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Abstract

Motivation: Antibodies play an important role in clinical research and biotechnology, with their specificity deter-
mined by the interaction with the antigen’s epitope region, as a special type of protein—protein interaction (PPI) inter-
face. The ubiquitous availability of sequence data, allows us to predict epitopes from sequence in order to focus
time-consuming wet-lab experiments toward the most promising epitope regions. Here, we extend our previously
developed sequence-based predictors for homodimer and heterodimer PPl interfaces to predict epitope residues
that have the potential to bind an antibody.

Results: We collected and curated a high quality epitope dataset from the SAbDab database. Our generic PPl hetero-
dimer predictor obtained an AUC-ROC of 0.666 when evaluated on the epitope test set. We then trained a random
forest model specifically on the epitope dataset, reaching AUC 0.694. Further training on the combined heterodimer
and epitope datasets, improves our final predictor to AUC 0.703 on the epitope test set. This is better than the best
state-of-the-art sequence-based epitope predictor BepiPred-2.0. On one solved antibody—antigen structure of the
COVID19 virus spike receptor binding domain, our predictor reaches AUC 0.778. We added the SeRenDIP-CE
Conformational Epitope predictors to our webserver, which is simple to use and only requires a single antigen se-
quence as input, which will help make the method immediately applicable in a wide range of biomedical and biomo-
lecular research.

Availability and implementation: Webserver, source code and datasets at www.ibi.vu.nl/programs/serendipwwwy/.
Contact: k.a.feenstra@vu.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein—protein interactions (PPI) are crucial for most biological
functions, and thus of great importance to understand cellular proc-
esses (Jones and Thornton, 1996). Therefore, an interest exists for
discerning the mechanisms of PPI and discovering theoretical and
practical applications such as in biological, biophysical and bio-
chemical studies (Gallet et al., 2000; Shoemaker and Panchenko,
2007; Valencia and Pazos, 2002). Here, we are particularly inter-
ested in the interactions between antibodies and their antigens,
which can be considered as a specific form of PPI that has been
shown to be very different from general interactions between
proteins (Esmaielbeiki et al., 2016). The process of antibody—
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antigen-binding has gathered significant attention due to the high
specificity and affinity of antibodies to their target (Sela-Culang et
al., 2013). This property can be exploited in many areas, e.g. for the
development of diagnostic tools, therapeutics and peptide-based
vaccines (Khan, 2014; Parvizpour et al., 2020), making antibodies
one of the most important biopharmaceuticals today with an ever
increasing amount of antibody-based therapies being approved for
clinical use (Kaplon et al., 2020).

To facilitate the use of antibodies, it is vital to identify the dis-
tinct region on the antigen that will be recognized by an antibody;
the specific amino acids of such a region are known as the epitope
(Potocnakova et al., 2016). Identification of an antigen’s epitope
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regions and a better understanding of the mechanism of antibody—
antigen-recognition will lead to improved antibody engineering and
thus widen their applications in the future (Sela-Culang et al.,
2013). Generally, there is a distinction between continuous (linear)
epitopes and discontinuous (conformational) epitopes: a continuous
epitope is comprised of a single continuous stretch of amino acids,
while the residues forming a discontinuous epitope are made up of
several stretches in the sequence that are brought together by the
protein being folded (Barlow et al., 1986). Linear epitopes should
generally be seen as segments of (larger) conformational epitopes as
structural studies did not find truly linear epitopes as of yet
(Kringelum et al., 2013; Rubinstein et al., 2008). It is estimated that
conformational epitopes make up around 90% of all B-cell epitopes
(Huang and Honda, 2006).

Large scale experimental epitope identification is not feasible as
this process is time-consuming and costly (El-Manzalawy and
Honavar, 2010). As a consequence, many efforts have been devoted
to developing computational methods for prediction of epitopes in-
stead, aiming to predict continuous or discontinuous epitopes, or
both. Linear epitope predictors can be of use if the objective is to
substitute a protein antigen by a peptide fragment in order to de-
velop or produce antibodies, however, the desired cross-reactivity
with the native protein antigen is often limited as almost all natural-
ly occurring epitopes are conformational (Ponomarenko and Van
Regenmortel, 2009). Continuous epitope prediction can also be
applied to antibody detection based on denatured proteins deprived
of their 3D structure (Sanchez-Trincado et al., 2017) and for the de-
sign of epitope-based vaccines (Parvizpour et al., 2020).

Discontinuous epitope prediction is more suitable to discover
existing epitopes, i.e. to predict the explicit residues on the protein
structure in its native fold that interact with an antibody. Such pre-
dictions can thus support immunodiagnostic and therapeutic meth-
ods that demand recognition of the natively folded protein
(Forsstrom et al., 2015). Brown et al. (2011) showed that antibodies
raised against full-length protein antigens consistently outperformed
those raised against peptide antigens. Furthermore, prediction of
conformational epitopes can help determine a list of epitope candi-
dates to be confirmed by experimental testing (Sanchez-Trincado
etal.,2017). An improved understanding of antibody—antigen-inter-
actions also furthers our understanding of the immune response pro-
cess in general (Zhang et al., 2011).

