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Heat shock protein 90 is downregulated in
calcific aortic valve disease
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Abstract

Background: Calcific aortic valve disease (CAVD) is an atheroinflammatory process; finally it leads to progressive
calcification of the valve. There is no effective pharmacological treatment for CAVD and many of the underlying
molecular mechanisms remain unknown. We conducted a proteomic study to reveal novel factors associated with
CAVD.

Methods: We compared aortic valves from patients undergoing valvular replacement surgery due to non-calcified
aortic insufficiency (control group, n = 5) to a stenotic group (n = 7) using two-dimensional difference gel
electrophoresis (2D-DIGE). Protein spots were identified with mass spectrometry. Western blot and
immunohistochemistry were used to validate the results in a separate patient cohort and Ingenuity Pathway
Analysis (IPA) was exploited to predict the regulatory network of CAVD.

Results: We detected an upregulation of complement 9 (C9), serum amyloid P-component (APCS) and transgelin
as well as downregulation of heat shock protein (HSP90), protein disulfide isomerase A3 (PDIA3), annexin A2
(ANXA2) and galectin-1 in patients with aortic valve stenosis. The decreased protein expression of HSP90 was
confirmed with Western blot.

Conclusions: We describe here a novel data set of proteomic changes associated with CAVD, including
downregulation of the pro-inflammatory cytosolic protein, HSP90.
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Background
Calcific aortic valve disease (CAVD) is a progressive dis-
ease, which originates from endothelial cell damage on
the aortic surface of aortic valve followed by an accumu-
lation of oxidized lipids and the infiltration of inflamma-
tory cells into the valve [1]. This promotes active
remodeling of the extracellular matrix with the
disorganization of collagen fibers, resulting in a thicken-
ing of the aortic valve leaflets. Furthermore, osteogenic
programming of valve interstitial cells (VICs), causes
progressive calcification and ultimately a severe obstruc-
tion of cardiac outflow. Several factors and signaling
pathways have been linked to CAVD, e.g. interleukins,

tumor necrosis factor (TNF), matrix metalloproteinases,
bone morphogenic protein 2 (BMP2) and osteogenic
regulator runt-related transcription factor 2 (RUNX2) [1,
2]. However, despite recent progress in understanding
the molecular pathogenesis of CAVD, the factors driving
the progression of this disease are not fully understood.
Various omics-analyses have been performed to gain a

better understanding of the molecular mechanism
underpinning CAVD. Transcriptomic studies of human
CAVD have been undertaken to identify differentially
expressed genes [3–6] and microRNAs [4, 7] in different
stages of aortic valve calcification. In addition, there have
been multiple proteomics studies of CAVD performed
[8–16]. However, only three of them compared stenotic
valves to control valves [9, 12, 16], and of these, only
Schlotter et al. [12] reported the use of tricuspid valves
in their study. Furthermore, Schlotter et al. [12] com-
bined the results from proteomics and transcriptomics
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to describe the integrated molecular dataset of human
CAVD [12].
In this study, we conducted a proteomic analysis of

aortic valve calcification by comparing control and sten-
otic human aortic valves using two-dimensional differ-
ence gel electrophoresis (2D-DIGE). Selected proteomic
changes were confirmed with Western blotting and im-
munohistochemistry. In addition, Ingenuity pathway
analysis (IPA) was used to clarify the potential signaling
pathways associated with identified proteins.

Methods
Patients
The aortic valves examined in this study were obtained
from 50 patients at the time of aortic valve or aortic root
surgery. All operations were made following normal sur-
gical procedures. The study protocol was approved by
the Research Ethics Committee of Oulu University Hos-
pital and it conformed to the principles outlined in the
Declaration of Helsinki. The aortic valve cusps were
immersed immediately after removal into liquid nitrogen
and stored at − 70 °C until analyzed.
For proteomics study, patients were divided into two

groups: the control group (C, n = 5) consisted of patients
with normal, non-calcified, smooth and pliable aortic
valve cusps, operated due to ascending aortic pathology
(aneurysm or dissection) or aortic regurgitation. The
aortic stenosis group (AS, n = 7) consisted of patients
who had non-rheumatic, severe aortic valve sclerosis
with an increased degree of calcification. Patients who
were identified as exhibiting macroscopic thickenings of
aortic valve cusps, which were microscopically identified
mainly as fibrotic and mild sclerotic lesions, were ex-
cluded from the study.
The patients’ demographics are presented in Table 1.

