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Abstract

Single amino-acid substitution in a protein affects its structure and function. These changes

are the primary reasons for the advent of many complex diseases. Analyzing single point

mutations in a protein is crucial to see their impact and to understand the disease mecha-

nism. This has given many biophysical resources, including databases and web-based tools

to explore the effects of mutations on the structure and function of human proteins. For a

given mutation, each tool provides a score-based outcomes which indicate deleterious prob-

ability. In recent years, developments in existing programs and the introduction of new pre-

diction algorithms have transformed the state-of-the-art protein mutation analysis. In this

study, we have performed a systematic study of the most commonly used mutational analy-

sis programs (10 sequence-based and 5 structure-based) to compare their prediction effi-

ciency. We have carried out extensive mutational analyses using these tools for previously

known pathogenic single point mutations of five different proteins. These analyses sug-

gested that sequence-based tools, PolyPhen2, PROVEAN, and PMut, and structure-based

web tool, mCSM have a better prediction accuracy. This study indicates that the employ-

ment of more than one program based on different approaches should significantly improve

the prediction power of the available methods.

Introduction

Non-synonymous single nucleotide polymorphism (nsSNP) in the genome introduces a single

amino acid change in the protein sequence, which may or may not affect a protein in terms of
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structure and subsequent function. An amino acid substitution on a protein can have several

effects, including loss or gain in function, alteration of the catalytic site, structural instability,

protein aggregation, or abnormal folding [1]. Also, missense mutations can impact the pre-

translational and post-translational processes. Many human genetic disorders arise because of

amino acid substitutions [2]. Over the past few decades, a considerable emphasis was given to

analyzing single-point protein mutations to determine the effects and to understand the

molecular mechanism [3–7]. This has produces many resources, including several databases

and web-based tools that mostly focus on human mutations [8].

Many databases have been created to store the information about mutations of human and

other organisms’ genomes which serve as a starting point of mutation analysis. Most of the

SNP data is deposited in The Single Nucleotide Polymorphism Database (dbSNP, http://www.

ncbi.nlm.nih.gov/SNP/) [9], and it serves as the primary source for retrieval of single nucleo-

tide polymorphisms. Ensemble (https://www.ensembl.org/) [10] is another large database that

stores information about human and other organisms’ genetic variations, and it also gives

information about the pathogenesis of the variations. Other databases include Human Gene

Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/index.php) [11], ClinVar (https://

www.ncbi.nlm.nih.gov/clinvar/) [12], Online Mendelian Inheritance in Man (OMIM, http://

www.ncbi.nlm.nih.gov/sites/entrez?db=omim) [13], the Pharmacogenetics Knowledge Base

(PharmGKB, http://www.pharmgkb.org/) [14], etc.

Many bioinformatics tools have been developed to analyze the impact of missense muta-

tions. Different approaches have been applied to the development of the tools (Fig 1). The two

broad categories for mutation analysis are the sequence-based and structure-based approaches.

Both approaches use several factors that affect the protein structure and function. The

sequence-based study uses various analyzing methods, including cellular localization, aggrega-

tion, disorder, functional effects, and stability [1]. The structure-based approach is mainly

based on the free energy calculation. It considers electrostatic changes, steric effects, interresi-

due contacts, disorder, functional effects, and stability. Sequence conservation is another vital

component of SNP analysis as disease-causing mutations frequently occur in evolutionarily

conserved regions [15–17]. Substitution of an amino acid increases the probability of protein

Fig 1. Graphical representation of tools used in this study for comparison.

https://doi.org/10.1371/journal.pone.0267084.g001
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getting aggregated which is involved in several neurodegenerative diseases [18, 19]. Amino

acid substitution can introduce disorder in the protein structure. It can be estimated using

amino acid composition, energy profiles and physicochemical properties, specific sequence

patterns, missing X-ray coordinates, and B-factors. Changes in the electrostatic potential due

to a substitution can affect the ligand-binding ability and folding mechanism. Phylogenetic

information is also a key component in the prediction process.

