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Few studies have investigated the functional patterns of methamphetamine abstainers.

A better understanding of the underlying neurobiological mechanism in the brains of

methamphetamine abstainers will help to explain their abnormal behaviors. Forty-two

male methamphetamine abstainers, currently in a long-term abstinence status (for at

least 14 months), and 32 male healthy controls were recruited. All subjects underwent

functional MRI while responding to drug-associated cues. This study proposes to

combine a convolutional neural network with a short-time Fourier transform to identify

different brain patterns between methamphetamine abstainers and controls. The

short-time Fourier transformation provides time-localized frequency information, while

the convolutional neural network extracts the structural features of the time–frequency

spectrograms. The results showed that the classifier achieved a satisfactory performance

(98.9% accuracy) and could extract robust brain voxel information. The highly

discriminative power voxels were mainly concentrated in the left inferior orbital frontal

gyrus, the bilateral postcentral gyri, and the bilateral paracentral lobules. This study

provides a novel insight into the different functional patterns between methamphetamine

abstainers and healthy controls. It also elucidates the pathological mechanism of

methamphetamine abstainers from the view of time–frequency spectrograms.

Keywords: methamphetamine abstainers, deep learning, short-time Fourier transform, functional magnetic

resonance imaging, drug cues

INTRODUCTION

Methamphetamine (MA) is a highly addictive stimulant with a continuously increased production
and that is abused globally. MA addiction can lead to anxiety, depression, and psychosis (Zweben
et al., 2004), causing structural and functional changes in the brain (Salo and Fassbender, 2012).
Brain imaging provides valuable information on the neurobiological effects of drug abuse and
helps explain the causes and mechanisms of vulnerability to drug abuse (Weinstein et al., 2016);
however, there is limited neuroimaging research on the structural and functional recovery of the
brain of long-term abstaining MA-dependent individuals. To overcome this barrier, we collected
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neuroimaging data from abstaining MA-dependent individuals
(for at least 14 months) during the recovery period. Brain
differences between healthy controls (HCs) and abstaining
MA-dependent individuals were then studied to evaluate the
risk of relapse and to understand the neurological impact of
MA abuse.

Functional MRI (fMRI) is often used to study the functional
characteristics of various brain regions in specific task states
(Cassidy et al., 2018; Dvornek et al., 2018; Gui and Gui,
2020; Yousefnezhad et al., 2020; Yotsutsuji et al., 2021).
Traditional statistical methods, such as the two-sample t-test,
have played a significant role in locating abnormal brain
regions associated with psychiatric disorders by looking
at the brain activation levels during a task performance
(Jiang et al., 2013). Usually, hypothesis testing may not fully
capture the underlying group differences when there is a
non-linear relationship (Smucny et al., 2021); hence, as an
alternative, researchers have proposed to study neuronal
oscillations or frequency responses associated with physiological
functions (Han et al., 2011; Tang et al., 2016), where frequency
analysis has been widely used to reveal the pathophysiology
of mental diseases (Chang and Glover, 2010; Bolton and
Van De Ville, 2019). These studies have highlighted the
importance of studying the intrinsic brain activity within
specific frequency bands for the resting-state fMRI. In
this study, because long-term abstaining MA-dependent
individuals show little difference from HCs using the traditional
statistical methods, we propose to identify potential brain
abnormality by exploring the spatiotemporal brain activation
patterns within specific frequency bands. Short-time Fourier
transform (STFT), a commonly used analysis method in
physiological signal processing to extract information in the
time–frequency domain (Sato et al., 2020), was used to study
the changing spectra over time of MA-dependent individuals
and HCs. STFT was used to analyze the dynamic changes
of the frequency and phase information of a non-stationary
signal (Subbarao and Samundiswary, 2016; Seeliger et al.,
2018), which has many successful applications in pattern
recognition, such as in speech (Takaki et al., 2019) and action
(Klejmova and Pomenkova, 2017).