There were no significant differences in gender, left ven-
tricular ejection fraction or comorbidities between the
study groups, and valve anatomy. However, the average

age of the aortic stenosis (AS) patients was significantly
higher than the patients in the control group. Histologi-
cally, the stenotic valves had a significantly elevated
amount of calcium and more neovessels in comparison
with control valves [4, 17, 18]. For validation of proteo-
mics results, a separate matching group of patients (n =
39) was selected.

Two-dimensional difference gel electrophoresis (2D-DIGE)
The proteins extracted from control (C, n = 5) and calci-
fied (AS, n = 7) aortic valves were further purified by
buffer exchange using an Amicon Ultra ultrafiltration
unit with a 10 kDa cutoff (Millipore) and urea buffer (7
M urea, 2M thiourea, 4% [w/v] CHAPS, 30 mM Tris,
pH 8.5) and then the protein samples were sonicated
and centrifuged. Protein amounts in the supernatants
were determined with a Bradford-based assay according
to the manufacturer’s instructions (Roti®-Nanoquant)
and the aliquots were stored at − 70 °C. Protein labeling
was performed with CyDye DIGE Fluor minimal dyes
(GE Healthcare) according to the manufacturer’s proto-
col using 400 pmol Cy3 (pooled standard) and Cy5 (con-
trol, AS, respectively) for 50 μg protein. Proteins were
separated as described earlier [19]. In brief, immobilized
pH gradient (IPG) strips (pH 3–10 nonlinear, 24 cm, GE
Healthcare) were incubated overnight in 650 μl rehydra-
tion buffer (7M urea, 2M thiourea, 4% [w/v] CHAPS,
130 mM [w/v] DTT, 2%[v/v] carrier ampholytes 3–10,
Complete Mini protease inhibitor cocktail [Roche Life
Science]). Isoelectric focusing (IEF) after anodic sample
cup-loading was carried out with the Multiphor II sys-
tem (GE Healthcare) under paraffin oil with 67 kVh.
SDS-PAGE was performed overnight in polyacrylamide
gels (12.5%) with the Ettan DALT II system (GE Health-
care) at 1–2W per gel in 12 °C. Fluorescence signals
were detected with a Typhoon 9400 (GE Healthcare)
and 2-D gels analyzed with Delta2D 4.0 (Decodon). The-
oretical spot positions were calculated with the Compute
pI/Mw tool (http://ca.expasy.org/tools/pi_tool.html).
Principal Component Analysis was performed with the
Delta2D v4.0 software (Decodon) according to the spot
intensities on every gel image.

Mass spectrometry
For protein identification, additional 2-D gels were run
with a higher amount of unlabelled protein (400–600 μg)
combined with 50 μg Cy3-labelled internal standard.
After detection of the fluorescence signals (see above)
and silver staining, labelled and unlabelled protein pat-
terns were matched with the 2-D PAGE image analysis
software Melanie 3.0 (GeneBio). Spots with correctly
matched centers were excised, digested with trypsin (re-
combinant; Roche) and prepared for MALDI-TOF mass
spectrometry as described previously [19]. The extracted

Table 1 Demographics of the patients examined in the
proteomic analysis

Control Aortic Stenosis P-value

Patients, n 5 7

Male, n (%) 5 (100%) 5 (71.4%) 0.46

Bicuspid valve 0 2 (28.6%) 0.47

Age (years), range 43.4 (33.2–53.6) 66.6 ± (53.8–79.3) 0.007

LVEF (SD) 58.0 ± 11.2 56.7 ± 8.8 0.53

DM, n (%) 0 1 (14.3%) ≥0.9

CHD, n (%) 0 3 (42.9%) 0.21

ASO, n (%) 0 1 (14.3%) ≥0.9

Statin use, n (%) 1 (20%) 4 (66.7%) 0.24

ASO Peripheral atherosclerosis, CHD Coronary heart disease, DM Diabetes
mellitus, LVEF Left ventricle ejection fraction; SD, standard deviation

