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Abstract

Leptin is an adipo-myokine that regulates appetite and energy expenditure by a neuroendo-

crine feedback loop. Leptin levels are positively correlated with BMI in the spinal cord injury

population and leptin levels are greater in individuals with spinal cord injury compared to

uninjured controls. Leptin is produced in multiple tissues, including fat, bone, and skeletal

muscle and is a putative biomarker of sedentary behavior in older adults. We assessed

body composition leptin, adiponectin, and IL-6 levels in 205 men with chronic spinal cord

injury. We found no association between age, injury duration, injury level, injury complete-

ness, or walking status and leptin. There was a significant positive association between lean

mass and leptin in men with SCI that was independent of fat. Adjusting for body composi-

tion, leptin levels were positively associated with IL-6 and negatively associated with adipo-

nectin levels. When considering men with SCI and sarcopenic obesity, only fat mass

remained positively associated with leptin. We found no association between IL-6, adipo-

nectin, or lean mass and leptin in the sarcopenic obesity group. Our findings suggest that

lean mass is an under recognized, but substantial, source of circulating leptin. Furthermore,

SCI-related sarcopenic obesity may result in dysregulated adipo-myokine metabolism with

local and systemic physiologic effects.

Introduction

Leptin has classically been identified as an adipokine produced by adipocytes that regulates

weight balance and energy expenditure by a neuroendocrine feedback loop between adipose

tissue and the hypothalamus [1]. Transgenic mice lacking leptin receptor isoforms consistently

demonstrate an obese phenotype with significantly more adipose tissue and less lean mass

compared to wild type mice [2]. In human studies, leptin levels are positively correlated with

obesity in the general population [3] and positively associated with sedentary behavior, even

after adjusting for various possible confounding factors including demographics, medications,

and body mass index (BMI) [4–6]. However, the frail elderly with high prevalence of low lean

mass defined as sarcopenia have low leptin levels and higher leptin levels are associated with
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increased longevity in centenarians, suggesting a role for leptin in skeletal muscle metabolism

[7].

Leptin receptors are abundant in human skeletal muscle [8]. Leptin is produced by and reg-

ulates skeletal muscle directly through myoblast leptin receptors in an autocrine fashion [2, 9–

14] and through a central neuroendocrine pathway that is mediated by insulin-like growth fac-

tor 1 (IGF-1) [15–16]. An elegant in vivo study demonstrated that skeletal muscle produces

leptin and that the per unit mass of leptin release from adipose tissue is only slightly greater

than skeletal muscle in humans[9]. The endocrine function of muscle has been studied exten-

sively and has led some to use the term “adipo-myokine” for cytokines that are produced in

both muscle and fat and signal in an autocrine or paracrine manner, such as leptin and inter-

leukin-6 (IL-6). As skeletal muscle represents a greater total body composition percentage

than adipose tissue, skeletal muscle may play a greater role in leptin production and regulation

than previously appreciated. These findings suggest that muscle may be an important source

of circulating leptin and that muscle disorders, including atrophy and sarcopenia, may impact

the autocrine functions of muscle-derived leptin.

Obesity, sedentary behavior, and sarcopenia are all prevalent after spinal cord injury (SCI).

Several studies have reported that people with SCI have higher leptin levels than non-injured

controls [10, 17–22]. These results are consistent with known body composition changes that

occur after SCI, including increased total fat mass and lower lean mass [23]. Obesity increases

the production and release of pro-inflammatory adipokines, including leptin and IL-6. This

occurs with a simultaneous reduction of anti-inflammatory adipokines, including adiponectin.

The impact of this shift in balance between pro- and anti-inflammatory cytokines on muscle-

fat interactions is poorly understood and there is limited information on these interactions fol-

lowing SCI. Therefore, in this study we sought to assess the association between circulating

adipo-myokines and lean mass in men with chronic SCI.

Materials and methods

Subjects

For this muscle sub study, we assessed participants with chronic SCI who were enrolled in the

longitudinal Fracture Risk after SCI (FRASCI) Study. Study inclusion criteria and recruitment

methods for the parent cohort study have previously been described [24–25]. Briefly, partici-

pants with SCI were eligible if they were 22 years of age or older, one or more years after injury,

were not ventilator dependent, did not have a tracheostomy, and had no other neuromuscular

disease. 348 participants with SCI were enrolled in this cohort between August 2009 and

December 2014 and completed testing. We excluded 51 subjects because body composition

(n = 21) or biomarker results (n = 30) were not available. We excluded women with SCI

(n = 35), as there were too few to make meaningful comparisons based on gender. We also

excluded 54 participants actively taking medications known to influence bone metabolism

[bisphosphonates (n = 23), warfarin (n = 16), hormones (n = 10), bisphosphonate + warfarin

(n = 3), bisphosphonate + hormone (n = 2)]. 3 participants (72,175.3–122,358.5 pg/mL)

excluded based on leptin levels that were considered to be outliers. The final cohort for this

muscle sub study (FRASCI-muscle) consisted of 205 men with SCI (Fig 1). The Institutional

Review Boards approved all protocols prior to initiation of the study, and all participants gave

their written informed consent to participate.

