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Abstract

Control problem in a biological system is the problem of finding an interventional policy for

changing the state of the biological system from an undesirable state, e.g. disease, into a

desirable healthy state. Boolean networks are utilized as a mathematical model for gene

regulatory networks. This paper provides an algorithm to solve the control problem in Bool-

ean networks. The proposed algorithm is implemented and applied on two biological sys-

tems: T-cell receptor network and Drosophila melanogaster network. Results show that the

proposed algorithm works faster in solving the control problem over these networks, while

having similar accuracy, in comparison to previous exact methods. Source code and a sim-

ple web service of the proposed algorithm is available at http://goliaei.ir/net-control/www/.

1 Introduction

A gene regulatory network (GRN) is a mathematical model of genes and their interaction [1].

The purpose of GRN studies is to achieve a new insight toward the important cellular pro-

cesses. Examples of mathematical modeling of biological processes includes cell cycle [2, 3],

oscillations in p53-mdm2 system [4–6], phage-lambda system [7–9], and T-cell large granular

lymphocyte (T-LGL) leukemia network [10, 11]. There are different techniques for modeling

dynamics of GRNs, including Boolean networks (BNs) [11], Bayesian networks [11], dynamic

Bayesian networks [11], linear models [12] and differential equations [12]. Among the above

mentioned models, the Boolean network model has received many attentions [13–16]; that is

because in addition to the tractability, Boolean networks could be reconstructed by efficient

biological experiments [17, 18].

Detecting a set of perturbations which cause the desirable changes in cellular behavior has

many applications such as cancer treatment and drug discovery [5, 19–23]. This highlights the

necessity of developing a control theory for the gene regulatory networks. Using GRN control

model is considered as a key method to design the experimental control policies [23].

The control problem includes finding a sequence of interventions to be applied on the sys-

tem, which changes state of the system from an undesirable state of the network to a desirable

one [24–26]. The undesirable state in a gene regulatory network may express a disease such as

cancer, and the desirable state can express the wellness, for example as induction of apoptosis
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in cancerous cells or tumors. Therefore, using the case of control and medical interventions,

we can exterminate the tumor cells and achieve healthiness [26].

1.1 Related works

Up to now, numerous methods have been proposed to solve the control problem in Boolean

networks. Among the vast diverse proposed methods, we name the more optimized control

techniques, to which a list of possible control nodes is given as input [27–30]. Bo Gao et al pro-

posed an algebraic method to solve the control problem and used the semi-tensor product

(STP) as a state transition matrix [31]. Qiu, Yushan et al took benefit from the integer pro-

gramming to solve the control problem in multiple Boolean networks, for the cancer-causing

and normal cells [32]. Christopher James Langmead and Sumit Kumar Jha proposed an algo-

rithm based on model checking to find the control strategy in Boolean networks [33]. Yang

Liu et al searches for a controlling sequence to transform from a state to a desirable one, with a

difference that he avoids some special and prohibited states [34].

Authors found no exact algorithm for the same network control problem in more recent

years. However, an algorithm for identification of the best one-bit perturbation is provided

[35]. In this problem, a Boolean network is given and the problem is to find a gene that chang-

ing its initial state 1) does not change attractors of the network, 2) maximize the size of the

basin of some desired attractors. This method first computes the state graph of the network

and then tries to modify the state graph after changing some node’s value, efficiently.

Meanwhile, in some cases, the genetic algorithm and the greedy algorithms are used to

solve the control problem in Boolean networks [36–38]. Datta et al proposed an algorithm to

control the probabilistic Boolean networks (PBN) based on Markov chains and dynamic pro-

gramming [24–26]. In this approach, it is supposed that states of some nodes could be con-

trolled externally, and the goal is to find a sequence of changes to be applied as controlling

policy to result in the network desirable state. In their method, they first consider the final

desired state, and then, they compute a set of desired states for all the time steps in a backward

manner. To compute the set of desired states for a time, given set of desired states for the next

time step, they enumerate all possible states of the network and their next state. A state with its

desired next state is considered as the desired state, for that time step.

Since the Boolean network is a specialization of the probabilistic Boolean network, this

method is also applicable to Boolean networks. The problem with the proposed algorithm was

that it lacks the necessary efficiency, because all the states within probabilistic Boolean network

(or Boolean network) were required to be taken into consideration in all time steps between

the initial state and the desirable state; so a state transition matrix with exponential size is pro-

duced programmatically [25].

Akutsu et al [39] showed that finding a control strategy for a Boolean network is an NP-

hard problem. However, they proposed a polynomial time algorithm to find control strategies

over trees, instead of general graphs. The algorithm is based on dynamic programming in

which a sub-problem is to find a control sequence for a subtree of the original tree. They also

expanded the algorithm for the networks with a low number of loops, but if the network has a

high number of loops, or the given number of time steps between the initial state and the desir-

able state is high, the algorithm would not have the desirable efficiency [39]. Thus, in most of

the proposed methods, if the size of the Boolean network is high, the proposed algorithm

might have not the desirable efficiency.