Weisell et al. BMC Cardiovascular Disorders          (2019) 19:306 Page 2 of 12

http://ca.expasy.org/tools/pi_tool.html


and dried peptides were dissolved in 5 μl alpha-Cyano-3-
hydroxycinnamic acid (98%, recrystallized from ethanol-
water, 5 mg/ ml in 50% acetonitrile and 0.1% TFA) and
0.5 μl applied onto the sample plate using the dried-
droplet method. Proteins were identified from PMF ob-
tained with a VOYAGER-DE™ STR (Applied Biosystems)
as described earlier [19]. In general, the clearest peaks
(up to 50) visible in the mass spectrum were used to
identify proteins with Mascot (http://www.
matrixscience.com/) using Swiss-Prot as the correspond-
ing protein database. Search parameters were enzyme:
trypsin; modifications: oxidation of Met; missed cleavage:
1; resolution: monoisotopic; ion mode: [M +H]; thresh-
old: 50 ppm. The protein identification was accepted if
at least 4 major peaks matched to the protein with the
highest Mascot score. In addition, the identification was
confirmed by analyzing the induced spot from different
gels. During later stages of the project, mass spectra of
the tryptic digests were obtained with a UltrafleXtreme
MALDI TOF/TOF instrument (Bruker Daltonics) where
up to 10 ions from each peptide fingerprint were sub-
jected to the MS/MS measurement. Data were processed
with Flexanalyis and Biotools (Bruker) and combined
PMF/MS/MS spectra were searched against the NCBI or
Swiss-Prot non-redundant protein database using Mas-
cot (Matrix science) with standard search parameters
(MS tolerance: 30 ppm, MS/MS tolerance: 0.7 Da, modi-
fications: Carbamidomethyl (Cys) and optional oxidation
of Met, up to 1 missed cleavage).

Protein extraction and Western blot
In the western blot experiments, aortic valve samples
were obtained from a separate matching cohort (C, n =
19 AS, n = 20). The samples were ground in liquid nitro-
gen, and then homogenized for 10 min in a lysis buffer
containing inhibitors. The lysis buffer itself contained 1
M Tris (pH 7.5), 3 M NaCl, 0.25M EDTA (pH 8.0), 0.1
M EGTA (pH 7.9), 1 mmol/l β-glycerophosphate, 1
mmol/l Na3VO4, 2 mmol/l benzamidine, 1 mmol/l phe-
nylmethylsulfoxide, 50 mmol/l NaF, 1 mmol/l dithiothre-
itol and 10 μg/ml each of leupeptin, pepstatin,
aprotininand and distilled water. The valve tissue sam-
ples were homogenized using a MagnaLyser instrument
(Roche). After homogenization, the samples were centri-
fuged for 20 min in 12,500 rpm and + 4 °C and then the
supernatant was collected for protein isolation. 5x NEB
lysis buffer (100mM Tris-HCl [pH 7.5], 750mM.
NaCl, 5 mM EDTA, 5 mM EGTA, 5% Triton X 100,

12 mM sodium pyrophosphate, 5 mM β-
glycerophosphate, 5 mM Na3VO4) was added and mixed
following centrifugation for 20 min in 12,500 rpm in +
4 °C. Supernatant containing the total fraction was col-
lected. Western blot was performed using a 1.0 mm, 12%
gel with 40 μg of protein/well. The following primary

antibodies were used: HSP90α (ADI-SPS-771) and
HSP90β (ADI-SPA-844) from Enzo Life Sciences, Pro-
tein kinase B (Akt) (#9272), Phospho- Akt (#4056), p38
mitogen activated protein kinase (MAPK) (#9212),
phospho-p38 MAPK (#9211), extracellular signal regu-
lated kinase p44/42 MAPK (Erk1/2) (#9102) and
Phospho-p44/42 MAPK (pErk1/2) (#9106) from Cell
Signaling Technology, Inc., Anti-Annexin II (610,068,
BD Transduction Laboratories), and Anti-Galectin 1
(ab25138, Abcam). Anti-mouse-IgG HRP-labeled (GE
Healthcare), Anti-rabbit-IgG Peroxidase conjugate (Cal-
biochem), anti-IgG HRP-linked rabbit (#7074, Cell Sig-
naling Technology, Inc.), and anti-IgG HRP-linked
mouse (#7076, Cell Signaling Technology, Inc.) second-
ary antibodies were used. Data was quantified using the
QuantityOne Software (Bio-Rad).