Motor score

Motor level and completeness of injury were confirmed by physical exam at study entry by a

trained rater according to the American Spinal Injury Association Impairment Scale (AIS).
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Participants were classified as AIS A or B (motor complete, no motor function below the neu-

rological level of injury); AIS C (motor incomplete, motor function preserved below the neu-

rological level, and more than half the key muscles below the neurological level are not strong

enough to overcome gravity); or AIS D (motor incomplete, motor function preserved below

the neurological level, and more than half the key muscles below the neurological level strong

enough to overcome gravity). Injury severity was then classified in 2 categories: motor com-

plete SCI (AIS A/B) or motor incomplete SCI (AIS C or D).

Dual X-ray absorptiometry (DXA) for body composition

We used a 5th generation GE Healthcare iDXA dual x-ray absorptiometry (DXA) scanner

with enCore configuration version 12.3 to assess body composition. Total fat mass (kg) and

total lean mass (kg) were calculated by the system software from whole body scans based on

body weight measured at the time of scanning. As a standard procedure, a quality assurance

phantom supplied by the manufacturer was measured at least every 2 days to confirm accuracy

of the densitometer.

Biochemical analyses

Subjects were asked to undergo testing in a fasting state and efforts were made to collect sam-

ples in the morning before a meal. For subject safety, individuals were advised to have a light

Fig 1. FRASCI-muscle cohort. The final cohort for this muscle sub-study (FRASCI-muscle).

https://doi.org/10.1371/journal.pone.0198969.g001
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meal or snack if fasting could worsen a medical condition (orthostatic hypotension). In all

cases information was collected on time since last meal or snack. Plasma samples were drawn

into an EDTA tube and immediately delivered to the core blood research laboratory at our

facility. The samples were centrifuged for 15 min at 2600 rpm (1459 x g) at 4˚C and stored at

-80˚C until batch analysis. All biochemical analyses were performed at the Clinical & Epidemi-

ologic Research Laboratory, Department of Laboratory Medicine at Children’s Hospital in

Boston, a state-of-the-art reference laboratory that specializes in micro-analysis. Leptin was

measured by ultra-sensitive enzyme linked immunosorbent assay (ELISA) (R & D Systems,

Minneapolis, MN) with a sensitivity of 7.8 pg/mL and day-to-day variability of 5.4, 4.2 and

3.5% at concentrations of 65.7, 146 and 581 pg/mL, respectively. Total adiponectin was mea-

sured by ELISA (ALPCO Diagnostics Inc., Salem, NH) with a detection limit of 0.075 ng/ml.

and day-to-day variability less than 15% at various concentrations for all forms of adiponectin.

Interleukin-6 (IL-6) was determined by ultra-sensitive ELISA (R & D Systems, Minneapolis,

MN) with a sensitivity of 0.094 pg/ml and day-to-day variability of 9.6, 7.2 and 6.5% at concen-

trations of 0.49, 2.78 and 5.65 pg/mL, respectively. Assays were performed in duplicate and

any duplicate with >10% CV was repeated.

Variable definition

Information regarding SCI, medical history, and medication use was obtained by question-

naire at the time of DXA scan. Participants were weighed and supine length measured for the

calculation of body mass index (BMI). In subjects with severe joint contractures, length was

self-reported (n = 14). Usual mobility mode (more than 50% of the time) was considered in

the following 2 categories: wheelchair use (motorized wheelchair or hand-propelled wheel-

chair) or walking (with aid such as crutch, cane or walk without assistance). Obesity was

defined as having a BMI� 25 for SCI [26,27]. Sarcopenia was defined as having an appendicu-

lar lean mass index� 7.26 [27]. Sarcopenic-obesity was defined as being sarcopenic (ALMI�

7.26) and having total body % fat� 25 [26,27]. For body composition total lean mass (kg) was

included in the analyses.