Regarding classifiers, we first resorted to traditional machine
learning algorithms, such as support vector machine (SVM) and
logistic regression (LR), which have shown excellent performance
in the individual-level disease diagnosis (Pfister et al., 2011;
Huang et al., 2015, 2016; Wang et al., 2015). However, we
found it to be challenging to incorporate prior knowledge to
extract biologically meaningful information from subtle changes,
especially when it comes to features in the STFT spectrogram.
Recently, deep convolutional neural networks (CNNs) have
outperformed the traditional machine learning algorithms in
capturing subtle changes in features in the network structure.
CNN can extract non-linear network structures, can realize
the approximation of complex functions, can characterize the
distributed representation of input data, and can demonstrate the
powerful ability to learn the critical features of datasets. It has
been widely used in various fields, such as in the medical field
(Fan et al., 2017). It is a very promising avenue offering better

results compared with other conventional machine learning or
statistical methods.

When granted the above considerations, we proposed an
STFT-based CNN model to explore the abnormal brain regions
in MA abstainers under the stimulation of drug-associated cues.
Our model converted information on the brain area activation
in fMRI into the STFT spectrograms, which were then fed
into a CNN to generate the recognition results. Finally, we
performed a 10-fold cross-validation to eliminate the interference
of overfitting.

METHODS

Participants
The study included 42 male MA-dependent individuals (aged
19–45 years) currently with a long-term abstinence status
(at least 14 months) and 32 male HCs of similar age and
education. Enrolment criteria for the two group is shown
in Table 1. Exclusion criteria for all the subjects included
(1) hallucinations, delusions, depression, anxiety, and other
psychiatric symptoms; (2) a previous history of other axis I
disorders (such as schizophrenia, depression, bipolar disorder,
and mania); (3) a previous history of medical or physical therapy
affecting brain functions, prescribed by psychiatry, neurology,
or other specialties within the last 3 years; (4) a previous
history of brain tumor, brain trauma, and other organic brain
diseases; (5) a history of seizures, such as epilepsy, coma, high
fever, and convulsions; (6) metabolic and endocrine diseases,
cardiovascular diseases, and other physical diseases that affect
brain functions; (7) metal or electromagnetic implants in the
body, claustrophobia, and other conditions that are not suitable
for the magnetic resonance examination; and (8) homosexuality.
The detailed exclusion criteria are described in Chen et al. (2020).

This study was approved by the ethical review board of the
Second Xiangya Hospital of Central South University, which
evaluated the study specifically related to the participation of
individuals and conditions for the use of incarcerated individuals
in research. Participants could decline their involvement in the
study if they had any concerns, and all the participants provided
voluntary written informed consent.

Experimental Design and Procedures
A block design was adopted with a total of six sessions; each
session contained one 20-s task block showing MA cue images
and one 15-s rest block showing a crosshair. The MA cue

TABLE 1 | Enrolment criteria for MA abstainers and normal control groups.

Variable Controls (n = 32) MA (n = 42) p-value

Age, y (SD) 33.58 (7.70) 32.67 (6.66) 0.542

Education, y (SD) 9.62 (2.25) 8.75 (2.12) 0.057

Duration of MA abstinence, mo (SD) - 61.56 (37.71) -

Age of first MA use, y (SD) - 26.00 (6.97) -

Tobacco use, y (SD) 13.09 (7.95) 15.90 (7.40) 0.051

Alcohol use, y (SD) 9.12 (5.94) 9.28 (5.60) 0.950

Frontiers in Psychology | www.frontiersin.org 2 August 2021 | Volume 12 | Article 684001

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Lai et al. Identifying Methamphetamine Abstainers

FIGURE 1 | Model training and a 10-fold validation.

images contained MA-related contents, e.g., people using MA,
instruments used to consume MA, etc. Each block contained five
unique images presented for 3 s with a 1-s interstimulus interval.
Thus, a total of 30 images for each cue condition were presented
during the fMRI scan. The images and blocks within sessions
were randomly arranged.

Image Acquisition and Preprocessing
All the fMRI scan images were collected at the Medical Imaging
Department of the Second Xiangya Hospital of Central South
University using a 3.0 Tesla Siemens MRI scan system. The
subjects were required to lie flat on an examination bed equipped
with a magnetic resonance scanner during the examination,
wearing sponge earplugs and noise-proof headphones to reduce
noise. An elastic sponge was used to fix the sides of the head and
to reduce head movement. The fMRI data were synchronously
collected while the subjects viewed the images. The parameters
of magnetic resonance data acquisition were as follows: TR =

2000ms, TE= 20ms, the field-of-view (FOV)= 220mm, matrix
= 64×64, flip angle = 80◦, voxel size = 3.4×3.4×3.4 mm3,
slice thickness = 4mm, and number of slices = 36. Interval
scanning was employed, i.e., alternatively scanning the even- and
odd-numbered layers. A total of 60 time points were collected.