Histological stainings
The localization of HSP90α and HSP90β in the aortic
valve cusps was studied by using immunohistochemi-
cal stainings. The aortic valve samples, sent for rou-
tine diagnistics, were fixed in buffered formalin
solution and embedded in paraffin. Decalcification
with EDTA was done if needed. For total valve area
and calcified valve area slides were photographed with
a Leica DFC420 camera (Wetzlar) and areas were
quantified with Image J analysis software. Calcified
area to total area was calculated with the following
formula: (calcified valve area/ total valve area)*100.
Before application of the primary antibodies, the 5-
μm-thick sections of valves samples were heated in a
microwave oven in citrate buffer, pH 6.0, for 30 min.
Rabbit monoclonal antibodies ab133492 at a dilution
of 1:2000 (Abcam) for HSP90α and ab32568 at a dilu-
tion of 1:300 (Abcam) for HSP90β were used to stain.
3,3′Diaminobenzidine (DAP) was used as the chromo-
gen in immunostaining process. Negative control
stainings were carried out by substituting nonimmune
rabbit serum for the primary antibodies.

Molecular network analysis
The up- or down-regulated proteins with their re-
spective expression values were uploaded for process-
ing by the Ingenuity Pathway Analysis (IPA) software
(Qiagen). A core analysis was performed with the fol-
lowing parameters: core analysis, reference set user-
defined (i.e., only the set of differentially expressed
genes by GeneSpring-software mapped to the IPA
database), direct and indirect relationships included,
confidence = experimentally observed. Then, the IPA-
software was used to generate a molecular network
showing the interrelationships between up- or down-
regulated proteins as previously described [20], based
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on the information contained in the Ingenuity Path-
ways Knowledge database.

Statistical analysis
The results are expressed as mean with standard devi-
ation (SD) unless otherwise stated. Continuous variables

were analyzed by using Student’s t-test, semi-continuous
variables using Mann-Whitney U-test and Fisher’s exact
test for categorical variables. Analyses were performed
using SPSS for Windows (IBM Corp. Released 2018.
IBM SPSS Statistics for Windows, Version 25.0). Corre-
lations were detected with linear regression model in

Fig. 1 CAVD-related proteomic changes in human aortic valves. a Representative 2-D gel of calcified aortic valve is shown. Proteins (50 μg) were
labelled with minimal DIGE and separated by IEF (pH 3–10 NL) and SDS-PAGE. b The positions of the changed spots as well as the expression
profiles indicating the detected protein levels in control (C) and stenotic (AS) aortic valves are specified. HSP90, heat-shock protein 90; C9,
complement 9; PDIA3, protein disulfide isomerase A3; ANXA2, annexin 2; serum amyloid P-component, APCS
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Graphpad Prism 5. P < 0.05 was considered statistically
significant.

Results
Proteomic analysis of aortic valve calcification
The proteomic analysis, based on the minimal DIGE,
identified a total of 15 differentially abundant protein
spots in stenotic valves as compared to control valves ac-
cording to the selection criteria (fold change ≥1.5 and
P ≤ 0.05). A typical 2D gel representing calcified aortic
valve proteins is shown in Fig. 1. Further, mass spec-
trometry analyses identified seven proteins within 12
spots (Table 2) which had undergone significant upregu-
lation i.e. complement 9, serum amyloid P-component
(APCS) and transgelin (1.7-, 2.3- and 3.5-fold, respect-
ively, P < 0.05) as well as downregulation of heat shock
protein HSP90 (α/β; genes HSP90AA1/AB1), protein di-
sulfide isomerase A3 (PDIA3), annexin A2 (ANXA2)
and galectin-1 (2.1-, 3.5-, 2.2- and 2.2-fold, respectively,
P < 0.05) in stenotic valves (Fig. 1, Table 2).