Epitope prediction tools can also be divided according to the in-
put being structure- or sequence-based. Structure-based methods are
usually able to outperform sequence-base methods in accuracy in
direct comparison but are severely limited by the number of 3D pro-
tein structures available to use (Gao and Kurgan, 2014). Sequence-
based methods offer the critical advantage of a large volume of data
being available for training. Although the amount of protein struc-
tures accessible is also growing, there is still a lack of confirmed
structural data for most antibody-antigen-complexes while the
number of entries for protein sequences is increasing exponentially
(Schwede, 2013). To take advantage of this vast amount of informa-
tion, various different implementations of sequence-based epitope
predictors have been developed over the last years. So far these
methods have focused almost exclusively on linear epitope predic-
tion (Ansari and Raghava, 2010; Davydov and Tonevitsky, 2009;
El-Manzalawy et al., 2008; Gao et al., 2012; Jespersen et al., 2017;
Liu et al., 2020; Rubinstein et al., 2009; Saha and Raghava, 2006;
Shen et al., 2015; Singh et al., 2013; Sweredoski and Baldi, 2009;
Wee et al., 2010; Yao et al., 2012), despite the uncommonness of
naturally occurring truly linear epitopes.

In addition, we can also distinguish between fixed length and
residue-specific epitope prediction methods. The first type, which is
the majority of methods, outputs epitopes of a pre-defined length,
typically between 12 and 22 amino acids. The second type of meth-
ods offers residue-specific prediction by assigning a score to each
amino acid which quantifies its likelihood to be part of an epitope.
Only a small number of methods provide residue specific predic-
tions. AAPPred uses a support vector machine classifier based on
amino acid pair frequency and antigenicity scales (Chen et al., 2007;
Davydov and Tonevitsky, 2009). The model was trained on the

linear epitope database Bcipep and randomly chosen non-epitopes
taken from Swiss-Prot as well as experimental data. BepiPred-2.0 is
currently the most widely used and cited method for epitope predic-
tion (Jespersen et al., 2017). It was trained on antibody—antigen
crystal structures taken from the Protein Data Bank (PDB) and
applies a random forest algorithm to assign a probability score to
every residue. Discontinuous epitope prediction from sequence is
currently possible using CBTOPE (Ansari and Raghava, 2010). This
method uses support vector machines to calculate a score for each
amino acid that assesses its propensity to be part of a conformation-
al epitope. As the field of sequence-based predictors of conform-
ational epitopes is so limited, a strong need exists for new tools able
to support the identification of the specific residues of a protein anti-
gen interacting with its antibody. Here we focus on a predictor that
can achieve accurate identification of residues that constitute the
antigen’s epitope(s).

Previously, we developed a generic PPI predictor, that makes pre-
dictions on a per residue basis. This resulted in a widely usable inter-
face predictor that only requires a single sequence as input (Hou
et al., 2017, 2019). It is based on a random forest model and incor-
porates several features that can be derived from the sequence,
including conservation (Hou et al., 2015; Pirovano et al., 2006), pre-
dicted secondary structure (de Vries and Bonvin, 2008; Guharoy
and Chakrabarti, 2007) and solvent accessible area (Li et al., 2012;
Ofran and Rost, 2007), and as novel features protein length (Hou
et al., 2015, 2017) and predicted backbone flexibility (Cilia et al.,
2013; Hou et al., 2017, 2019). Here, we investigate if this approach
using random forest models with these features, and the combin-
ation of epitope data and general PPI datasets, can help to make epi-
tope prediction more accurate.

Antibody-antigen interaction differs strongly from other PPI,
hence if we want to use PPI prediction methods for the purpose of
epitope prediction adaptation is required (Esmaielbeiki et al., 2016;
Yao et al., 2013). In order to determine which type of data should
be included to re-train our prediction approach, we first investigated
the predictive performance of RF models previously trained on
homodimer and heterodimer PPI datasets (Hou et al., 2015, 2017).
We then assembled a new antibody—antigen-interface dataset, spe-
cifically using conformational epitopes derived from structural data
to optimize the prediction of this type of epitope by the model. This
dataset was used to train our new epitope predictor SeRenDIP-CE:
Sequence-based RanDom  forest Interface Predictor for
Conformational Epitopes, which aims to predict residues that have
the potential to bind an antibody, and therefore be part of an
epitope.

2 Materials and methods

For clarity, we here summarize the training and testing protocols
used to derive our random forest classifiers, following the procedure
developed previously (Hou et al., 2017, 2019), and also the details
of constructing the Dset_anti dataset for sequence-based epitope
prediction.

2.1 Dataset

The SAbDab structural antibody database from the Oxford Protein
Informatics Group (OPIG) (Dunbar et al., 2014) was used to obtain
the antibody—antigen structures as our starting dataset. 2 023 PDB
(Protein Data Bank) structures of antibody—antigen complexes were
selected. The sequence of each antigen chain was extracted from
PDB files. CDhit (Li and Godzik, 2006) was used to remove redun-
dancy among all antigen sequences using 25% sequence identity
(seq. ID) cut-off to obtain a non-redundant dataset of 311 antigen
sequences. To evaluate the performance of our homodimer and het-
erodimer predictors developed previously, we further removed re-
dundant sequences at 25% seq. ID between the antigen dataset and
our homodimer and heterodimer datasets, retaining 280 antigen
sequences (75 845 residues) as our antigen dataset: Dset_anti, see
Supplementary Table S1 for a list of PDB IDs for all proteins


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab321#supplementary-data

SeRenDIP-CE: interface prediction for epitopes

3423

included, and Supplementary Table S2 for an overview of X-ray res-
olutions. Dset_anti is available for download from www.ibi.vu.nl/
programs/serendipwwwy/.