Since most biological networks lack a tree structure, the algorithm for tree structures is not

applicable for real networks [39]. Therefore, new algorithms are still needed to be more effi-

cient for general networks with a high number of loops, a high number of time steps, and for
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large size networks. In this paper, we have presented a new algorithm to solve the control prob-

lem, and we investigate the applicability of the provided algorithm on two GRNs: T-cell recep-

tor network [40] and Drosophila melanogaster network [41], and compare the efficiency with

other algorithms.

In another completely different view, a mathematical formulation of the controllability prob-

lem of Boolean networks is provided. These works formulate the dynamics of Boolean networks

as linear systems. They defined an extension of matrix multiplication to achieve this goal. They

applied this technique on classical Boolean network control problem and showed that this

formulation exactly models the desired problem. Le et al proved theorems that specify some

necessary and sufficient conditions for a Boolean network to be controllable [42]. The same

technique is applied to model a Boolean network with time delays. In a Boolean network with

time delay, state of nodes may affect other nodes after some predefined delay. Some necessary

and sufficient conditions for controllability of these networks is provided [43]. An extension to

the network control problem, which has not only one initial and one desired states, but also a

set of states as initial and desired ones (called trajectory), is provided recently [44]. With similar

algebraic techniques, they proved theorems on controllability for trajectory problems.

1.2 General idea of proposed algorithm

The proposed algorithm is an exact algorithm, i.e. an algorithm that always finds the correct

answer, but it is using some properties of the network to enumerate a smaller number of states

and perform faster than previously provided algorithms. The general idea of the proposed algo-

rithm is to divide the network to partially-dependent parts and then consider all the possible

states the network may be in. To discover these independent subnetworks, we consider strongly

connected components and categorize them to find independent parts. Strongly connected

components induce an order of dependency between genes. Thus, we can handle them with

the induced order, one by one. For each strongly connected component, we consider all possi-

ble states. If possible states of a subnetwork (that forms a strongly connected component), is

independent of some other parts, we can enumerate these two parts independently, and by this

trick, the number of states that we should consider would be reduced. More precisely, if there

are k independent parts having number of status #S1, . . ., #Sk, number of status that we consider

reduces from #S1 × . . . × #Sk to #S1 + . . . + #Sk. The multiplication is the number of states that

the Datta algorithm enumerates. With this trick, we reduce the running time of our algorithm.

As it could be seen, size of strongly connected components of a network could be a good

estimation of how faster our algorithm is, in comparison of previously provided dynamic pro-

gramming algorithms (e.g. Datta algorithm). In a recent study, GRN of E. coli is analyzed. In

this network, among 1807 genes, there are 202 transcription factors. This network does not

contain any strongly connected component with more than 5 nodes [45]. Also, a manually

curated GRN of mouse consists of 274 genes with 176 transcription factors. Its larges strongly

connected component contains only 80 genes, in which only 29 are transcription factors [45].

These observations show that real regulatory networks have small strongly connected compo-

nents which are the cases that our algorithm works better for them. By taking advantages of

this observation we provided an algorithm in this paper.

2 Materials and methods

2.1 Background on Boolean network control

In a Boolean network, each node represents a gene, and each edge represents a regulatory

effect of one gene expression on another one, which may cause an increase or decrease in the

gene expression [46].
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A Boolean network is modelled as a directed graph G = (V, F), which includes a set of n
nodes V = {v1, v2, . . ., vn}, and a set of Boolean functions F = {f1, f2, . . ., fn}. Boolean network is

a discrete time model. Each node vi has a state variable vi(t) 2 {0, 1} representing the state of

node vi at time t, where 0 (1) indicates lack of (existence of) gene expression. Also, each node

vi has a Boolean function fi, representing how to obtain vi(t + 1) from the state of the incoming

nodes to vi at time step t by applying basic Boolean operations (and, or, not). The network

state at time t, is defined as vector vt = [v1(t), v2(t), . . ., vn(t)], which describes the state of the

nodes in time step t.
An example of a Boolean network is represented in Fig 1(a). In Fig 1(b), the state transition

table of the mentioned Boolean network is represented. This table represents the next state of

the network according to the current state. For example, if the network state in time step t is

[0, 1, 1], then the network state in time step t + 1 is [1, 0, 0].

In the control problem of Boolean networks, a Boolean network G = (V, F), initial state and

a desirable network state vτ is given. The set of nodes V is called internal nodes. A set of control

nodes {u1, . . ., um} are added to the network, known also as external nodes, which are used to

influence internal nodes to attain the desirable state. The external nodes have no incoming

edges, and their values are specified externally. The problem is to find a sequence of state val-

ues u0, . . ., uτ for external nodes, which leads the network to be in desirable state vτ in time

step τ. If there exists no such control sequence, this fact should be announced as the output. In

gene regulatory networks, the desirable state of the network represents a healthy state of the

system, and external nodes represent potential medicines affecting network behavior. Thus,

finding control strategies has applications in various medical areas, including medical protocol

design for example in cancer treatment [19, 20].

An example of a control problem on a Boolean network is represented in Fig 2. In this

example, {v1, . . ., v6} is the set of internal nodes and {u1, u2, u3} is the set of external nodes. The

initial state of the network is v0 = [1, 0, 1, 1, 0, 0], and the desirable state is v3 = [0, 1, 1, 1, 0, 1].