The tools use different scoring matrices (such as BLOSSUM62) [20] to calculate whether a

mutation has a functional or structural impact on a protein or not [17]. For a given mutation,

each tool provides a score to indicate the damaging probability. In our study, we have per-

formed a comparative analysis of 15 different web tools, out of which 10 are sequence-based,

and five are structure-based. To compare the tools, we have taken previously confirmed dis-

ease-causing mutations and some functionally impactful/damaging mutations of five proteins

and analyzed them through all fifteen tools (Table 1).

Materials and methods

We have carried out an extensive mutational analysis of single point mutations of five different

proteins through the 15 different sequence and structure-based tools. The proteins are Parkin-

son’s disease protein 7 (PARK7), E3 ubiquitin-protein ligase parkin (PARK2), Presenilin-1

(PESN1), GTPase HRas (HRAS), and Runt-related transcription factor 1 (RUNX1). We have

taken only those mutations which were already found to affect the protein function and struc-

ture. Sequences and the non-synonymous mutations of these proteins are collected from the

UniProt database [21]. All the mutations are associated with a disease or have an altering effect

on the protein, i.e., all the mutations are damaging to the protein. The structure of each protein

was downloaded from the RCSB Protein Data Bank (PDB) [22]. For PARK7, PARK2, PESN1,

HRAS and RUNX1, we have analyzed 18, 38, 199, 32 and 51 single point mutations, respec-

tively. The UniProt and PDB IDs of the five proteins are given in Table 2.

We reviewed fifteen different tools, of which 10 are sequence-based and 5 are structure-

based. We have also performed single-point mutation analysis to estimate their performance.

PolyPhen2, PROVEAN, FATHMM, SIFT, Mutation Assessor, PON-P2, SNPs & GO,

Table 1. Tools for the analysis of single amino acid substitutions.

Tool URL Prediction Reference

PolyPhen2 http://genetics.bwh.harvard.edu/pph2/ Damaging or benign [39]

PROVEAN http://provean.jcvi.org/ Deleterious or neutral [24]

SIFT http://sift.jcvi.org/ Damaging or tolerated [26]

FATHMM http://hathmm.biocompute.org.uk Damaging or tolerated [40]

Mutation Assessor http://mutationassessor.org/r3/ Functionally impactful or neutral [27]

PON-P2 http://structure.bmc.lu.se/PON-P2/ Pathogenicity prediction [28]

MutPred2 http://mutpred.mutdb.org Pathogenicity prediction [41]

SNPs & GO https://snps-and-go.biocomp.unibo.it Disease-causing or neutral [42]

PhD-SNP https://snps.biofold.org/phd-snp/phd-snp.html Disease-causing or neutral [43]

PMut http://mmb.irbbarcelona.org/PMut Disease-causing or neutral [44]

mCSM http://biosig.unimelb.edu.au/mcsm/ Stability prediction [45]

SDM http://marid.bioc.cam.ac.uk/sdm2 Stability prediction [34]

MAESTROweb https://pbwww.che.sbg.ac.at/maestro/web Stability prediction [46]

CUPSAT http://cupsat.tu-bs.de/index.jsp Stability prediction [36]

DynaMut2 http://biosig.unimelb.edu.au/dynamut2/ Stability prediction [37]

https://doi.org/10.1371/journal.pone.0267084.t001
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PhD-SNP, MutPred2 and PMut are sequence-based and mCSM, SDM, MAESTROweb, CUP-

SAT and DynaMut2 are structure-based tools.

PolyPhen2

Polymorphism phenotyping (PolyPhen-2) is a sequence-based tool. The FASTA file is given as

an input for the protein sequence [23]. To calculate the damaging probability of a mutation, it

compares the physical properties of the wild-type and mutant variant. It incorporates multiple

sequence alignment, and a machine learning-based classifier developed for high throughput

NGS data analysis. PolyPhen2 derives Position-Specific Independent Count (PSIC) score for

the variant and then estimates the difference of PSIC between mutant and the wild-type. For a

PSIC score greater than 0.09, the tool considers a mutation to be deleterious.

