possibility.

In conclusion, although the two nightingale species have very
similar karyotypes, it is possible that a small number of
chromosomal rearrangements have occurred between them and
may contribute to reproductive isolation between the species.
Interestingly, the two species appear to differ in their centromeric
sequences. Such divergence could cause female meiotic drive or
female sterility in interspecific hybrids. Further studies are, however,
needed to confirm the presence of structural variants and diverged
centromeric repeats in the two nightingale species and to examine
their potential role in the nightingales’ speciation.
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