Thus, we are looking to find a control sequence u0, . . ., u3 in such a way that the network

would be in state v3 at time step t = 3. A possible solution, which is shown in the same figure, is

u0 = [1, 0, 0], u1 = [1, 1, 0], u2 = [0, 1, 1].

2.2 The proposed algorithm

The idea of our proposed algorithm is to reduce backtracking space by separating dependen-

cies and merging information from some sub-parts of the graphs, which we call them compo-

nents. In addition, we categorize components to find some easily solvable components, non-

branching and in some cases the branching components, to reduce the number of states to

enumerate.

Fig 1. (a) An example of a Boolean network. (b) the state transition table of this Boolean network.

https://doi.org/10.1371/journal.pone.0215449.g001
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In our proposed algorithm, we compute an intermediate variable U to be used in the com-

putation of the final result. For each node, at each time step, we calculate answer of two ques-

tions: is it possible for this node to be in state 1 (0), and store result of this question in an

intermediate variable U. For this computation, we design the following steps.

For network node vi, Boolean variable b 2 {0, 1}, and time step t, we define variable U
vi
b ðtÞ,

which is true if and only if it is possible to assign values to external nodes in such a way that it

cause vi(t) to get value b, and it is false otherwise. In the other words, U
vi
1
ðtÞ and U

vi
0
ðtÞ repre-

sent the possibility for node vi in time step t to have state value 1 and 0, respectively.

Let vi1 . . . vik be the input nodes to node vi. According to the definition of U we have U
vi
1
ðt þ

1Þ ¼ true if, and only if, there exists ½bi1
; bi2

; . . . ; bik
� such that fiðbi1

; bi2
; . . . ; bik

Þ ¼ 1 and

U
vij
bij
ðtÞ ¼ true for all j = 0, . . ., k. Value of U

vi
0
ðt þ 1Þ ¼ true, could be computed in the same

way.

For example, for node v6 in Fig 2,U
v6

1
ðt þ 1Þ is true if at least one of the variables U

v3

1
ðtÞ

and U
v5

1
ðtÞ are true. On the other hand, variable U

v6

0
ðt þ 1Þ is true if both variables U

v3

0
ðtÞ and

U
v5

0
ðtÞ are true.

For constant node vi, either U
vi
1
ðtÞ ¼ true and U

vi
0
ðtÞ ¼ false orU

vi
1
ðtÞ ¼ false and U

vi
0
ðtÞ ¼

true are true for all time steps. Also, for each external node ui, both U
ui
1
ðtÞ ¼ true and U

ui
0
ðtÞ ¼

true are true for all time steps.

To obtain the final result, we should check the existence of a control sequence which leads

to U
vi
vt½i�ðtÞ ¼ true for all the nodes. Also, to specify and output the desired control sequence,

the regression technique may be used [39].

Pseudocode of our proposed algorithm is presented in Fig 3. The source codes are available

as S1 Codes.

Fig 2. Example of a Boolean network control problem. (a) Network, (b) its state transition rules, (c) Control problem

and its solution.

https://doi.org/10.1371/journal.pone.0215449.g002
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Fig 3. Pseudo-code of our proposed algorithm.

https://doi.org/10.1371/journal.pone.0215449.g003
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2.2.1 Strongly connected components. In order to compute U values, we partition the

network into strongly connected components.

A strongly connected component (SCC) of a network, is a maximal subset of network

nodes, in which every node is reachable from every other one. We partition the network nodes

into strongly connected components, using SCC algorithm [47]. This algorithm is one of the

classical graph theory algorithms based on two depth-first searches on graph and reverse of the

graph, respectively. A topological order on strongly connected components of a network, is

an order on its components such that for every directed edge xy from component x to compo-

nent y, x appears before y in the ordering.

We find a topological order on the components using topological sort algorithm

[47]. Then, based on the size of the component and the number of outputs edges, we catego-

rize components into three categories: 1) non-branching single node components, 2) branch-
ing single node components, 3) multi-node components. A branching node is a node with at

least two outgoing edges and a non-branching node is a node with at most one outgoing

edge.

2.2.2 Non-branching single node components. In this case, current component consists

of one node vi, and vi has at most one outgoing edge. We simply find U
vi
0
ðtÞ and U

vi
1
ðtÞ for 0�

t� τ from state values of incoming nodes to vi in last time step.

For example, node v2 in Fig 2 is a Non-Branching Single Node Component for which

U
v2

0
ðtÞ and U

v2

1
ðtÞ for 0� t� 2 should be calculated based on state values of their incoming

nodes v1 and u2 in the previous time step. Note that, interestingly, for node v2 in time step t = 2

it is possible to be in state 1 and state 0. Another example with four non-branching single node

components and its U values is present in Fig 4.

In accordance with dynamic programming arrays, we fill U to desirable time step τ. Since

the nodes are met based on a topological sort, and all the states of the incoming nodes of the

related node till the time step τ are calculated before, this calculation is possible. In time step τ,

check if the related node has attained the desirable state or not. If the answer was negative,

announce that there is no control sequence.