For a fair comparison with other state-of-the-art predictors, we
downloaded the training set of conformational epitopes from
BepiPred-2.0 (Jespersen et al., 2017) and CBTOPE (Ansari and
Raghava, 2010) and removed sequences from our five test datasets
redundant with their training sets at a cutoff of 25% seq. ID. The
number of proteins retained in each test set are reported in
Supplementary Table S3.

2.2 Generation of protein sequence features

For each antigen sequence, we obtained the 172 features per pos-
ition across the query sequence, as previously described (Hou et al.,
2017, 2019). In short, for each input sequence, PSI-BLAST (version
2.2.22+; Altschul et al., 1997, 2005; Schaffer et al., 2001) was used
to retrieve sequence homologs from the NR70 database using max.
3 iterations, an E-value threshold of 1075 and max. 500 hits.
Multiple Sequence Alignments (MSAs) of the query sequence and its
PSI-BLAST hits were made using Muscle (Edgar, 2004), and profiles
for each of the hit sequences were generated by re-mastering from
the MSA (Hou et al., 2019). The resulting profiles were then used as
input to NetSurfP to predict solvent accessibility (RSA, ASA) and
secondary structure (PA, PB, PC). Sequence entropy values
(Entropy) were calculated at each column of the MSA to quantify
the conservation for each position of the query sequence. Backbone
flexibility scores were predicted using Dynamine (DM) (Cilia et al.,
2013).

For each of the six features (RSA, ASA, PA, PB, PC, DM, but not
length or Entropy), in addition to the query value, the average and
standard deviation of values for the homologs in the alignment were
also used, resulting in twelve additional features. A fixed nine resi-
due sliding window was implemented to include the same features
from neighboring residues, leading to a total of (74+12) x 9+ 1 =
172 features. All features used are listed in Supplementary Table S5,
for more detail, please refer to Hou et al. (2017).

2.3 Definition of epitope and buried residues

Epitope residues were defined based on the distance between atoms
in the antibody and antigen; when this is less than 6.0A it is
assumed that the antigen residues are interacting with the antibody.
This approach was used for all 280 antigens, resulting in 7 147 epi-
tope residues and 68 698 non-epitope residues. We define buried res-
idues as those having less than 5% or 25% relative solvent
accessible area (RSA) according to DSSP (Kabsch and Sander,
1983).

2.4 Training and validation procedure

We used a nested setup with an outer testing loop, and an inner val-
idation loop, as shown in Supplementary Figure S1. In the outer
loop, to obtain a reliable and stable prediction, and to avoid over-
fitting and biases in the training set, we randomly split the 280 pro-
teins of the antigen dataset Dset_anti into 80% training (224) and
20% test (56) sets and repeated this five times. Thus, we retained
five coupled training and test sets. Using these, five separate random
forest predictors were trained with all features derived and predicted
from the antigen sequences to generate the epitope predictor. The
inner 10-fold cross validation was implemented to allow simultan-
eous model and hyperparameter selection, with nine folds as the
inner-training set and one fold for validation (Supplementary Fig.
s1).

The Random Forest R-package (Liaw and Wiener, 2002) was
used to construct the predictors. The number of variables randomly
sampled at each split of the forest is defined by the global parameter
mtry; during inner-loop validation the mtry value with the best
AUC-ROC was selected by a grid search over a set interval of values
from one to 20 for Dset_anti training, and one to 100 for
Hetero+Dset_anti training, to retain the compensation of dataset
noise at larger mtry, while avoiding overtraining at too large mtry.
Resulting (hyper) parameters are listed in Supplementary Table S4.

The cross-validation and parameter tuning were done using the caret
R-package (Kuhn, 2015). The final model was then fitted on the
whole inner-training dataset using the fixed best mtry. The 10-fold
cross validation was done 3 times with random seeds. The ratio of
epitope to other positions is about 1:10 (7 147 versus 68 698), which
we balanced by downsampling the majority class (non-epitope) in
our training dataset to ensure the same frequency (1:1) between the
classes. Downsampling is suggested by others (Lin and Chen, 2013)
and also outperformed oversampling in our previous work (Hou
et al., 2017). Feature importance was measured using the
MeanDecreaseGini function in the caret R-package, which
measures variable importance based on the Gini impurity index
(Kuhn, 2015).

2.5 Testing and benchmarking

We evaluated our trained models on Dset_anti test (Supplementary
Fig. S1). The conformational epitope evaluation set of five antigen
proteins from BepiPred-2.0 (Jespersen et al., 2017) was used as an-
other independent test; for fair comparison, for each protein only
models were used with no redundant sequences in their training set
at 25% Seq. ID.

We used the measures as before (Hou et al., 2017, 2019).
Average (mean) and standard deviation of each metric, across the
five trained predictors, were computed for comparison with other
approaches. We also evaluated the performance of our previously
derived homodimeric and heterodimeric predictors on our epitope
Dset_anti test sets. Here, true positives (TP) are correct prediction of
epitope residues, false positives (FP) are residues incorrectly pre-
dicted as epitope, true negatives (TN) designate non-interacting sites
that were recognized, and false negatives (FN) are epitope sites
which were predicted as non-epitope. Two ways of scoring were
considered: epitope versus the whole protein, or epitope versus other
surface residues, i.e. disregarding buried residues as negatives.