PROVEAN

The protein variation effect analyzer (PROVEAN) calculates the functional consequence of a

single amino acid substitution on the protein [24]. PROVEAN categorizes mutations as delete-

rious or neutral; a mutation with a PROVEAN score of<-2.5 is deleterious, whereas mutations

with scores >-2.5 are considered neutral. PROVEAN web server comprises three tools, PRO-

VEAN Protein (includes any species), PROVEAN Protein Batch and PROVEAN Genome

Variants (specifically for mouse and human). The PROVEAN Protein Batch tool also returns

the result of SIFT tool, and it can process a large number of protein variants. The input for this

program takes amino acid substitution and supports public domain protein identifiers from

NCBI RefSeq, UniProt, and Ensembl.

FATHMM

Functional Analysis through Hidden Markov Model (FATHMM) is a web-based tool for pre-

dicting the functional consequences of coding and non-coding variants in the human genome

[25]. The coding variants can be analyzed for inherited diseases, cancer and specific diseases.

FATHMM is comprised of two algorithms: unweighted and weighted. The unweighted

method is based on sequence conservation, and the weighted method is a combination of

sequence conservation and pathogenicity weights. The unweighted method searches conserved

residues through the amino acid probabilities of various Hidden Markov Models (HMMs)

representing the alignment of protein domains that are conserved and homologous sequences.

The weighted method assigns pathogenicity weights that correlate with disease-causing amino

acid substitutions, with sequence conservation found through searching HMMs.

SIFT

Sorting Intolerant from Tolerant (SIFT) is a web-server that determines whether single amino

acid substitutions on a protein are deleterious or not. The tool considers sequence similarity

Table 2. UniProt IDs and PDB IDs of each protein.

Protein UniProt ID PDB ID

Parkinson’s disease protein 7 (PARK7) Q99497 1P5F

E3 ubiquitin-protein ligase parkin (PARK2) O60260 5C1Z

Presenilin-1 (PESN1) P49768 6IYC

GTPase HRas (HRAS) P01112 4Q21

Runt-related transcription factor 1 (RUNX1) Q01196 1E50

https://doi.org/10.1371/journal.pone.0267084.t002
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and physical properties of the amino acid to calculate the damaging probability. A SIFT score

of less than or equal to 0.05 indicates an intolerable mutation [26].

Mutation assessor

Mutation Assessor is a sequence-based tool to predict the functional consequences of amino-

acid substitutions in proteins. The Mutation Assessor depends upon multiple sequence align-

ment and amino acid residues that are evolutionarily conserved. The input of this tool includes

UniProt protein accession or NCBI Refseq protein ID. It categorizes the protein variants as

high, medium, low or neutral for damaging impacts. It returns the FI score for each variant. A

variant with an FI score greater than 2.00 is predicted as a deleterious variant [27].

PON-P2

PON-P2 is another web-based classifier for protein variants, and it uses a machine-learning-

based approach. This tool differentiates the amino acid substitutions into pathogenic, neutral

and unknown classes. It is a fast tool as it analyzes a large amount of variant data in less time in

a highly efficient manner. This tool considers evolutionary sequence conservation, biochemi-

cal attributes and physical attributes of a protein. It also uses functional annotations and Gene

Ontology (GO) annotations based on availability. The input of PON-P2 needs amino acid sub-

stitutions and one of Ensembl, Entrez or UniProtKB/Swiss-Prot accession ID [28].

MutPred2

MutPred2 is a web-server that categorizes a mutation as disease-associated or neutral [29]. It

estimates the molecular mechanism of pathogenicity of an amino acid substitution using a

machine-learning-based technique. This tool considers fifty different protein properties to cal-

culate the effect of the substitutions. For a pathogenic mutation, the MutPred2 score is greater

than 0.5.

SNPs & GO

SNPs & GO is a support vector machine (SVM) based web-server to identify deleterious single

amino acid substitutions [30]. The SVM-based classifier consists of a single SVM that takes

input protein sequence, profile and functional information. It uses GO annotations to classify

a missense variant into disease-related or neutral. It requires amino acid sequence/SwissProt

code, GO terms and amino acid substitutions as input. An SNPs & GO score of more than 0.5

indicates a disease-causing mutation. This tool also gives the result of PANTHER and

PhD-SNP.