2.2.3 Branching single node components. In this case, current component consists of

one node vi, and vi has at least two outgoing edges. Same as the previous case, we can simply

find values U
vi
0
ðtÞ and U

vi
1
ðtÞ. The difference is that since vi has more than two outgoing edges,

there are at least two other nodes in the network which their state values depend on the state

value of vi in the previous time. Thus, in some networks, the state value of vi which is required

by its outgoing neighbors may be inconsistent. An example of a branching node that is not

able to attain both states 0 and 1 in a time step is present in Fig 5.

Suppose that initial state is 101100 (as it is the case in Fig 2) and we are supposed to reach

to a state with v6 = 0 and v3 = 1 in time step t = 4. If we treat this node same as Non-Branching

Single Node Components, we would face a problem. This algorithm announces that in time

step t = 4, we can have v6 = 0 and v3 = 1, but there is no control sequence reaches to a state

with v6 = 0 and v3 = 1 in t = 4. The problem is that both v3 and v5 in t = 3 are able to attain val-

ues 0 and 1, but, there is a dependency between them. This dependency does not let v6 = 0 and

v3 = 1 in t = 4, simultaniously.

To deal with this problem, we fix some value for the node and recursively consider nodes

for next SCCs. In this manner, we remove the dependency between the following nodes by

considering different states one by one, recursively.

In other words, as we detect a dependency between states, we enumerate recursively all pos-

sible states. In the case of the branching node, if the branching node has more than one state in

time t, we go through backtracking. Otherwise, we can branch-out some states. If the node has
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one possible state, there is no need to go through backtracking. We can simply fill the next

components sequentially.

2.2.4 Multi-node components. In this case, the current component consists of at least

two nodes. We apply Datta algorithm in this case [24]. Datta et al fill an array D[v1(t), v2(t),
. . ., vn(t), t], for t = τ to t = 0 according to the following procedure:

D½v1ðtÞ; v2ðtÞ; . . . ; vnðtÞ; t� ¼
1; if ½v1ðtÞ; v2ðtÞ; . . . ; vnðtÞ� ¼ vt

0; otherwise

(

ð1Þ

Fig 4. Example of a network with four non-branching single node components.

https://doi.org/10.1371/journal.pone.0215449.g004

Fig 5. An example of a branching node that is not able to attain both states 0 and 1 in a time step.

https://doi.org/10.1371/journal.pone.0215449.g005
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D½v1ðt
0Þ; v2ðt

0Þ; . . . ; vnðt
0Þ; t0� ¼

1;

if there exists ðvt; uÞsuch that

D½v1ðtÞ; v2ðtÞ; . . . ; vnðtÞ; t� ¼ 1 and

vt ¼ f ðvt0 ; uÞ

0; otherwise

8
>>>>>><

>>>>>>:

ð2Þ

where t0 = t − 1. The table D[v1, . . ., vn, t] shows the possibility of reaching to the desired state,

if we start from state v1, . . ., vn from time step t. Thus, there exists a desired solution if and

only if D[v1(0), v2(0), . . ., vn(0), 0] = 1 holds for v1(0), . . ., vn(0).

After applying Datta algorithm, we check if it is possible to attain the desirable state in time

step t = τ. Then, we fillU array accordingly. For example, node vi in time step t may attain

the desired state in time step τ with both states 0 and 1, thus, we will have U
vi
0
ðtÞ ¼ true and

U
vi
1
ðtÞ ¼ true. Then we partition nodes with edges going out of the component into two cate-

gories, nodes with at most one outgoing edge and nodes with at least two outgoing edges

(branching node). Nodes with at most one outgoing edge are easy to handle, however, we treat

branching nodes which may attain both states 0 and 1 in the same time step, like branching sin-
gle node components. In both cases, we fix values for this component and go for the next com-

ponent recursively.

2.2.5 Complexity analysis. Let C1, . . ., C#C be the strongly connected components of G,

and σt(Ci) be the number of valid states of component Ci at time step t. Our algorithm enumer-

ates all the network states, but non-branching single node components and branching single

node components.

Datta algorithm finds all potentially desirable network states backward in time. To find

all desirable states in time step t, it generates all potential states for the network, which takes

O(2n) time, for an n node network. Then, for each potential state, it calculates next state and

checks whether it leads to the desirable state by searching it within desirable states of the time

step t + 1. Let T(G) be the time required to calculate the next state of a network’s state. The

amount of computation for time step t, for each potential state is T(G) for calculating the next

step in addition to searching it, which takes lg σt+1(G). Datta performs these two operations for

all 2n potential states. Therefore, Datta algorithm’s running time is O(∑t 2n(T(G) + lg σt(G))) =

O(τ2nT(G)). Note that, calculation of T(G) requires computation of Boolean functions for each

node, and if functions are given as input, their calculation asymptotic time is not more than the

size of the input, which is acceptable.

On the other hand, our algorithm proceeds component by component. For each compo-

nent, we consider all the σt(Ci) states for all time steps t. However, in the following three cases,

we do not enumerate all the states:

• For non-branching single node components, we compress states. In other words, we check

further components not by considering two possible states for these components recursively.