* Precision (Positive Predictive Value, PPV) = TP/(TP+FP)

* Recall (True Pos. Rate, TPR, Sensitivity, Coverage) = TP/(TP+FN)
* F1 = 2x Precision x Recall/(Precision + Recall)

* Specificity (True Negative Rate, TNR) = TN/(TN-+FP);

* Error (1—Specificity, False Positive Rate, FPR) = FP/(TN-+FP)

* Accuracy = (TP4+TN)/(TP+FN+TN+FP)

* Balanced accuracy (BACC) = (TPR + TNR)/2

* AUC-ROC: area under the cuve of the ROC plot (see below)

We furthermore explored the models’ predictions using
Receiver-Operator Characteristics (ROC; TPR versus FPR) and
Precision/Recall (P/R) plots.

3 Results

To benchmark epitope prediction, we extracted antigen sequence
and structure data from SAbDab, yielding 280 antigens whose epito-
pes are determined using PDB structures. These we divided into
training and test sets randomly for five times, resulting in five pairs
of training and test sets which comprise our new Dset_anti. We fol-
lowed the procedure developed previously (Hou et al., 2017, 2019),
as summarized above in Methods. In total, 172 features derived
from sequences were used including conservation, solvent accessibil-
ity, flexibility and secondary structure (Supplementary Table SS5).
We then compared prediction performance among random forest
models trained on these features using three datasets: homodimers,
heterodimers and epitopes.

3.1 Generic PPI prediction to detect epitope interface

We first evaluated the performance of our existing generic PPI pre-
dictors to investigate how well these may function for epitope pre-
diction. Table 1 shows the prediction performance of different
predictors trained on generic homodimer, heterodimer and com-
bined PPI datasets. On the Dset_anti test sets, the heterodimer PPI
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Table 1. Performance of our previously developed generic PPI
interface predictors on epitope prediction versus the Dset_anti test
sets in five-fold validation; measures as defined in 2.5, in all cases
higher is better

Training set(s) Acc  Sens Prec Spec F1 ROC BACC
Hetero Aver 0.750 0.439 0.170 0.781 0.245 0.666 0.610

St.dev 0.035 0.024 0.007 0.038 0.008 0.026 0.011
Homo Aver 0.529 0.550 0.106 0.526 0.177 0.555 0.538

St.dev 0.021 0.017 0.011 0.023 0.015 0.017 0.023
Homo+ Aver 0.558 0.558 0.114 0.558 0.189 0.583 0.558
Hetero St.dev 0.026 0.013 0.010 0.028 0.014 0.022 0.017

Note: Per metric (column), scores better than one standard deviation below
the highest are indicated in bold.

predictor obtained the highest AUC-ROC (0.666) compared to the
other two. The combined homo/hetero PPI predictor, which per-
formed well on the heteromeric test set (AUC-ROC 0.655, Hou
et al., 2019), does not provide good predictions for the epitope test
sets (AUC 0.583). Also the homodimer PPI predictor performs quite
poorly (AUC 0.555). From this we could infer that heterodimer and
epitope interfaces share some common patterns, while in contrast,
adding homodimer data to the training seems to bring noise into the
epitope prediction.

3.2 Epitope prediction using different training sets

After checking the performance of the previously trained generic
interface predictors (Hou et al., 2017, 2019), we combined the anti-
gen and homo- and heteromeric datasets to further develop a new
epitope predictor. Table 2 shows the epitope prediction performance
by predictors trained on the antigen dataset and in combination
with the homodimer and heterodimer datasets. The ‘Antigen’ pre-
dictor performs well on epitope prediction, yielding AUC-ROC of
0.694. X-ray resolution does not influence prediction accuracy
(Supplementary Fig. $2; #* = 0.05). Adding the homodimer data for
training does not increase prediction performance, similar to the
‘generic homo’ PPI prediction (Table 1). Combined training includ-
ing all three datasets also failed to improve epitope prediction.
Interestingly, the best performance could be obtained from the mod-
els trained on antigen and heterodimer datasets whose AUC-ROC
reaches 0.704, which is consistent with high performance of the gen-
eric ‘hetero’ PPI predictor as shown in previous work (Hou et al.,
2017, 2019).

3.3 Feature importance

We considered which features were most informative for the final
epitope prediction; note that all RF models include the full set of
172 features. As previously observed for our generic PPI predictors
(Hou et al., 2017, 2019), sequence length, NetSurfP predicted acces-
sibility of the query sequence and their mean values across aligned
homologs are the leading contributions also for epitope prediction,
as shown in Supplementary Figure S3 which displays the importance
of all 172 features by ‘mean decrease GINI’ on the random forest
models.

Interestingly, Dynamine predicted flexibility scores were import-
ant to predict homodimer and heterodimer interface residues, but
apparently less so for epitope prediction. Conversely, Entropy as a
measure for conservation was most important for epitope predic-
tion, less crucial for heteromeric interfaces, and least for homomeric
interface prediction. Apparently, generic homodimeric interfaces dif-
fer from epitope interfaces in terms of flexibility and conservation.