Statistical analysis

All analyses were performed using SAS 9.4 (SAS Institute, Inc., Cary, NC). T-tests or χ2 tests

were used to compare subject characteristics as appropriate. General linear models (PROC

GLM) were applied to assess associations between leptin and lean mass. Factors with a p value

of<0.10 in the univariate models, as well as factors that were deemed clinically significant

(age), were included in the multivariable models assessing the association of lean mass and lep-

tin (PROC GLM). Factors with a p value of<0.05 were considered statistically significant and

any factor with a p value of>0.05 was removed from the models.

Results

Subject characteristics

Subject characteristics are presented in Table 1. All participants were male and the majority

white. Ages ranged from 22.7 to 85.7 years with a mean of 54.3 ± 13.7. Injury duration ranged

from 4.7 to 30.7 years with a mean of 17.7 ± 13.0 years. Nearly 60% of participants used a

wheelchair as their primary mobility mode with the majority (72%) using manual wheelchairs.

A majority of the subjects were obese (68%), had sarcopenia (31%), and/or had sarcopenic-

obesity (27%). A majority of subjects (79%) had not consumed anything for at least 8 hours
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prior to testing. Leptin, adiponectin, and IL-6 levels did not vary significantly based on time

since last meal or snack (p = 0.41 for leptin, p = 0.14 for adiponectin, and p = 0.45 for IL-6).

Clinical factors associated with ln leptin levels

In univariate analyses leptin levels were positively associated with injury duration, BMI, fat

mass, total lean mass, IL-6, and obesity status and were negatively associated with adiponectin

and sarcopenia status (Table 2). Age, walking status, tetraplegia vs paraplegia did not reach sig-

nificance. In multivariate models that included all men with SCI (Table 3), ln leptin was nega-

tively associated with ln adiponectin (p = 0.001) and positively associated with total lean mass,

total fat mass, and ln IL-6 (p = 0.001-<0.0001). Leptin levels increased by 1.09 pg/mL for every

1% increase in fat mass and by 1.02 pg/mL for every kilogram increase in lean mass. This

model explained 73% of the variation in ln leptin. These relationships remained unchanged

in multivariable models restricted to men with SCI and no sarcopenic-obesity (p = 0.001-

<0.0001). However, when limiting the analysis to men with SCI and sarcopenic obesity, only

total fat mass remained positively associated with ln leptin (p =<0.0001). Leptin levels also

increased by 1.08 pg/mL for every 1% increase in fat mass in this group. We found no signifi-

cant association between ln leptin and lean mass or ln adiponectin (p = 0.27–0.30). There was

a positive association between ln IL-6 and ln leptin that trended toward significance (p = 0.06).

This model explained 73% of the variation in ln leptin.

Discussion

We examined body composition and circulating levels of leptin in 205 men with chronic SCI.

We found no association between age, injury duration, injury level, injury completeness, or

Table 1. FRASCI-muscle cohort participant characteristics.

Variable (n = 205)

Age (years) [Mean ± SD] 54.3 ± 13.7

White (n%) 172 (83.9)

Years post injury [Mean ± SD] 17.7 ± 13.0

BMI (kg/m2) [Mean ± SD] 27.7 ± 5.4

Total fat mass (%) [Mean ± SD] 35.7 ± 7.8

Total lean Mass (kg) [Mean ± SD] 53.5 ± 8.9

ASIA level

Motor complete:

A/B, n(%) 92 (44.9)

Motor incomplete:

C, n(%) 17 (8.3)

D, (n%) 96 (46.8)

Wheelchair users, n(%) 120 (58.5)

Motorized, n(%) 34 (28.3)

Manual, n(%) 86 (71.7)

Tetraplegia, n(%) 100 (48.8)

Obese, n(%) 140 (68.3)

Sarcopenic, n(%) 63 (30.7)

Sarcopenic-obesity, n(%) 56 (27.3)

Leptin (pg/mL) [Mean ± SD] 13,229.7 ± 11,051.2

Adiponectin (ng/ml) [Mean ± SD] 4,916.4 ± 2,724.2

IL-6 (ng/ml) [Mean ± SD] 3.5 ± 4.0

https://doi.org/10.1371/journal.pone.0198969.t001
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walking status and leptin. There was a significant positive association between lean mass and

leptin in men with SCI that was independent of fat. Adjusting for body composition, leptin lev-

els were positively associated with IL-6 and negatively associated with adiponectin levels.

When considering men with SCI and sarcopenic obesity, only fat mass remained positively

associated with leptin. We found no association between IL-6, adiponectin, or lean mass and

leptin in the sarcopenic obesity group.