However, since network states of following components do not depend on different values

of these components, we make our enumerations by half, for each of these components.

Thus, if we have k such components, our running time will be reduced by a factor of 1

2k
, in

comparison to normal dynamic programming.

• We can check produced network states to be compatible with desired states when consider-

ing a component, and we do not delay it until enumerating all the following possible states.

We cleverly do this, by not backtracking on the time step t = M, but only on time steps t = 1
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through M − 1. Since no further network state depends on time step t = M of any compo-

nent, we may only check this compatibility and not backtracking on them.

• Leaf components with out-degree 0 are independent, and not required to be checked recur-

sively, but sequentially.

Considering above notes, our running time is O(StPi:I(t)σt(Ci)T(Ci)). Note that since 2n�

σt(G)�Piσt(Ci) and T(G)� ∑i T(Ci), our running time is always better than running time of

dynamic programming.

2.3 Example

Consider the network shown in Fig 6. This network consists of one external node u and four

internal nodes v1, v2, v3, and v4. Transition function and initial/desired state for the network is

shown in Fig 6.

Based on the proposed algorithm, we first partition network nodes to SCCs. SCCs of the

network of Fig 6 are S1 = {u}, S2 = {v1, v2}, S3 = {v3} and S4 = {v4}. SCCs are shown in Fig 6 as

dotted boxes.

First we process SCC S1 = {u}. Since node u is an external node, in every time step t, u can

attain both states 0 and 1, thus, U
u
bðtÞ ¼ true for all 0� t� 3 and b 2 {0, 1}. This SCC is a

branching single node component. Thus, we fix U
u
bðtÞ for all 0� t� 3 for all different combi-

nations of assignment values, as it is represented in Table 1. In the recursion, if correct solution

is found, the algorithm reports the solution and halts. Otherwise, the algorithm fixes another

combination and goes for next SCC, recursively. For this example, suppose that the algorithm

fixes row #2 of the Table 1 for component S1, and then goes through next SCCs.

Next SCC, according to the topological order of SCCs, is S2 = {v1, v2}. The logic behind

behavior of S2 is that, if u(t) = 1, then, we have v1(t + 1) = 1 and v2(t + 1) = 0, and if u = 0, v1

and v2 exchange their state at the next time step. S2 is a multi-node component. Thus, the algo-

rithm first executes a Datta algorithm on this SCC (line 28 of Fig 3). The result of Datta algo-

rithm is shown in Table 2. As it is shown in Table 2, since we already fixed one state over all

time steps for SCC S1, there is only one possible state for the S2. For SCC S2, after calculating U

table, since S2 is a multi-node component, the algorithm fixes this state and goes through next

SCCs.

Next SCC, S3 = {v3}, is a single node non-branching component. Thus, the algorithm calcu-

lates U
v3

b ðtÞ for all 1� t� 3 and b 2 {0, 1}. By the definition of transition function (Fig 6),

U
v3

b ðt þ 1Þ ¼ U
v1

b ðtÞ. Then, we proceed to next SCC.

Fig 6. Example of a network, its transition function, and its initial and desired states.

https://doi.org/10.1371/journal.pone.0215449.g006
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Next SCC is S4 = {v4}. So far, the value of U table is shown in Table 3. Like SCC S3,

SCC S4 is a single node non-branching component. Thus, the algorithm first calculates

U table. According to the transition function (Fig 6), U
v4

1
ðt þ 1Þ ¼ U

v2

1
ðtÞ ^ Uv3

1
ðtÞ and

U
v4

0
ðt þ 1Þ ¼ U

v2

0
ðtÞ _ Uv3

0
ðtÞ. Now, the algorithm processed all the SCCs, thus, it reports the

result.

Note that, in any of the recursion steps, if the algorithm does not find an answer that

matches to the desired state, it traces back to the SCCs that are not single node non-branching,

tries the next state from the state space. In the case of the current example, the algorithm will

Table 1. State space for the SCC S1 for the network represented in Fig 6.

t = 0 t = 1 t = 2 t = 3

#1 0 0 0 0

#2 1 0 0 0

#3 0 1 0 0

#4 1 1 0 0

#5 0 0 1 0

#6 1 0 1 0

#7 0 1 1 0

#8 1 1 1 0

#9 0 0 0 1

#10 1 0 0 1

#11 0 1 0 1

#12 1 1 0 1

#13 0 0 1 1

#14 1 0 1 1

#15 0 1 1 1

#16 1 1 1 1

https://doi.org/10.1371/journal.pone.0215449.t001

Table 2. Value of U table for SCC S2 for the network represented in Fig 6.