To confirm the surprisingly high importance of length as a global
feature for predicting local epitope residues, and to assess its relative
importance compared to solvent accessibility, we also built models
excluding length or/and solvent accessibility from the model

Table 2. Performance versus the Dset_anti test sets of SeRenDIP-
CE epitope predictors trained on the Dset_anti training sets with
and without our existing homo- and heteromeric datasets

Training set(s) Acc  Sens Prec Spec F1 ROC BACC
Anti Aver 0.623 0.657 0.150 0.619 0.244 0.694 0.638

St.dev 0.056 0.034 0.007 0.066 0.010 0.024 0.019
Homo+ Aver 0.635 0.594 0.143 0.639 0.230 0.668 0.617
Anti St.dev 0.031 0.015 0.008 0.033 0.010 0.019 0.025
Hetero+ Aver 0.684 0.598 0.165 0.692 0.259 0.704 0.645
Anti St.dev 0.047 0.025 0.004 0.053 0.006 0.025 0.023
Homo-+ Aver 0.649 0.577 0.145 0.656 0.232 0.668 0.607

Het+Anti St.dev 0.028 0.019 0.008 0.030 0.012 0.018 0.025

Note: Measures and other details as in Table 1.

features, and with only solvent accessibility (SA: RSA and ASA) fea-
tures. The AUC-ROC drops from 0.694 to 0.675 without solvent ac-
cessibility. When just length is removed the performance drops even
more to 0.634. Using only SA features, the AUC-ROC is 0.637. The
performance of the predictors that excluded both length and accessi-
bility features dramatically drops to 0.565 which shows the import-
ance of length and accessibility. The std. dev. is around 0.02 in all
cases, see Supplementary Table S6 for details. We also mapped the
AUC of each protein onto the sequence length, showing only a weak
correlation between the sequence length with the prediction per-
formance (see Supplementary Fig. S4; > = 0.06); hence, our predic-
tors show a similar predictive power for antigens independent of
their length.

3.4 Comparison with other sequence-based epitope

predictors

To show that our SeRenDIP-CE models capture relevant properties
of epitope interfaces, we compared our predictors with other pub-
lished and available state-of-the-art sequence-based epitope predic-
tion methods: BepiPred-1.0 and -2.0 (Jespersen et al., 2017; Larsen
et al., 2006), AAPPred (Davydov and Tonevitsky, 2009) and
CBTOPE (Ansari and Raghava, 2010). The comparison was done
using our Dset_anti test sets filtered at 25% seq. ID w/r to the
BepiPred-2.0 and CBTOPE training sets. Our models trained on
Anti and Anti+hetero obtain highest AUC-ROC (0.716 and 0.730
resp., see Supplementary Table S3) compared to the other methods
(around or below 0.6), and in the ROC plot(Fig. 1) both achieve
consistently higher coverage (TPR) for any error (FPR).
Furthermore, the combined predictor (hetero-+antigen) achieves
overall high precision in the P/R plot (Fig. 1), compared to the other
approaches tested, while at a low recall, the ‘antigen’ predictor
obtains highest precision.

Since our most important features include solvent accessibility
(Supplementary Fig. S3), we also evaluated the ability to distinguish
between epitope residues and (other) surface residues, thus exclud-
ing the evaluation of buried residues; buried residues are expected to
be easier. Details are summarized in Supplementary Table S8. At
RSA < 5% the AUC-ROC for all methods is reduced by about
0.009-0.034 (Supplementary Fig. S5A), and much smaller differen-
ces in performance are seen in the P/R plots (Supplementary Fig.
S5B and C). At RSA < 25% AUC-ROC scores are reduced some-
what more (0.014-0.051), while in all cases overall ranking of the
methods remains unaffected.

We furthermore compared our predictors with BepiPred-2.0 on
their independent conformational epitope dataset (Jespersen et al.,
2017). As can be seen from Table 3, with an average AUC-ROC of
0.651 and 0.618, our two predictors perform better than BepiPred-
2.0 at 0.597, which was previously reported to be the best conform-
ational epitope predictor on their five-protein validation set
(Jespersen et al., 2017).
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Fig. 1. Comparison on the Dset_anti test sets with other approaches by ROC (top)
and P/R (bottom) plots. ‘Hetero+Anti’ and ‘Anti’ represent our two SeRenDIP-CE
approaches; state-of-the-art BepiPred-1.0, 2.0, AAPPred and CBTOPE are included
for comparison; the black lines represent random performance. In both analyses we
can observe that, compared to the other methods, both SeRenDIP-CE models con-
sistently obtain higher recall for a given error in the ROC plot, and higher precision
for a given recall in the P/R plot; at low recall, shown in the inset for recall 0.0—
0.1[deleted], BepiPred-2.0 and our specific ‘Antigen’ trained model both achieve
highest precision

3.5 Application to COVID-19 virus receptor binding
domain

We further evaluate our approach to the COVID-19 virus spike re-
ceptor-binding domain against the solved crystal structure com-
plexed with a neutralizing antibody (PDB:7BZ5). The spike
receptor-binding domain (chain A) was used as input sequence by
our approach to compute the probability score of each amino acid
being an epitope. The structural details of its structure (in cyan) and
epitope region (in red) can be seen in Figure 2A, and with the anti-
body shown in Supplementary Figure S6. Our approach could cap-
ture most of the epitope positions solved in 7BZS at high probability
[red in Fig. 2B and in C track ‘Prediction (%)’] and the majority of
false positives locate around the real epitope (red in Fig. 2C track
€7BZ5’). Note that our predictor is not antibody specific, hence one
should interpret the predictions to show which residues have the po-
tential to bind to an antibody. In this context, our approach is quite
accurate with an AUC-ROC of 0.78 and a high precision of 56% at
low recall (12%; see Supplementary Fig. S7 for ROC and P/R plots).