PhD-SNP

Predictor of human Deleterious Single Nucleotide Polymorphisms (PhD-SNP) also uses SVM

based classifier to classify the disease-associated variants [31]. Sequence and profile informa-

tion is used in the classification process of the amino acid substitutions into neutral and dis-

ease-associated. The sequence profile is calculated using an input vector derived from wild-

type (WT) and mutant amino acid frequencies, the number of aligned sequences, and the con-

servation score in the substituted location. A PhD-SNP score of more than 0.5 indicates a dis-

ease-causing mutation.
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PMut

Mutations that are associated with disease phenotype are identified using the PMut web server.

A neural network-based method is used to train the classifier of PMut, and it uses the manually

curated protein sequence data from the SwissProt database. Sequence conservation and phy-

siochemical attributes of amino acids are used as the main features. People can also generate

predictors for some protein families in the new version of the tool, and previously predicted

results are also deposited in the webserver. If the PMut score for an amino acid substitution is

greater than 0.05, then the variant is pathogenic [32].

mCSM

mCSM predicts the stability of an amino acid substitution using a graph-based approach. The

prediction method is trained with the environment derived from the atomic distance patterns

of all the amino acid residues. It can estimate destabilizing probabilities for various protein

structures and understand disease-associated variants. For a mutation that destabilizes a pro-

tein structure, the mCSM score (ΔΔG) is less than 0 [33].

SDM

Site-Directed Mutator (SDM) evaluates the protein stability upon single point mutations.

Environment-specific amino acid substitution tables with parameters like packing density and

residue length and PDB coordinate files are used to determine the stability of a mutant protein.

SDM was tested with 2690 amino acid substitution from 132 different 3D structures of pro-

teins. For a destabilizing amino acid substitution, the predicted ΔΔG is greater than 0 [34].

MAESTROweb

MAESTRO is a multi-agent stability prediction web tool that calculates the free energy change

on protein unfolding. The free energy difference (ΔΔG) between the WT and mutant protein

is calculated to determine the stability upon change in amino acid residues. The tool can evalu-

ate both predetermined and modeled PDB coordinate files, although prediction accuracy for

modeled structures are less efficient. For a mutation that has a destabilizing impact on a pro-

tein structure, the MAESTRO score is less than zero [35].

CUPSAT

Cologne University Protein Stability Analysis Tool (CUPSAT) is a web-server to estimate

changes in protein stability upon mutation [36]. The tool consists of a prediction model based

on torsion angle distribution and potentials of the amino acid atoms. It assesses the amino

acid environment around the substituted position. Secondary structure specificity and solvent

accessibility are also used to determine the amino acid environment. In CUPSAT, the amino

acid atom potentials of 40 amino acid atoms from Melo-Feytmans are used to construct the

radial pair distribution function. CUPSAT gives the stability prediction upon mutation for all

the amino acid mutations for a specific position. It can also predict custom PDB structures.

DynaMut2

DynaMut2 is a protein stability prediction tool that combines Normal Mode Analysis (NMA)

techniques to capture protein motion and graph-based signatures to represent the WT envi-

ronment [37]. The data for the amino acid substitutions were taken from ProTherm. For sta-

bility prediction upon single point mutation, each mutation was modeled using many

properties, including WT residue environment, protein dynamics (NMA), substitution
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propensities and contact potential scores, interatomic interactions and graph-based signatures

method. These methods were then used to train the machine learning algorithm. DynaMut2

can give predictions for single and multiple mutations. We have used the single mutation pre-

diction feature for our analysis.