Our findings suggest that lean mass contributes independently to circulating leptin levels in

men with SCI with normal body composition. These results suggest sarcopenia leads to

impaired leptin production and/or release from skeletal muscle following SCI. In the current

study nearly one third of the men with SCI were sarcopenic and 27% had sarcopenic-obesity.

Table 2. Univariate factors associated with ln leptin in men with chronic SCI.

SCI (n = 205)

Variable β ± SE p

Age (years) 0.009 ± 0.005 0.07

Injury duration (years) 0.01 ± 0.005 0.03

BMI (kg/m2) 0.12 ± 0.008 <0.0001

Total fat mass (%) 0.095 ± 0.004 <0.0001

Total lean mass (kg) 0.03 ± 0.007 <0.0001

ln adiponectin (ng/ml) -0.63 ± 0.11 <0.0001

ln IL-6 (ng/ml) 0.51 ± 0.06 <0.0001

Walking status

Wheelchair user 0.08 ± 0.13 0.57

Walk with or without aid reference

Injury completeness

Motor complete 0.06 ± 0.13 0.65

Motor incomplete reference

Injury level

Tetraplegia -0.13 ± 0.13 0.31

Paraplegia reference

Obesity status

Obese 1.25 ± 0.11 <0.0001

Not obese reference

Sarcopenia status

Sarcopenia -0.37 ± 0.14 0.008

No sarcopenia reference

Sarcopenic-obesity status

Sarcopenic-obesity -0.12 ± 0.15 0.41

No sarcopenic-obesity reference

https://doi.org/10.1371/journal.pone.0198969.t002

Table 3. Multivariable model of factors associated with ln leptin in men with SCI and based on sarcopenic-obesity status.

All SCI (n = 205) No Sarcopenic obesity (n = 149) Sarcopenic obesity (n = 56)

p<0.0001, R2 = 0.73 p<0.0001, R2 = 0.75 p<0.0001, R2 = 0.73

Variable β ± SE eβ p β ± SE eβ p β ± SE eβ p

Total fat mass (%) 0.08 ± 0.004 1.08 <0.0001 0.09 ± 0.006 1.09 <0.0001 0.09 ± 0.009 1.09 <0.0001

Total lean mass (kg) 0.02 ± 0.003 1.02 <0.0001 0.02 ± 0.005 1.02 0.001 0.01 ± 0.01 1.01 0.30

ln adiponectin -0.21 ± 0.06 0.81 0.001 -0.23 ± 0.08 0.79 0.005 -0.15 ± 0.13 0.86 0.27

ln IL-6 0.14 ± 0.04 1.15 0.001 0.16 ± 0.05 1.17 0.003 0.15 ± 0.08 1.16 0.06

https://doi.org/10.1371/journal.pone.0198969.t003
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These results are consistent with a previous study demonstrating high prevalence of sarcopenic

obesity in adults with SCI [26]. Extreme muscle wasting begins immediately with a 33% reduc-

tion in thigh cross-sectional area within 3 months after SCI, and occurs with both increased

intramuscular fat accumulation and increased central adiposity [28]. It is possible that intra-

muscular fat is a significant source of muscle-derived leptin. Our findings of lower leptin levels

in those with sarcopenia versus those with normal muscle mass suggests that intramuscular fat

is not the primary source of muscle-derived leptin. However, our study design did not include

assessments of intramuscular fat. Future studies focused on associations between intramuscu-

lar fat and circulating leptin are needed to test this hypothesis.

Crosstalk between muscle and adipose tissue is poorly understood, but it is well docu-

mented in both mouse and human studies that leptin receptors are abundant in high concen-

trations in skeletal muscle and that skeletal muscle produces leptin [8,9,11,29]. Leptin, recently

identified as an adipo-myokine, may link the metabolic rate of skeletal muscle to fat mass and

therefore nutrient availability. Indeed, coordinated muscle-adipose metabolism has been

reported in several studies [30–33]. Moreover, a high-fat diet increases leptin expression in

both skeletal muscle and adipose tissue [29,34]. Leptin, therefore, likely plays a critical role in

maintaining balance between adipose tissue and skeletal muscle mass.