3.6 Application to Adiponectin receptor-2

The Adiponectin receptor-2 bound to antibody fragments
(PDB:5LX9) was part of Dset_anti test (not training). For this par-
ticular interaction, a coverage of 58% of 24 epitope sites at an ac-
curacy of 82% is achieved, with an AUC-ROC of 0.819 (see
Supplementary Fig. S7). From Supplementary Table S8 we can see

Table 3. Performance in AUC-ROC of our epitope predictors on the
independent conformational epitope dataset from BepiPred-2.0
(Jespersen et al., 2017), and comparison with BepiPred-1.0 and -2.0

PDBID Anti Hetero+Anti BepiPred-1.0 BepiPred-2.0 St.Dev.
4WFF 0.638 0.548 0.660 0.738 0.078
4XAK  0.766 0.710 0.739 0.657 0.047
4Z5R 0.708 0.705 0.327 0.576 0.179
SBVP 0.570 0.556 0.525 0.569 0.021
S5CON  0.578 0.572 0.596 0.443 0.070
Average 0.652 0.618 0.569 0.597 0.035
St.Dev. 0.084 0.082 0.157 0.110

Note: Per protein (row), scores better than one standard deviation below the
highest are indicated in bold.

that transmembrane (TM) proteins in general are easier to predict
for all methods tested here. Interestingly, false positive predictions
clustered on the other side of protein, which might be due to the fact
that the other side of the TM protein is also amenable to antibody
binding (see Supplementary Fig. S8).

3.7 Application to Staphylococcus aureus enterotoxin
The S.aureus Enterotoxin B bound to a neutralizing antibody (PDB :
4RGM) was in the Dset_anti test set (not the training set). At default
cutoff (0.5) modest precision (22%) at high recall (86%) was
obtained, however at a cutoff of 0.69, precision reaches 80% with
14% recall, and an AUC-ROC of 0.74 (see Supplementary Fig. S7).
Also here, false positives cluster around the known epitope region
(Supplementary Fig. S9).

3.8 The webserver

We extended our SeRenDIP-CE webserver (www.ibi.vu.nl/pro
grams/serendipwww/; Hou et al., 2017, 2019) to include the new
epitope interface predictors presented in this work. The webserver is
simple to use and is aimed at non-experts in both academia and in-
dustry. The input is only the antigen protein sequence. The predic-
tions are based on the average of the five-fold trained models; for
each position in the input sequence the average model score is
reported, representing the predicted likelihood of being an epitope
position, as well as the standard deviation to allow an estimate of
the significance of the prediction.

4 Discussion

Epitope prediction based on antigen sequence is still a difficult prob-
lem, nevertheless our results show that it is possible to make signifi-
cant progress in this field: SeRenDIP-CE predictors reach an
AUC-ROC of around 0.7. The difference with the other methods
evaluated here (Fig. 1) may be due to the fact that all except
BepiPred 2.0 were trained on linear epitope datasets. Furthermore,
we showed that the model’s prediction is not solely based on the dis-
tinction of buried and surface residues, seeing only a small drop in
AUC-ROC (~0.02-0.03) in our methods when excluding core resi-
dues (Supplementary Fig. S5).

Precision achieved at the default threshold (0.5) is rather low
(0.16), however at this recall (~0.55), other methods have even
lower precision (~0.12). Moreover, Figure 1 and Supplementary
Figure S7 show that for high-ranked positions a precision of around
0.5 may be readily achieved. As performance differs between targets
(Table 3 and Supplementary Table S7) we also expect the optimal
cutoff to vary. We therefore encourage users to explore high-ranking
sites instead of relying on a default threshold for selecting viable pre-
dictions, and the default presentation in the output table on the web-
server is therefore sorted by descending score.

Note that our epitope predictions effectively indicate which resi-
dues have the potential to bind an antibody, even though our dataset
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Fig. 2. Epitope prediction of COVID-19 RBD protein, which is not part of Dset_anti. (A) The RBD structure (in yellow) and its epitopes (red). (B) The prediction performance
of our predictor. The color gradient from blue (score 0.0) to cyan (0.5) to red (0.7) shows the increased probability scores of that position being an epitope. (C) The details of
the sequence at each position: the residue number, the predicted score (as percentage, same colors as in B) and if the residue is an epitope (1, red) or not (0, blue) according the

PDB structure 7BZS

consists of specific antigen-antibody complexes. Such a dataset does
not necessarily cover all possible antibody binding sites, which will
lead to an underestimation of the number of true positives.

Interestingly, the predictors trained on the combination of heter-
odimer and antigen datasets obtain the best overall performance.
Indeed, the epitope interactions may be seen as a special type of het-
erodimer and therefore may be expected to share some common
properties which could be used for the epitope prediction. To the
best of our knowledge, this is the first time heterodimer data is used
to improve the prediction of epitope positions. That might open a
possibility of implementing ‘combined’ datasets to boost prediction
accuracy of a particular ‘subset’ interface type of interest. Further
improvement could come from applying deep learning algorithms or
implementing additional properties as features, e.g. co-evolution sig-
nals derived from large sequence alignments, now that we have
shown the power of careful selection of the datasets used for
training.

Sequence based prediction is the only option when there is no
structure or suitable template available, as for example may well be
the case for the proteins in a newly discovered virus, for transmem-
brane (TM) proteins or for disordered proteins or disordered
regions. 19 proteins in Dset_anti (14 in training and five in test) are
found in the DisProt database (at > 90% seq. ID) (Hatos et al.,
2020), while 26 are classified as TM in the PDB (of which 19 in the
test-set). The available data does not allow us to directly assess the
suitability of SeRenDIP-CE for such proteins or regions.
Nevertheless, for these five disordered proteins we can report AUC-
ROC from 0.50 to 0.748 (mean 0.61), containing 162 disordered
amino acids out of 2328 (7%), see Supplementary Table S7. For the
TM proteins we can report AUC-ROC of 0.779 =0.053, see
Supplementary Table S8.