Results and discussion

We have performed mutation analysis of all the five proteins through the 15 sequence and

structure-based tools to estimate their performance (S1 Data). For PolyPhen2, we have used

the batch query feature. In the batch query, several mutations can be predicted at once. Poly-

Phen2 categorizes the mutations into damaging and benign classes. The predicted damaging

mutations for PARK7, PARK2, PESN1, HRAS and RUNX1 are 66.67%, 92.11%, 96.09%,

78.13% and 100%, respectively. PolyPhen2 predicted an average of 86.60% damaging mutation

from the five proteins. The predicted damaging mutations by PROVEAN for PARK7, PARK2,

PESN1, HRAS and RUNX1 were 72.22%, 71.05%, 88.83%, 100%, and 100% respectively. The

predicted damaging mutations by SIFT for PARK7, PARK2, PESN1, HRAS and RUNX1 were

66.67%, 78.95%, 90.50%, 90.63%, and 100%, respectively. PROVEAN predicted an average of

86.42% variants as damaging mutations, and SIFT predicted an average of 85.35% substitu-

tions as damaging mutations from the five proteins (Table 3). For FATHMM analysis, we

used the inherited disease feature under coding variants applying an unweighted algorithm.

FATHMM gave 64.39% average damaging mutation for the five proteins. Mutation Assessor

analyses predicted an average of 76.46% mutations as functionally impactful for the five

proteins.

The next five sequence-based tools predict the disease phenotype (pathogenicity) of a single

amino acid substitution. PON-P2, SNPs&GO, PhD-SNP, MutPred2 and PMut identify muta-

tions as pathogenic or neutral. For PARK7, PARK2, PESN1, HRAS and RUNX1, the predicted

pathogenic mutations by PON-P2 were 44.44%, 28.95%, 74.86%, 81.25% and 68.75%, respec-

tively (S1–S5 Figs). Through PON-P2 identifier submission, we have obtained an average of

59.65% pathogenic mutations for the proteins. MutPred2 identifies the pathogenic mutations

and tells the altering impact of a particular mutation on the protein structure. MutPred2 gives

Table 3. Percentage of deleterious/ pathogenic/ destabilizing single point mutations predicted by all the fifteen tools for PARK7, PARK2, PESN1, HRAS and

RUNX1.

Tools PARK7 PARK2 PSN1 HRAS RUNX1 Average

Sequence-based Deleterious/Damaging PolyPhen2 66.67% 92.11% 96.09% 78.13% 100% 86.60%

PROVEAN 72.22% 71.05% 88.83% 100% 100% 86.42%

SIFT 66.67% 78.95% 90.50% 90.63% 100% 85.35%

FATHMM 50% 63.16% 68.16% 53.13% 87.5% 64.39%

Mutation Assessor 66.67% 86.84% 94.41% 71.88% 62.5% 76.46%

Pathogenicity PON-P2 44.44% 28.95% 74.86% 81.25% 68.75% 59.65%

MutPred2 61.11% 76.32% 94.97% 100% 93.75% 85.23%

SNPs & GO 61.11% 39.47% 73.74% 53.13% 93.75% 64.24%

PhD-SNP 55.56% 60.53% 86.03% 75% 100% 75.42%

PMut 94.44% 63.16% 94.97% 96.88% 100% 89.89%

Structure-based Stability mCSM 88.89% 94.74% 87.71% 93.75% 100% 93.02%

SDM 83.33% 81.58% 63.69% 62.50% 62.5% 70.72%

MAESTROweb 88.89% 63.16% 79.33% 84.38% 81.25% 79.40%

CUPSAT 66.67% 73.68% 64.25% 68.75% 56.25% 65.92%

DynaMut2 83.33% 89.47% 82.68% 84.38% 87.5% 85.47%

https://doi.org/10.1371/journal.pone.0267084.t003
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structure altering mutations for PARK7, PARK2, PESN1, HRAS and RUNX1 estimated

61.11%, 76.32%, 94.97%, 100% and 93.75% pathogenic mutations, respectively. MutPred2 pre-

dicted an average of 85.23% pathogenic mutation for the five proteins. SNPs&GO uses gene

ontology terms to predict disease-associated mutation. It also returns the PhD-SNP results

along with the SNPs&GO results. Both tools predict the disease association through functional

annotation. The average number of pathogenic mutations estimated by SNPs&GO was

64.24%, and the predicted average disease-associated mutations was 75.42% for PhD-SNP.