Previous literature commonly credits increased central adiposity as the cause of elevated

leptin levels after SCI without considering the contributions of skeletal muscle [35]. Nonethe-

less, perpetual elevation of circulating leptin levels may have multiple consequences on the

central neuroendocrine pathway. Leptin is well known to participate in energy homeostasis by

interaction with the long form leptin receptor LepRb which actives Jak2/Stat3 pathway in the

arcuate nucleus of the hypothalamus. This ultimately triggers various signaling cascades in

metabolism including suppression of feeding behavior [36–39]. After prolonged activation of

the LepRb receptor, the downstream activation of the SOCS3 pathway appears to attenuate

LepRb receptors leading to leptin resistance [36]. Chronic SCI leads to reduction in LepRb and

Jak2/Stat3 signaling and additionally increases expression of SOCS3, consistent with a central

leptin resistance after SCI [37]. Additionally, persistent down stream signaling results in atten-

uation of anorexigenic neuroendocrine pathways and disinhibition leading to pro-orexigenic

effects. Persistent activation of these pathways likely contribute to metabolic dysfunction [38].

Paradoxically, elevated leptin levels appear to have the opposite effect on peripheral leptin

receptor expression following SCI. Leptin receptors and downstream pro-inflammatory path-

ways are significantly increased in several visceral organs, including pancreatic and cardiac tis-

sue [38]. This is particularly relevant given the high prevalence of cardiovascular disease after

SCI [35]. This divergent leptin expression and regulation from central and peripheral tissues

has previously been described as selective leptin resistance, although a mechanism for these

differences has not yet been identified [39].

The impact of SCI-induced sarcopenia on leptin signaling within skeletal muscle and sys-

temically is unknown. It is also unclear if muscle-derived leptin and fat-derived leptin have

unique targets in their local environments, in the periphery, or centrally. We do know that

obesity and exercise both influence the balance of pro-inflammatory and anti-inflammatory

cytokines including leptin [40–42], and that distinct leptin receptor isoforms have been

described in human skeletal muscle and adipose tissue [8]. Additionally, differences in co-

expression of cytokines in skeletal muscle versus adipose tissue may result in distinct local sig-

naling milieus. The ratio of leptin to adiponectin is positively associated with muscle strength

in older adults [22] and is a biomarker of atherosclerotic disease, insulin resistance, and meta-

bolic syndrome in the general population [43]. Similarly, IL-6 is produced by both contracting

skeletal muscle and adipose tissue and regulates adipogenesis and production of adiponectin

[44]. It has been suggested that obesity-related inflammatory cytokines, including tumor
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necrosis factor α (TNFα), interleukin-1β (IL-1β) and IL-6, may accelerate muscle catabolism

[45–47]. Muscle loss does not appear to plateau in chronic SCI [48], suggesting that fat-medi-

ated mechanisms compound the effects of mechanical unloading on muscle atrophy. In the

current study, leptin levels were negatively associated with adiponectin levels and positively

associated with IL-6, and this is consistent with prior reports [10]. Interestingly, there was no

longer a significant association between leptin and IL-6 or adiponectin in men with SCI and

sarcopenic obesity. These findings support the concept of dysregulated adipo-myokine activity

in men with SCI with sarcopenic obesity.

Conclusion

Skeletal muscle mass is positively associated with leptin in men with chronic SCI and normal

body composition. The development of SCI-induced sarcopenic obesity disrupts muscle/leptin

associations suggesting dysregulated adipo-myokine activity. The systemic consequences of

abnormal skeletal muscle-derived leptin production and/or release are unclear and warrant

further investigation.

Author Contributions

Conceptualization: Andrew J. Park, Ricardo A. Battaglino, Nguyen M. H. Nguyen, Leslie R.

Morse.

Data curation: Nguyen M. H. Nguyen, Leslie R. Morse.

Formal analysis: Andrew J. Park, Ricardo A. Battaglino, Nguyen M. H. Nguyen, Leslie R.

Morse.

Funding acquisition: Leslie R. Morse.

Investigation: Andrew J. Park, Ricardo A. Battaglino, Nguyen M. H. Nguyen, Leslie R. Morse.

Methodology: Andrew J. Park, Ricardo A. Battaglino, Nguyen M. H. Nguyen, Leslie R. Morse.

Project administration: Leslie R. Morse.

Software: Nguyen M. H. Nguyen.

Supervision: Leslie R. Morse.

Validation: Andrew J. Park, Ricardo A. Battaglino, Nguyen M. H. Nguyen, Leslie R. Morse.

Writing – original draft: Andrew J. Park, Ricardo A. Battaglino, Nguyen M. H. Nguyen.

Writing – review & editing: Andrew J. Park, Ricardo A. Battaglino, Nguyen M. H. Nguyen,

Leslie R. Morse.

References
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