DPARSF software (Chao-Gan and Yu-Feng, 2010) was used
to preprocess the task fMRI data such as slicing time, head
motion correction, spatial normalization with a 3×3×3mm3 EPI
template, and spatial smoothing with Gaussian kernel (FWHM
= 6mm). Participants met the standard by limiting their head
motion within 2.5mm. The number of displayed images of the
drug-associated cues was 60.

Development of the Discriminate Model
We divided the subjects into 10 groups, and 90% of the subjects
were used for model training and the remaining 10% were used
formodel testing.We developed a data-driven classifier to further

explore the group differences using a CNNmodel, which consists
of four steps: feature selection, feature transformation, model
identification, and cross-validation (Figure 1).

Feature Selection
Considering the characteristics of huge voxels in the brain image,
feature selection was used to obtain the locations of some
significant voxels. To validate our algorithm, we only used the
training data to build the generalized linear model (GLM) (first-
level analysis). A fixed-effect boxcar waveform was convolved
with the hemodynamic response function to produce a matrix
to model categorical BOLD responses (Penny et al., 2003). In
this procedure, a high-pass filter of 1/128Hz was used to remove
the low-frequency noise, and an AR (1) model was used to
correct for temporal autocorrelations. To account for the residual
motion artifacts, we included six motion regressors in our first-
level model. Following the abovementioned procedure, neural
activities associated with the drug cues were found. Thereafter,
a two-sample t-test (Jiang et al., 2013) was conducted to compare
abstaining MA-dependent individuals with HCs in the training
data set to select the locations of voxels. When the two-sample
t-test was used on the training data, there was no significant
difference (p < 0.001 uncorrected) in the brain voxels. In this
study, we only kept the locations of voxels with t-values greater
than three and cluster sizes greater than five. The chosen number
of voxels was denoted by N, and we obtained the locations of
these N voxels through feature selection.

Feature Transformation
Functional MRI time series is often performed by extracting
the values of voxels after preprocessing. In this study,
STFT was performed on the fMRI time series to investigate
the time–frequency information for each subject using the

Frontiers in Psychology | www.frontiersin.org 3 August 2021 | Volume 12 | Article 684001

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Lai et al. Identifying Methamphetamine Abstainers

FIGURE 2 | The network structure of convolutional neural network (CNN).

following equation:

STFT
(

t, f
)

=

∫

∞

−∞

x (τ ) h(τ − t)e−j2πf τdτ (1)

STFT divides a longer time signal into shorter segments of equal
length (i.e., the size of window function h) and then computes the
Fourier transform separately on each segment.

A previous study suggested a window size between 10 and 30 s
to capture the dynamic information within the brain (Allen et al.,
2014); however, owing to the limitation of the block size, we chose
a window size of 10 s.

Here, based on the feature selection, STFT was performed
on each N voxel, giving us N time–frequency spectrograms for
each subject.

CNN-Based Model
A CNN model is shown in Figure 2, which takes 31×56 time–
frequency spectrograms as input and a two-element vector as
output to classify a subject as abnormal or normal. The model
includes three convolution layers with a rectified linear unit
(ReLU) as the activation function, three batch normalization
layers, and a fully connected layer. In all convolution layers, the
kernel size was set to 3 and the padding mode was “SAME.”
The stride of the convolution operation was set to 1. The kernel
numbers of the three convolution layers were 16, 32, and 64,
respectively, and each kernel corresponded to a featuremap; thus,
the feature maps of the three convolutional layers had sizes of
31×56×16, 31×56×32, and 31×56×64, respectively.