t = 0 t = 1 t = 2 t = 3

v1 b = 0 U
v1

0
ðtÞ ¼ true U

v1

0
ðtÞ ¼ false U

v1

0
ðtÞ ¼ true U

v1

0
ðtÞ ¼ false

b = 1 U
v1

1
ðtÞ ¼ false U

v1

1
ðtÞ ¼ true U

v1

1
ðtÞ ¼ false U

v1

1
ðtÞ ¼ true

v2 b = 0 U
v2

0
ðtÞ ¼ true U

v2

0
ðtÞ ¼ true U

v2

0
ðtÞ ¼ false U

v2

0
ðtÞ ¼ true

b = 1 U
v2

1
ðtÞ ¼ false U

v2

1
ðtÞ ¼ false U

v2

1
ðtÞ ¼ true U

v2

1
ðtÞ ¼ false

https://doi.org/10.1371/journal.pone.0215449.t002

Table 3. Value of U table after processing SCCs S1, S2, and S3 and before processing SCC S4 for the network repre-

sented in Fig 6.

t = 0 t = 1 t = 2 t = 3

u b = 0 U
u
0
ðtÞ ¼ false U

u
0
ðtÞ ¼ true U

u
0
ðtÞ ¼ true U

u
0
ðtÞ ¼ true

b = 1 U
u
1
ðtÞ ¼ true U

u
1
ðtÞ ¼ false U

u
1
ðtÞ ¼ false U

u
1
ðtÞ ¼ false

v1 b = 0 U
v1

0
ðtÞ ¼ true U

v1

0
ðtÞ ¼ false U

v1

0
ðtÞ ¼ true U

v1

0
ðtÞ ¼ false

b = 1 U
v1

1
ðtÞ ¼ false U

v1

1
ðtÞ ¼ true U

v1

1
ðtÞ ¼ false U

v1

1
ðtÞ ¼ true

v2 b = 0 U
v2

0
ðtÞ ¼ true U

v2

0
ðtÞ ¼ true U

v2

0
ðtÞ ¼ false U

v2

0
ðtÞ ¼ true

b = 1 U
v2

1
ðtÞ ¼ false U

v2

1
ðtÞ ¼ false U

v2

1
ðtÞ ¼ true U

v2

1
ðtÞ ¼ false

v3 b = 0 U
v3

0
ðtÞ ¼ true U

v3

0
ðtÞ ¼ true U

v3

0
ðtÞ ¼ false U

v3

0
ðtÞ ¼ true

b = 1 U
v3

1
ðtÞ ¼ false U

v3

1
ðtÞ ¼ false U

v3

1
ðtÞ ¼ true U

v3

1
ðtÞ ¼ false

https://doi.org/10.1371/journal.pone.0215449.t003
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traceback for the next state for S2, which does not have any other, and then traces back to S1

for the next state.

2.4 Proof of the correctness of the proposed algorithm

In a general view, the proposed algorithm enumerates all possible states, but, removes some

useless states. There are two extreme approaches to enumerate the states. One approach is to

recursively enumerate them node-by-node. The other extreme, like Datta algorithm, is to fill

an array that represents reachability of the states, time step-by-time step. Our algorithm is

somewhat in-between, it fills arrays for SCCs, and fix them recursively.

We provide a stronger result for the proposed algorithm. We let logical formulas that

describe states of the nodes in time step t + 1, to not only include variables of the time step t,
but also variables of time steps 0 to t. We name these networks as extended networks. Also, we

name single node non-branching SCCs as simple and the other SCCs as hard components.

Consider all the non-branching single node components that proceed an SCC S in the

topological order. All easy components may have 0 or more input edges, but only one output

edge. Note that, if there is a single node non-branching SCC without output edge, it could be

removed from the network. After finishing the process of the network, these nodes could be

checked for its consistency with the desired state at the end. These simple component nodes

make a rooted tree which is directed toward the root. A schematic view is shown in Fig 7.

We can replace them in all logical formulas by the state of their input nodes in earlier time

steps, or in some cases by nodes’ initial states. As an example, consider the schematic view of

the network shown in Fig 8. In this network, we can replace v3 in all transition formulas by its

inputs and change the network accordingly, as it is shown in Fig 8. The resulting network is a

simple component-free extended network.

By this technique, we will have an extended network without any simple SCC. We provide

a proof of correctness of our algorithm on these extended networks. While we proved the cor-

rectness of the provided algorithm, on these extended networks, as a direct result, the correct-

ness of our algorithm on hard components follows immediately. Also, it is shown that simple

components are derived deterministically from the state of nodes within hard components.

This shows the correctness of the proposed algorithm.

Considering a simple component-free extended network, the proposed algorithm processes

it SCC by SCC. The algorithm first generates all possible states for each SCC, and then enu-

merates them one by one and goes for the next SCC, recursively. In other words, instead of

enumerating all the states for the network node by node, it makes groups of nodes (SCCs) and

Fig 7. A schematic view of the topology of single node non-branching components between other SCCs of a

network. Cloudy nodes are either branching single node or multi-node components (hard components). Normal

circles represent single node non-branching components (simple components). Simple components make a rooted

tree toward their roots.

https://doi.org/10.1371/journal.pone.0215449.g007
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enumerates states for them. It is clear in this case that, the algorithm enumerates states just

like a brute force algorithm. Since the brute force algorithm enumerates and checks all the

states, its correctness is obvious from its definition. Note that, the proposed algorithm is not

just one brute force, but, we reduced the correctness proof of our algorithm to the correctness

of a brute force algorithm.