PMut webserver predicted 94.44%, 63.16%, 94.97%, 96.88% and 100% pathogenic mutations

for PARK7, PARK2, PESN1, HRAS and RUNX1, respectively.

After the sequence-based analysis, we performed the structure-based analysis of the muta-

tions by five tools, namely mCSM, SDM, MAESTROweb, CUPSAT and DynaMut2. These

tools provide Gibbs free energy change values (ΔΔG) for each protein structure; the change in

free energy during the unfolding of a kinetically stable protein is described by this ΔΔG value.

Sometimes the mutation in proteins differentiates the free energy landscape between the

mutant and the WT protein. This variance in the free energy landscape is why the mutation

affects the stability of a protein. Thermodynamically, the Gibbs free energy difference between

folded (Gf) and unfolded (Gu) protein can be calculated as ΔG = Gu-Gf. The change of protein

stability (ΔΔG) and free energy landscape between mutant (Gm) and WT (Gw) is calculated as

ΔΔG = Gm-Gw. A negative ΔΔG value indicates stabilizing, and a positive ΔΔG shows destabi-

lizing [38]. mCSM predicted an average of 93% mutations as destabilizing and 7% mutations

as stabilizing for all five proteins. Predicted destabilizing mutations for PARK7, PARK2,

PESN1, HRAS and RUNX1 by SDM were 83.33%, 81.58%, 63.69%, 62.50% and 62.5%, respec-

tively, with an average of 70.72%. MAESTROweb estimated an average of 79.40% destabilizing

mutations, whereas CUPSAT predicted an average of 65.92% destabilizing amino acid substi-

tutions. The predicted destabilizing mutations for PARK7, PARK2, PESN1, HRAS and

RUNX1 by DynaMut2 were 66.67%, 92.11%, 96.09%, 78.13% and 100%, respectively, with an

average of 85.47%.

The sequence-based analysis using ten different tools revealed a comparative assessment of

the tools. PolyPhen2, PROVEAN, FATHMM, SIFT and Mutation Assessor are the five

sequence-based tools which categorize mutation into damaging/deleterious and tolerant cate-

gories. PolyPhen2, PROVEAN and SIFT showed almost equal prediction accuracy, whereas

FATHMM showed a significant drop in average deleterious mutations with 64.39%. The other

five sequence-based tools, PON-P2, SNPs&GO, PhD-SNP, MutPred2 and PMut, predicts the

disease phenotype or pathogenicity of a single point mutation. PMut showed the highest aver-

age pathogenicity prediction with 89.9%. On the other hand, PON-P2 estimated the least aver-

age with 59.6%. MutPred2 showed higher accuracy than SNPs&GO and PhD-SNP. After the

sequence-based tools, we compared the results of five structure-based tools mCSM, SDM,

MAESTROweb, CUPSAT and DynaMut2. The structure-based tools predict the stabilizing or

destabilizing mutations based on ΔΔG. mCSM predicted the highest number of mutations as

destabilizing, whereas CUPSAT showed the least number of mutations as destabilizing (Fig 2).

Conclusion

Single point amino-acid substitutions are associated with several human diseases, including

cancer and neurodegenerative diseases, and are contemplated as one of the most recurrent

genetic variants. Detailed analysis of the single point amino-acid substitution can help us

understand the impact of mutation and the disease-causing mechanism. With a growing num-

ber of genetic variations, it is critical to predict the impact of a mutation through computa-

tional approaches in a fast and reliable manner. There are several computational methods
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available to analyze the molecular consequences of single point mutations. We have performed

a detailed analysis of several mutations through 15 different tools to determine the prediction

accuracy based on previously available data. Out of the sequence-based tools that estimate del-

eterious/damaging mutation, we have found that PolyPhen2 and PROVEAN showed higher

prediction accuracy. In sequence-based pathogenicity prediction, PMut showed the highest

prediction accuracy. Out of the structure-based web tools, mCSM showed a higher number of

mutations as destabilizing and showed higher prediction power than others. The results of this

study may be used to designate the most suitable program for mutational analysis. An

advanced platform then can be developed that can automatically select the program that is

likely to give the most precise predictions.
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