After each convolutional layer, we used the batch
normalization layer to process the convolution result. Batch
normalization was used to make the feature distribution more
consistent with the real data distribution to improve the
performance of the model. The activation functions introduced
non-linearity to solve the deficiency of the expression ability
of the linear model. We selected the ReLU as the activation
function. Following the three convolutional layers, a fully
connected layer with 128 neural units was used to merge the
highly abstract features extracted by the convolutional layer to a
softmax classifier. Finally, the softmax outputted two values that
represented the probabilities of spectra belonging to the HCs and
MA abstainers, respectively.

To train the CNN model, we used cross-entropy as the loss
function, which can be formulated as given by Equation (2).
Here, yi represents the label of sample i, where “1” denotes MA
abstainers and “0” denotes HCs; pi represents the probability that
sample i was predicted to be an MA abstainer.

L = −
[

yi · log
(

pi
)

+
(

1− yi
)

· log
(

1− pi
)]

(2)

Cross-Validation
Because of the limited number of samples in this study, we used a
cross-validation strategy to estimate the generalized performance
of our classifier. Here, the performance of the classifier in
the model for spectrograms was represented as Acc. We used
permutation tests to assess the statistical significance of the cross-
validation results. For permutation testing, the classification
labels of the training data were randomly permuted 10,000 times.
Cross-validation was then performed on every permuted training
set.Acc0 was defined as the accuracy rate obtained by the classifier
trained on the real class labels. When Acc0 exceeded the 95%
(P<0.05) CI of the classifier trained on the randomly relabeled
class labels, it was assumed that the classifier had reliably learned
the relationship between the data and the labels. For any value
of the estimated Acc0, the p-value represented the probability of
observing a classification prediction rate of no less than Acc0.

Considering that a single subject produced many time–
frequency spectrograms probably belonging to different
categories, we used Equation (3) to determine the category of
a subject

Prei =
Ti

Ti + Fi
, (3)

where Prei represents the probability that subject i was
successfully identified as an MA abstainer, Ti represents the
number of time–frequency spectrograms for subjects that had
been judged to be MA abstainers, and Fi represents the number
of time–frequency spectrograms for subject i that were judged
to be normal. When Prei was <0.5, we assumed that subject
i was normal; otherwise, subject i was an MA abstainer. The
average classification accuracies of the subjects were taken as the
final result.
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Comparisons With Some Methods
To justify the effectiveness of the proposedmethod, some existing
methods were tested on our dataset as comparisons. First, the
traditional statistical method, a two-sample test, popular for
data analysis in neuroimaging studies (Jiang et al., 2013), was
compared with the proposed method. After data preprocessing,
we divided all data into two groups (MA abstainers vs. matched
controls) and used the two-sample test to identify the brain
regions that showed the statistically significant MA-related
differences (uncorrected p < 0.001). Second, considering that
LR and SVM are widely used machine learning methods in
psychiatry (Zhou et al., 2020), we used them as classifiers taking
the STFT spectra as inputs. In the parameter setting of SVM,
we set the penalty coefficient C to 1.0 and employed a Gaussian
kernel function. In LR, we used L2 regularization with the penalty
coefficient C equal to 1.0. We used the default values for other
parameters. The classification accuracies of SVM and LR were
reported after a 10-fold cross-validation.

RESULTS

Classification Results
The detailed classification results of the cross-validation method
used to verify the model recognition effect are shown in Table 2,
where AccCNN , AccSVM , and AccLR represent the classification
accuracy of spectrograms with CNN, SVM, and LR, respectively.
We took the average of themodel classification accuracy obtained
during model verification. The average accuracy rate in our
model was 93.4%, which was much better than that obtained
using SVM and LR, whose average classification accuracies were
only 76.2 and 72.0%, respectively.

Permutation tests revealed that the proposed classifier learned
the relationship between the data and the labels with an accuracy
higher than 95%.

The recognition accuracy rate in our model, calculated using
Equation (3) in “Cross-validation” section, ranged between 88.9
and 100% with an average value of 98.9%.

When we used the traditional statistical method (two-sample
t-test) to detect the abnormal brain region, we could not find any
statistically significant MA-related difference in this dataset.

Brain Regions With a High Discriminative
Power
Because the performance of the classifier was tested with a
cross-validation strategy, the selected voxels might be different

TABLE 2 | A 10-fold cross-validation accuracy of support vector machine (SVM)

and convolutional neural network (CCN).