Our method performs well on the epitope prediction of the three
selected examples, including the COVID19 RBD antibody—antigen
complex. As can be seen in Figure 2, Supplementary Figures S8 and
S9, the false positives cluster around the epitope annotated from the

corresponding structure. Given the high overall performance of our
approach, predicted positions with high probability score might
therefore be very interesting as candidate targets for antibody de-
sign. Especially for virus proteins whose structures are unknown at
the moment, one could expect to implement our method to improve
selection of candidate epitope regions.

5 Conclusion

Our SeRenDIP-CE  Sequence-based Random forest Epitope
Predictors outperform other state-of-the-art approaches. This shows
that co-training on epitope data and heteromeric PPI interface data
has the potential to make epitope prediction more robust. The web-
server based on our predictor is simple to use and only needs one se-
quence of the protein of interest as input. We therefore expect that
the SeRenDIP-CE method and webserver at www.ibi.vu.nl/pro
grams/serendipwww/, will be immediately applicable to a wide
range of biomedical and biomolecular problems.

Acknowledgements

The authors thank the anonymous reviewers for their very helpful suggestions
for presentation of the results and discussion.

Funding

K.W. and S.A. received funding from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Sktodowska-Curie [860197]
MIRIADE project. Q.H. was supported by the Young Scholars Program of
Shandong University (21320082064101). F.X. was supported by the National
Natural Science Foundation of China (81773547) and the National Key
Research and Development Program of China (2020YFC2003500).

Conflict of Interest: none declared.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab321#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab321#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab321#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab321#supplementary-data
http://www.ibi.vu.nl/programs/serendipwww/
http://www.ibi.vu.nl/programs/serendipwww/

SeRenDIP-CE: interface prediction for epitopes

3427

References

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res., 25, 3389-3402.
Altschul,S.F. et al. (2005) Protein database searches using compositionally

adjusted substitution matrices. FEBS J., 272, 5101-5109.

Ansari,H.R. and Raghava,G.P. (2010) Identification of conformational b-cell
epitopes in an antigen from its primary sequence. Immunome Res., 6, 6.

Barlow,D.]. et al. (1986) Continuous and discontinuous protein antigenic
determinants. Nature, 322, 747-748.

Brown,M.C. et al. (2011) Impact of immunization technology and assay appli-
cation on antibody performance — a systematic comparative evaluation.
PLoS One, 6,¢e28718.

Chen,]. et al. (2007) Prediction of linear B-cell epitopes using amino acid pair
antigenicity scale. Amino Acids, 33,423-428.

Cilia,E. et al. (2013) From protein sequence to dynamics and disorder with
DynaMine. Nat. Commun., 4,2741.

Davydov,Y.I. and Tonevitsky,A.G. (2009) Prediction of linear B-cell epitopes.
Mol. Biol., 43, 150-158.

de Vries,S.J. and Bonvin,A.M.].]. (2008) How proteins get in touch: interface
prediction in the study of biomolecular complexes. Curr. Protein Pept. Sci.,
9, 394-406.

Dunbar,]. et al. (2014) Sabdab: the structural antibody database. Nucleic
Acids Res., 42,D1140-D1146.

Edgar,R.C. (2004) MUSCLE: a multiple sequence alignment method with
reduced time and space complexity. BMC Bioinformatics, 5, 113.

El-Manzalawy,Y. and Honavar,V. (2010) Recent advances in B-cell epitope
prediction methods. Immunome Res., 6, S2.

El-Manzalawy,Y. et al. (2008) Predicting linear B-cell epitopes using string
kernels. J. Mol. Recogn., 21,243-255.

Esmaielbeiki,R. et al. (2016) Progress and challenges in predicting protein
interfaces. Brief. Bioinf.,17,117-131.

Forsstrom,B. et al. (2015) Dissecting antibodies with regards to linear and con-
formational epitopes. PLoS One, 10,¢e0121673.

Gallet,X. et al. (2000) A fast method to predict protein interaction sites from
sequences. J. Mol. Biol., 302, 917-926.

Gao,]. and Kurgan,L. (2014) Computational prediction of b cell epitopes from
antigen sequences. Methods Mol. Biol., 1184, 197-215.

Gao,]. et al. (2012) Best: improved prediction of b-cell epitopes from antigen
sequences. PLoS One, 7,¢40104.

Guharoy,M. and Chakrabarti,P. (2007) Secondary structure based analysis
and classification of biological interfaces: identification of binding motifs in
protein—protein interactions. Bioinformatics, 23, 1909-1918.

Hatos,A. et al. (2020) DisProt: intrinsic protein disorder annotation in 2020.
Nucleic Acids Res., 48, D269-D276.

Hou,Q. et al. (2015) Sequence specificity between interacting and non-inter-
acting homologs identifies interface residues — a homodimer and monomer
use case. BMC Bioinformatics, 16, 325.

Hou,Q. et al. (2017) Seeing the trees through the forest: sequencebased homo-
and heteromeric protein—protein interaction sites prediction using random
forest. Bioinformatics, 33, 1479-1487.