Confirmation of proteomics results
Western blot was used to validate the the proteomic re-
sults of HSP90, ANXA2 and galectin-1. The candidate
proteins were selected based on their unknown role in
CAVD. A marked downregulation of HSP90β protein
levels was detected in stenotic valves compared to

controls (Fig. 2a-b), whereas no change in HSP90α pro-
tein levels was observed (data not shown). Considerable
interindividual variability was seen in the levels of
ANXA2 protein, since it was highly expressed in only
two out of three control samples (Fig. 3c). There was no
significant difference in galectin-1 protein levels between
stenotic and control levels (Fig. 3a-b).
To test if valvular anatomy impact on our data, we

performed an unsupervised clustering analysis (principal
component analysis, PCA) on the raw proteomic data
(Additional file 1: Figure S1). We hypothesized that if
valvular anatomy would affect protein expression profile,
bicuspid valves should cluster together and distinctly
from tricuspid valves. However, we find no evidence of
such clustering and in fact, the clearest distinction
emerges between control, and AS.
We correlated HSP90 expression levels both with age

and calcification of the valves (expressed as proportion
of calcified area in aortic valve cusps to total aortic
valve). As shown in Additional file 2: Figure S2A-B, the
HSP90β protein levels correlated with age of the patients
(P < 0.01) and calcification of the valves (P < 0.05). In
addition, the valvular calcification correlated with the
age (P < 0.01) (Additional file 2: Figure S2C).
In the immunohistochemical stainings, the localization

of HSP90α and HSP90β was virtually identical (Fig. 2b-
e). VICs in both normal and calcified valves were

Table 2 Up- and down-regulated proteins as determined by 2D-DIGE in calcified valves as compared to control valves

Comparison Control vs.
calcified valvesa

Protein identificationc

Spot Protein UniProt Description Ratio P-value Theoretical pI/MW (kDa)b Score
(MS, MSMS)

SC (P)
(MS, MSMS)

1 HSP90α/β P07900/ P08238 Heat shock protein HSP90AA1/AB1 − 2.05 0.022 AA1: 1: 4.94/84.7 113.0, − 39(18),-

2: 5.07/98.2

AB1: 4.96/83.3

2 C9 P02748 Complement 9 1.74 0.014 5.43/63.2 (5.42/60.9) 83.2, − 21(14),-

3 1.68 0.016 (C9a: 4.59/27.8) 88.5, − 18(13),-

4 1.55 0.018 (C9b: 8.63/33.2) -, 72.9 -, 5(2)

6 PDIA3 P30101 Protein disulfide-isomerase A3 −3.35 0.016 5.98/56.8 (5.61/54.3) 162.0,- 46.8(21),-

8 ANXA2 P07355 Annexin A2 −2.22 0.012 1: 7.57/38.6 (7.56/38.5) 71.1,- 21(5),-

9 − 2.95 0.019 2: 8.53/40.4 (8.54/40.3) 199*,- 33(13),-

10 APCS P02743 Serum amyloid P-component 2.26 0.014 6.10/25.4 (6.12/23.3) 75*, − 20(4),-

11 1.59 0.039 80*,- 20(5),-

12 1.51 0.046 82*,- 25(5),-

13 TAGLN Q01995 Transgelin 3.45 0.032 8.87/22.6 (8.88/22.5) 176.00,- 76(27),-

15 LGALS1 P09382 Galectin-1 −2.19 0.012 5.30/14.7 (5.30/14.6) 92.4, 64.8 57(7), 44(2)
aThe ratio represents the change of the mean normalized volumes. Statistical significance is shown with the t-test (P < 0.05). Ratio and t-test values of the
unidentified spots were as follows: spot 5 (−2.60, 0.0200), spot 7 (− 2.91, 0.0311) and spot 14 (− 2.12, 0.0159)
bThe theoretical expected spot position in the gel according to the full or matured (in brackets) protein sequence is shown. If the protein exists in different
isoforms, then the specific number of the isoform is likewise indicated
cThe protein identification shows the MS and/or MSMS scores based on analysis with the UltrafleXtreme MALDI TOF/TOF instrument or measurements with the
VOYAGER-DE™ STR (*). In addition, the sequence coverage (SC) and number of matched peptides (P) are shown
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positive. In addition, the endothelium of neovasculature
was widely positively stained, whereas in the surface
endothelium, the positive reaction was more patchy.
Furthermore, most of the inflammatory cells, mainly
lymphocytes, were also positively stained.