Fold AccCNN AccSVM AccLR Fold AccCNN AccSVM AccLR

1 0.981 0.625 0.758 6 0.923 0.714 0.738

2 0.962 0.875 0.693 7 0.894 1.000 0.762

3 0.946 0.750 0.749 8 0.892 0.714 0.654

4 1.000 0.628 0.754 9 0.936 0.571 0.715

5 0.975 0.571 0.697 10 0.833 0.875 0.678

in separate iterations. The voxels that were included across
all iterations were reported. Surprisingly, most of the voxels
presented a clustered distribution. The difference distribution
was mainly concentrated in the left inferior orbital frontal gyrus,
the bilateral postcentral gyri, and the bilateral paracentral lobules.
These areas mainly control the movements and emotions of
the people.

DISCUSSION

In this study, we selected 42MA abstainers and detected the
differences in the brain activation regions when they saw drug
cues. The result is shown in Figure 3. We achieved an average
accuracy rate of 98.9% using STFT and CNN. The left inferior
orbital frontal gyrus, the bilateral postcentral gyri, and the
bilateral paracentral lobule gyri were associated with drug cues
in MA abstainers.

Neuroimaging techniques have a high potential to detect
brain deficits and correlations between the deficient brain regions
and the cognitive–behavioral performance in MA abstainers.
However, for MA abstainers, partial functions of the brain return
to normal, and group-level statistical methods such as the two-
sample test cannot detect any statistically significant MA-related
difference in this dataset (Allen et al., 2014). However, using
STFT and CNN, we found significant MA-related differences
with the average accuracy rate reaching 98.9% in the cross-
validation. The STFT method was used to analyze the time–
frequency changes in the brain voxel signals. STFT is a time–
frequency analysis technique suited to non-stationary signals
and provides time-localized frequency information for situations
in which the frequency components of a signal vary over
time. Thus, this might be ascribed to the essentially non-linear
neural dynamics of time–frequency changes underlying the
brain activity. A similar conclusion was also obtained for MA
abusers using electroencephalogram (EEG) (Khajehpour et al.,
2019). In addition, without the pre-engineered features, CNN
can conduct local perception and extract the spatial structural
features of the time–frequency spectrograms. CNN methods
have the potential to scale well and substantially improve the
classification performance compared with SVM and LR methods
(Abrol et al., 2021). Our findings highlight the presence of
non-linearities and time–frequency changes in neuroimaging
data that CNN can exploit as discriminative representations to
characterize the MA abstainers.

Numerous MRI studies have documented that addictive drugs
cause volume and tissue composition changes in the left inferior
orbital frontal gyrus, which is associated with a longer duration of
use of the MA (Volkow et al., 2015). Changes in the left inferior
orbital frontal gyrus are likely associated with the cognitive
and decision-making problems of the abusers. Moreover, this
impairment of cognitive and altered decision-making in MA
abstainers may result in relapse (Mizoguchi and Yamada, 2019),
although this region may partially recover from long-term
abstinence (Chang et al., 2005). In this study, we still detected
different time–frequency spectrograms using the CNN model,
i.e., MA abstainers were still influenced by the drug-associated
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FIGURE 3 | The regions with the highest discriminative powers in the Short-time Fourier transform (STFT)+CNN model.

cues, a deficit that is related to dysfunctions of the left inferior
orbital frontal gyrus (Volkow et al., 2015).

The paracentral lobule controls the motor and sensory
innervations, and the postcentral region is located in the
somatosensory cortex. When these regions are impaired, the
executive control systems may be affected as demonstrated
by Volkow et al. (2015) by specific impairments within
the executive brain networks in MA addicts during the
exposure to drug-associated cues. Khajehpour et al. (2019) also
reported that MA abusers differed in the gamma band in the
paracentral lobule. It may be speculated that the substance-
dependent individuals are unable to control their addiction-
related behaviors (Khajehpour et al., 2019).

This study not only demonstrated a high classification
accuracy of the STFT–CNN classifier from a drug–cue functional
integration viewpoint but also elucidated the pathological
mechanisms of theMA abstainers in a non-linear time–frequency
characteristic. In the future, we will test this method on a larger
independent dataset to confirm our findings.
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