Hou,Q. et al. (2019) SeRenDIP: SEquential REmasteriNg to Derlve profiles
for fast and accurate predictions of PPI interface positions. Bioinformatics,
35,4794-4796.

Huang,]. and Honda,W. (2006) Ced: a conformational epitope database.
BMC Immunol.,7,7.

Jespersen,M.C. et al. (2017) Bepipred-2.0: improving sequence-based b-cell
epitope prediction using conformational epitopes. Nucleic Acids Res., 45,
W24-W29.

Jones,S. and Thornton,].M. (1996) Principles of protein—protein interactions.
Proc. Natl. Acad. Sci. USA, 93, 13-20.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers,22,2577-2637.

Kaplon,H. et al. (2020) Antibodies to watch in 2020. mAbs, 12, 1703531.

Khan,F.H. (2014) Ch. 25 antibodies and their applications. In: Verma,A.S.
and Singh,A. (eds.) Animal Biotechnology. Academic Press, San Diego, pp.
473-490.

Kringelum,].V. et al. (2013) Structural analysis of B-cell epitopes in antibody:
protein complexes. Molec. Immunol., 53, 24-34.

Kuhn,M. (2015) caret: Classification and Regression Training. Astrophysics
Source Code Library, page record ascl:1505.003.

Larsen,].E. et al. (2006) Improved method for predicting linear B-cell epitopes.
Immunome Res., 2, 2.

Li,B.-Q. et al. (2012) Prediction of protein—protein interaction sites by random
forest algorithm with mRMR and IFS. PloS One, 7, e43927.

Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics, 22,
1658-1659.

Liaw,A. and Wiener,M. (2002)
randomForest. R. News, 2, 18-22.

Lin,W.-J. and Chen,].J. (2013) Class-imbalanced classifiers for high-dimen-
sional data. Brief. Bioinf., 14, 13-26.

Liu,T. et al. (2020) Deep learning methods improve linear b-cell epitope pre-
diction. BioData Min., 13, 1.

Ofran,Y. and Rost,B. (2007) ISIS: interaction sites identified from sequence.
Bioinformatics, 23, e13-e16.

Parvizpour,S. et al. (2020) Epitope-based vaccine design: a comprehensive
overview of bioinformatics approaches. Drug Discov. Today, 25,
1034-1042.

Pirovano,W. et al. (2006) Sequence comparison by sequence harmony
identifies subtype-specific functional sites. Nucleic Acids Res., 34,
6540-6548.

Ponomarenko,].V. and Van Regenmortel, M.H. (2009) B cell epitope predic-
tion. In: Gu, J. and Bourne, P.E. (eds.) Structural Bioinformatics, John Wiley
& Sons, pp 849-879.

Potocnakova,L. et al. (2016) An introduction to b-cell epitope mapping and in
silico epitope prediction. J. Immunol. Res., 2016, 1-11.

Rubinstein,N.D. et al. (2008) Computational characterization of B-cell epito-
pes. Mol. Immunol., 45, 3477-3489.

Rubinstein,N.D. et al. (2009) Epitopia: a web-server for predicting B-cell epit-
opes. BMC Bioinformatics, 10, 287.

Saha,S. and Raghava,G.P. (2006) Prediction of continuous B-cell epitopes in
an antigen using recurrent neural network. Protein Struct. Funct. Genes, 65,
40-48.

Sanchez-Trincado,].L. et al. (2017) Fundamentals and methods for T- and
B-cell epitope prediction. J. Immunol. Res., 2017, 1.

Schiffer,A.A. et al. (2001) Improving the accuracy of PSI-BLAST protein data-
base searches with composition-based statistics and other refinements.
Nucleic Acids Res., 29,2994-3005.

Schwede,T. (2013) Protein modeling: what happened to the “protein structure
gap”? Structure, 21, 1531-1540.

Sela-Culang,l. et al. (2013) The structural basis of antibody-antigen recogni-
tion. Front. Immunol., 4, 302.

Shen,W. et al. (2015) Predicting linear B-cell epitopes using amino acid
anchoring pair composition. BioData Min., 8, 14.

Shoemaker,B.A. and Panchenko,A.R. (2007) Deciphering protein—protein
interactions. Part I. Experimental techniques and databases. PLoS Comput.
Biol., 3, e42.

Singh,H. et al. (2013) Improved method for linear B-cell epitope prediction
using antigen’s primary sequence. PLoS One, 8, ¢62216.

Sweredoski,M.]. and Baldi,P. (2009) Cobepro: a novel system for predicting
continuous B-cell epitopes. Protein Eng. Des. Sel., 22, 113-120.

Valencia,A. and Pazos,F. (2002) Computational methods for the prediction of
protein interactions. Curr. Opin. Struct. Biol., 12, 368-373.

Wee,L.J. et al. (2010) SVM-based prediction of linear b-cell epitopes using
Bayes feature extraction. BMC Genomics, 11, S21.

Yao,B. et al. (2012) SVMTriP: a method to predict antigenic epitopes using
support vector machine to integrate tri-peptide similarity and propensity.
PLoS One, 7,e45152.

Yao,B. et al. (2013) Conformational b-cell epitope prediction on antigen pro-
tein structures: a review of current algorithms and comparison with com-
mon binding site prediction methods. PLoS One, 8, €62249.

Zhang,W. et al. (2011) Prediction of conformational B-cell epitopes from 3D
structures by random forests with a distance-based feature. BMC
Bioinformatics, 12, 341.

Classification and regression by



	tblfn1
	tblfn2
	tblfn3