Identification of the molecular network between up- and
down-regulated proteins
An IPA-analysis was used to determine the biological re-
lationships among the differentially expressed proteins.
The main molecular network exhibiting expression
changes based on Fisher’s exact test is shown in Fig. 4.

Among the novel putative interactions suggested by
IPA, HSP90 was linked to Akt and ERK, and further to
p38 MAPK (Fig. 4). Therefore, we conducted Western
blot analyses to evaluate the activation of Akt, ERK and
p38 MAPK kinases in control and stenotic valves. The
ratio of phosphorylated ERK to total ERK was increased
(1.5-fold, P < 0.05) whereas the ratio of phosphorylated
Akt to total Akt was reduced (0.7-fold, P < 0.05) suggest-
ing that the Akt and ERK pathways were disturbed in
the stenotic valves (Fig. 5a,c). Instead, there was no
change in the phosphorylation pattern of p38 MAPK in
stenotic valves (Fig. 5b).

Fig. 2 HSP90 expression in aortic valves. a Western blot analysis revealed decreased HSP90β protein levels in stenotic valves (AS) when
compared to control valves (C). Results are mean ± SD, ** = P < 0.01. Representative Western blots are shown. Immunohistochemical stainings
against HSP90α (b, d) and HSP90β (c, e) in aortic valves. VICs in aortic valve displayed cytoplasmic positivity for HSP90α (b) and HSP90β (c)
stainings. Representative examples of adjacent sections of the same area of a control valve. Also the the endothelium was strongly positive for
HSP90α (d) and HSP90β (e). Representative examples of adjacent sections of the same area of neovasculature in calcified valves. There was also a
wide positive reaction in valve interstitial cells (VICs) and patchy positivity in inflammatory cells, mainly small lymphocytes. All pictures are at the
same scale, scale bar depicts 100 μm
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Discussion
Here we describe a 2D-DIGE-determined proteomic
profile associated with CAVD. We detected a distinct
upregulation of APCS, C9 and transgelin as well as a
downregulation of HSP90, PDIA3, ANXA2 and galectin-
1 proteins in calcified valves in comparison to control
valves. We confirmed this decrease in HSP90β protein
levels in calcified valves by performing a Western blot
analysis and then conducted an IPA analysis to predict
HSP90 interactions in CAVD.
This is the first study revealing a decreased expression

of HSP90 in calcified aortic valves. HSP90 is a molecular
chaperone and a member of a large HSP family. Previ-
ously, a decreased expression of HSP27 in calcified
valves has been reported in the proteomic study con-
ducted by Martin-Rojas et al. [16]. In addition, several
HSP family members are linked to the pathophysiology
of atherosclerosis in which they have pro-inflammatory
effects and regulate endothelial function (reviewed in
[21]). In the endothelium, HSP90 is part of a complex
with endothelial nitric oxide synthase ((eNOS)/HSP90)
[22–24]. The dissociation of HSP90 causes uncoupling
of eNOS, leading to the production of reactive oxygen
species (ROS) and endothelial dysfunction [23]. This
process might be initiated by pro-inflammatory lipids

[23, 24]. Interestingly, uncoupling of NOS and the in-
creased level of oxidative stress have also been reported
in calcified stenotic aortic valves [25]. In our study,
HSP90 positivity was seen in the surface endothelium of
the valves, and in the endothelium of the neovasculature
of the calcified valves. Our findings are similar to those
of Martín-Rojas et al. [16], who reported decreased
HSP27 protein levels in the endothelium layer of sten-
otic valves [16]. In summary, the expression of HSP90 in
the endothelium supports the idea that HSP90 has a role
in regulating endothelial function in the progression of
aortic valve calcification.
HSP90 was expressed in inflammatory cells that were

mainly lymphocytes. In atherosclerosis, HSP90 is overex-
pressed in inflammatory sites of human atherosclerotic
plaques [26, 27]. Furthermore, several studies have re-
ported that inhibition of HSP90 can exert atheroprotec-
tive effects (decreased plaque size and reduced
inflammatory responses) [27, 28] and less oxidative
stress [29]. In CAVD, the amount of inflammation de-
creases when the disease progresses and acquires its
more calcific phenotype (reviewed in [2]). If the role of
HSP90 is related to the propagation of inflammation, it
may have a different function in a heavily calcific envir-
onment as was present in these stenotic valves. However,