3 Application to biomolecular network control

3.1 Drosophila Melanogaster’s network

In this section, we present the steps of applying the proposed algorithm on Drosophila mela-

nogaster subnetwork [41], which contains 15 nodes. As it can be seen in Fig 9, three external

nodes U1, U2 and U3 are added to this network. Evolving functions regarding the added con-

trol sequences are shown in Table 4.

First, we partitioned the network’s graph into strongly connected components. As it could

be seen in Fig 9, graph has only one multi-node component, which is shown through dotted

lines. Then, nodes are ordered based on topological sort and the result is shown as numberings

beside each node in Fig 9.

We treat graph nodes one by one according to their topological ordering. First, “SLP” node

is met. This node is a none-branching single node component; therefore, we compute U for this

node till t = τ. Since this node is a constant node (a node without entering edge), it will always

keep its initial state. The U concerning this node will be filled to this constant value. Then, for

time step τ, we check that if this node has attained the desirable state or not. If not, it would be

announced that there exist no desired control sequence, and the algorithm terminates.

Next, the second node in topological sort that is the “en” node will be visited. This node is

also a none-branching single node component, thus, it is processed the same as “SLP” node.

Then the “EN” node is considered. It is a branching node, but since it has no control node

before itself, it can attain only one state in every time step. Therefore this node is treated like

“SLP” and “EN” nodes. For “ci” and “CI” nodes, the very procedure will go.

Now we reach a multi-node component. For this strongly connected component, the

dynamic programming is computed, then it is checked if there is a possibility to attain the

desired state in time step τ for the nodes inside this component or not. If we can attain the

desirable state within the time step τ, the U for each node would be filled. Then, branching

nodes which have outgoing edges from the component, would be handled as “CIR” node to

check if these nodes are possible to attain two states of 0 and 1 in a time step. If they could, a

Fig 8. Example of applying the transformation of removing simple components from a network to obtain a

simple component-free extended network.

https://doi.org/10.1371/journal.pone.0215449.g008
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state sequence that we can attain the desirable state, considered and the algorithm would be

recalled for the network’s remaining nodes.

Then nodes “wg”, “WG”, “hh” and “HH” are considered. these nodes are none-branching
single node components. Note that, if for example “CIR” with two state sequences can attain the

desirable state, and for the first state sequence, it would not be possible for the next nodes (e.g.

“wg”) to attain the desirable state, the algorithm will return and for the sequences of the second

state of “CIR”, it would check the remaining nodes. In the case that all the nodes were possible

to attain the desirable state, it will be announced that there exists a control sequence that causes

attaining the desirable state in time step τ.

3.2 T-Cell receptor kinetics’ network

We apply the proposed algorithm to the Boolean network model of T-cell receptor kinetics

[40]. The multi-node component and the order of nodes based on a topological sort are

depicted in Fig 10. As it is obvious in this figure, this model of the Boolean network has 40

Fig 9. Boolean network model of Drosophila melanogaster. Dotted lines indicate a multi-node component, and the

numberings beside nodes indicate topological orders. Nodes indicated as rectangles, i.e. nodes U1, U2, and U3, are

external nodes.

https://doi.org/10.1371/journal.pone.0215449.g009
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genes and one multi-node component. Three external nodes U1, U2, and U3, are added to the

Boolean network.

In T-cell receptor kinetics, the network which can be seen in Fig 10, arrows with pointed

heads represent activation and dashed arrows with bar heads represent inhibition (the dashed

arrows represent “not” which is related to that node). The network is represented as a network

of “or”s of “and”s. Thus, large filled circles representing “and” of their inputs, while when

edges are going to a node, state of the node is determined according to the “or” of its incoming

edges. For example

Fynðt þ 1Þ ¼ ðCD45ðtÞ ^ TCRbindðtÞÞ _ ðCD45ðtÞ ^ LckðtÞÞ

Our suggested algorithm on the Boolean network model of Drosophila melanogaster was

implemented for an initial state (in time step t = 0) and a desired state (in time step t = 6),

which is depicted in Table 5. It is noteworthy to say that there exists a control sequence to

reach the desirable state in time step t = 6. Also, the Datta et al algorithm was implemented in

this dataset, for comparison. Note that, since this dataset has 22 edges and 15 internal nodes,

the algorithm presented by Akutsu et al requires a tree which has 8 fewer edges from this net-

work (H = 8).

3.3 Comparison with previous methods

With initial and desired states that are mentioned in Table 6, we evaluated the proposed algo-

rithm on the Boolean network of Drosophila melanogaster and compared it with previous

algorithms. This dataset contains 22 edges and 15 internal nodes, the algorithm presented by

Akutsu et al requires a tree which has 8 fewer edges from this network. Thus all combinations

of 8 edges are to be removed from the graph that makes it very slow for this case.

The initial state and desired state for T-cell receptor model is shown in Fig 10. This dataset

has 40 internal nodes (n = 40) and 3 external nodes (m = 3). We compared the proposed algo-

rithm with the algorithm of Datta et al and Akutsu et al on these initial and desired conditions.

Note that there is a control sequence for the above mentioned desirable state in time step t = 5.

Table 4. Evolution functions for the Boolean network model of Drosophila melanogaster.