Fig. 3 Protein expression of annexin II and galectin-1 in aortic valves. Western blot analysis showing (a) annexin II and (b) galectin-1 in stenotic
(AS) and control valves (C). Representative Western blots are shown. Results are mean ± SD
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further studies should focus on HSP90’s role in calcific
VICs.
HSP90 mediates an ATP-dependent folding of its tar-

get proteins that are involved in many diverse cellular
processes ranging from intracellular transportation to
signal transduction (for general reviews on HSP90 biol-
ogy, see [30]. The IPA analysis predicted that downregu-
lation of HSP90 would be linked with Akt, p38 MAPK
and ERK signalling pathways. We observed an increased
activation of ERK1/2 and reduced activation of Akt-
kinase in calcified valves whereas there was no change in
the phosphorylation of p38 MAPK. Previously, Akt and
ERK have been shown to mediate leptin induced osteo-
blast differentiation [31]. In addition, activation of Akt
has been demonstrated to regulate calcium deposition
[32] and ROS-induced expression of RUNX2 in human
VICs [33]. Furthermore, a study with cultured porcine

VICs revealed that ERK inhibition reduced gene expres-
sion of myofibroblastic and osteoblastic markers [34]. In
our study, Akt and ERK exhibited distinctive phosphor-
ylation patterns suggesting differential regulation of
these signalling pathways in the heavily calcified valves.
In agreement with the previous proteomics studies of

CAVD [10], [12], [16], we identified increased protein
expression of the C9 component of the complement sys-
tem and APCS. Upregulation of C9 is supported by the
data by Helske et al. [35] who were the first investigators
to show an activation of the complement system in sten-
otic valves. APCS, also known as pentraxin-2, is involved
in amyloidosis but it is also present in human athero-
sclerotic lesions [36]. It exerts anti-inflammatory and
antifibrotic properties e.g. inhibiting monocyte differen-
tiation into proinflammatory macrophages [37]. APCS
has also been implicated in several cardiovascular

Fig. 4 The molecular network of differentially expressed proteins in CAVD generated by Ingenuity Pathway Analysis. The Ingenuity Pathway
Analysis (IPA) Core Analysis-based network displays interactions between proteins that were differentially expressed in stenotic valves as
compared to control valves. Up- and down-regulated proteins are in red and green, respectively. Molecules not marked with a color were not
altered in the data set but they are possible connections suggested by IPA. Molecules are represented with various shapes that represent the
functional class of the gene product. A solid line represents direct interactions and a dashed line represents an indirect interaction. The full
names of the molecules are given in Table 3
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pathologies (reviewed in [38–40]), and the role of this
protein in CAVD should be investigated in detail. Our
finding of decreased ANXA2 protein levels in calcified
valves confirms the similar proteomic profiling findings
of Matsumoto et al. [10]. In addition, ANXA1 and
ANXA3 have been previously detected in calcified re-
gions of aortic valves [10, 12]. Furthermore, Cui et al.
[41] detected an up-regulation of annexins I, II, III, IV,
V, VI, VII, and XI in calcifying VIC-derived matrix vesi-
cles, highlighting the significance of the annexins in the
calcification process. However, in contrast to a previous

proteomic study [16], we observed increased transgelin
(SM22) levels in stenotic valves. Since in both studies,
transgelin was detected at different positions in the 2D
gel, this discrepancy might be explained by the presence
of different transgelin variants.
A major limitation of our work is small number of

valves in our proteomic profiling study. This limited
sample size raises issue that results do not represent het-
erogeneity of aortic stenosis patients. This might be the
reason why we were not able to confirm with the West-
ern blots the results of the proteomic data on Annexin