Node Boolean updating function

SLP SLPt+1 = SLPt

wg wgt+1 = ((CIAt ^ SLPt ^ ¬CIRt)

_(wgt ^ (CIAt _ SLPt) ^ ¬CIRt)) ^ U2t

WG WGt+1 = wgt

en ent+1 = ¬SLPt

EN ENt+1 = ent

hh hht+1 = ENt ^ ¬CIRt ^ U3t

HH HHt+1 = hht

ptc ptct+1 = CIAt ^ ¬ENt ^ ¬CIRt ^ U1t

PTC PTCt+1 = ptct ^ PTCt

PH PHt+1 = PTCt

SMO SMOt+1 = ¬PTCt

ci cicit+1 = ¬ENt

CI CIt+1 = cit

CIA CIAt+1 = CIt ^ SMOt

CIR CIRt+1 = CIt ^ ¬SMOt

https://doi.org/10.1371/journal.pone.0215449.t004
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Akutsu et al [39] first provide a polynomial time algorithm for directed trees. However,

their algorithm does not work on general graphs. For general graphs, they remove some edges

from the graph to obtain a tree and then search for all possible solutions. Among all the solu-

tions, if one is compatible with the removed edges, their algorithm reports the solution. Note

that, since they have to obtain all solutions for the obtained trees, their algorithm on general

graphs is not a polynomial time algorithm anymore.

The algorithm presented by Akutsu et al requires a tree which has 19 fewer edges from

this network (H = 19). Time complexity of this algorithm is O(2H(τ+1)(n + m)τ), which is

worse than running time of Datta et al’s algorithm with time complexity O(2(2n+m)τ)

In some applications, not only a valid control strategy is needed, but also among valid con-

trol strategies (that lead to the desired state), the one with some optimality is preferred. To

address this requirement we added the ability to compare valid control strategies for the

Fig 10. Boolean network model of T-cell receptor. Network’s graph has one multi-node component. The numberings

beside each node indicate their topological ordering.

https://doi.org/10.1371/journal.pone.0215449.g010
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proposed algorithm. Actually, the proposed algorithm finds a valid control strategy that has

minimum switching of control nodes, i.e. from 1 to 0 or 0 to 1. Adding this ability to the pro-

posed algorithm makes it more like an optimization algorithm.

The results of the comparison of our algorithm and previous algorithms implemented on a

PC with Dual-Core 2.5GHz CPU, 2G RAM are depicted in Table 7.

Table 5. Initial state and desirable state of each node for Drosophila melanogaster network’s graph.

Node Initial State (t = 0) Desired State (t = 6)

en 0 1

EN 0 1

SLP 0 0

wg 1 0

WG 1 0

ptc 0 0

PTC 0 0

CIA 0 0

CIR 1 0

ci 0 0

CI 1 0

SMO 0 1

PH 0 0

hh 1 0

HH 0 1

https://doi.org/10.1371/journal.pone.0215449.t005

Table 6. Initial states and desirable states of each node in T-cell receptor kinetics network graph.

Node Initial State (t = 0) Desired State (t = 5) Node Initial State (t = 0) Desired State (t = 5)

CD45 1 1 Grb2Sas 0 0

CD4 0 0 PLCgbind 0 0

TCRbind 0 1 DAG 0 0

TCRlig 1 1 Ras 0 0

PAGCsk 0 1 RasGRP1 0 0

cCbl 0 0 PKCth 1 1

NFAT 0 0 CRE 0 0

Fyn 0 1 Raf 0 0

Lck 1 0 SEK 0 1

Calcin 0 0 IKKbeta 0 1

TCRphos 0 1 CREB 1 0

Rlk 0 0 MEK 0 1

ZAP-70 0 0 AP1 0 0

Caplus 0 0 JNK 0 1

LATphop 0 0 IKB 1 0

Gads 0 0 Rsk 0 0

IP3 0 0 ERK 0 0

SLP76 0 0 Fos 1 0

Itk 0 0 JUN 0 1

PLCgact 1 0 NFkB 0 1

https://doi.org/10.1371/journal.pone.0215449.t006
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4 Conclusion

In this paper, we proposed an algorithm for network control problem that improves the

running time of previously provided algorithms. The extent of improvements and efficiency

of our proposed algorithm depends on the size of the multi-node components of the network

and also on the positioning of the control nodes or more generally, on the accessibility of both

states of 0 and 1 in the same time steps for branching nodes.

Since in the proposed algorithm, the nodes are met based on a topological order, the states

of the entering nodes of each node are calculated before visiting that node. As a result, in each

node, it would be possible to handle states from the initial time step to the desirable time. This

would cause early detection of the case that if a node is not possible to attain the desirable state,

thus, there be no need to check all the nodes to time step τ, and the lack of a control sequence

is reported early. Although the proposed algorithm shows to be efficient on real control net-

works, however, if all the nodes of the network are in one strongly connected components, the

proposed algorithm is not performing well anymore. Handling this case could be future work.

Supporting information

S1 Codes. Implementation of the algorithms. This file contains the implementation of the

provided algorithm as well as two implementations of the Datta et al algorithm. This file also

contains sample inputs.
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