Table 3 Full annotation of genes illustrated in Fig. 4

Symbol Entrez Gene Name Location Family Entrez Gene

Akt AKT Serine/Threonine Kinase Cytoplasm group

ALPK1 Alpha kinase 1 Other kinase 80,216

ANXA2 Annexin A2 Plasma Membrane other 302

APCS Amyloid P component, serum Extracellular Space other 325

ARMC5 Armadillo repeat containing 5 Cytoplasm other 79,798

C20orf194 Chromosome 20 open reading frame 194 Nucleus other 25,943

C9 Complement C9 Extracellular Space other 735

Ck2 Casein Kinase II Cytoplasm complex

DCLK2 Doublecortin like kinase 2 Cytoplasm kinase 166,614

DDX59 DEAD-box helicase 59 Other enzyme 83,479

DMRTA1 DMRT like family A1 Nucleus transcription regulator 63,951

ERK Extracellular Signal-Regulated Kinase 1/2 Other group

G2E3 G2/M-phase specific E3 ubiquitin protein ligase Cytoplasm enzyme 55,632

GRK7 G protein-coupled receptor kinase 7 Cytoplasm kinase 131,890

HSP90 Heat shock protein 90 Cytoplasm group

HSP90AA1 Heat shock protein 90 alpha family class A member 1 Cytoplasm enzyme 3320

HSP90AB1 Heat shock protein 90 alpha family class B member 1 Cytoplasm enzyme 3326

IL6 Interleukin 6 Extracellular Space cytokine 3569

INSRR Insulin receptor related receptor Plasma Membrane kinase 3645

KCTD8 Potassium channel tetramerization domain containing 8 Other other 386,617

LGALS1 Galectin 1 Extracellular Space other 3956

MAP 3 K15 Mitogen-activated protein kinase kinase kinase 15 Other other 389,840

MYLK4 Myosin light chain kinase family member 4 Cytoplasm kinase 340,156

MYO3B Myosin IIIB Plasma Membrane kinase 140,469

P38 MAPK Mitogen-Activated Protein Kinase P38 Alpha Cytoplasm group 1432

PDIA3 Protein disulfide isomerase family A member 3 Cytoplasm peptidase 2923

PSKH1 Protein serine kinase H1 Nucleus kinase 5681

RPS6KL1 Ribosomal protein S6 kinase like 1 Other kinase 83,694

STK32B Serine/threonine kinase 32B Other kinase 55,351

TAGLN Transgelin Cytoplasm other 6876

TNF Tumor necrosis factor Extracellular Space cytokine 7124

TSSK2 Testis specific serine kinase 2 Cytoplasm kinase 23,617

ZBED4 Zinc finger BED-type containing 4 Nucleus transcription regulator 9889

ZNF215 Zinc finger protein 215 Nucleus transcription regulator 7762
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II and galectin-1. Consequently, the generalizability of
these results have to be confirmed in larger sample
population. However, it is noteworthy that despite lim-
ited number patients, we also noticed increased expres-
sions of CP9 component, APCS and ANXA2, in
agreement with previous proteomic studies.
In our analysis, HSP90 expression correlated both with

age and calcification of the valves. Since aortic valve cal-
cification correlated with age of the patients, these corre-
lations can be explained to be due the fact that aortic
valve calcification is most prevalent in the elderly [42].
Thus, we cannot rule out that the changes in HSP90
protein expression are due to the aging and not aortic
valve calcification. Furthermore, we did not confirm all
the proteomic profiling results with another method. Fi-
nally, all the HSP90 associations are only predicted; the
experimental validation of HSP90 interaction with Akt
and ERK signaling pathways in aortic valve calcification
will have to be the subject of some future work.

Conclusion
Our proteomic analysis identified seven dysregulated
proteins in calcified valves when compared to control
valves. These proteins may have roles in regulating pro-
cesses associated with the pathogenesis of CAVD such
as the immune response and calcification. Overall, our
findings suggest novel insights into the mechanisms of
aortic valve calcification and HSP90 may be a central
signaling molecule in aortic valve calcification.
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