
RESEARCH ARTICLE

Research on optimization of real-time efficient

storage algorithm in data information

serialization

Bin Huang1,2, You TangID
1,2*

1 Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin,

China, 2 Smart Agricultural Engineering Research Center of Jilin Province, Jilin, China

* tangyou@jlnku.edu.cn

Abstract

Background

Along with the vigorous development of Internet technology, increasing the functions of the

various types of equipment, network communication easy and diversity, at the same time,

the amount of data is very huge, under the network bandwidth limitations, through long lead

to a data need to be cut into more, one by one, transfer times, information delay problems.

Results

Aiming at the problems of poor data integrity, low efficiency and poor serialization efficiency

of traditional data storage information, this article introduces Protobuf technology to study

the serialization of data storage information. The serpentine gap method is used to complete

the allocation interval of the sequence nodes, so that the working state and the resting state

always maintain a dynamic balance. According to the first-level rules, the storage data of the

completed target node is obtained, and the grammatical structure and the semantics of the

target data are analyzed, Meanwhile corresponding correspondences are established, and

the data storage information is serialized. In order to verify the effectiveness of Protobuf’s

data storage information serialization method, a comparative experiment is designed. By

using three methods of HDVM, Redis and Protobuf to serialize JSON data, the comparative

analysis shows that HDVM has the longest processing time and Protobuf has the shortest

processing time, and the data integrity is not affected. The simulation data shows that the

Protobuf serialization method has short conversion time, high space utilization, and the

Obvious advantages in correctness and integrity. It is vary suitable for serialization of JSON

data in the case of limited bandwidth.

Introduction

In wireless sensor monitoring network with low requirement on real-time monitoring data, in

order to save energy, nodes temporarily store monitoring data and transmit data when

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Huang B, Tang Y (2021) Research on

optimization of real-time efficient storage algorithm

in data information serialization. PLoS ONE 16(12):

e0260697. https://doi.org/10.1371/journal.

pone.0260697

Editor: Dhananjay Singh, Hankuk University of

Foreign Studies, REPUBLIC OF KOREA

Received: January 21, 2021

Accepted: November 2, 2021

Published: December 16, 2021

Copyright: © 2021 Huang, Tang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: This work is supported by the Jilin

Province Digital Agriculture Key Discipline for their

support to this project (JLXK20180319) awarded

to YT. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-6605-8497
https://doi.org/10.1371/journal.pone.0260697
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260697&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260697&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260697&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260697&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260697&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260697&domain=pdf&date_stamp=2021-12-16
https://doi.org/10.1371/journal.pone.0260697
https://doi.org/10.1371/journal.pone.0260697
http://creativecommons.org/licenses/by/4.0/


necessary in order to save energy. Such nodes are called storage nodes [1,2]. The selection of

storage nodes directly affects the efficiency of query data and the energy consumption of

nodes in the process of query and data transmission.

Most B/S architecture software today uses JSON [3,4] as a format for information transfer,

and the simplicity and clarity of the hierarchy make JSON an ideal data exchange language.

JSON is short for JavaScript Object Notation. JSON is a syntax for storing and exchanging

data, and it uses JavaScript object notation to write text. Because when data is exchanged

between the browser and the server, it can only be text, and JSON is text, it can be easily trans-

ferred between server browsers and used as the data format for any programming language. So

we can convert any JavaScript object to JSON and send the JSON to the server. JSON is easy

for people to read and write, and easy for machines to parse and generate, However, under the

limitation of network bandwidth, the long length of data leads to the fact that a piece of data

needs to be cut into several pieces and transmitted many times one by one, which causes the

problem of information delay. For this, it is needed that a way to serialize JSON data efficiently

can compress the information to a length suitable for a single transfer, and serialize or deseria-

lize extremely quickly. Due to its features of being good, efficient, and easy to develop, it is Pro-

tobuf that is ideal for serializing JSON data in bandwidth-constrained situations.

With the vigorous development of Internet technology, the functions of various types of

various types of equipment are increasing day by day, and the network communication modes

become convenient and diversified, which cause that the amount of data generated is

extremely huge.

Therefore, how to ensure the normal storage of gateway data has become one of the core

tasks of scholars in related fields [5,6].Traditional serialization techniques, such as XML [7]

and JSON [8,9], have been widely used in various network information storage and exchange

centers due to their good readability. However, both XML and JSON need to change the for-

mat and redeploy the program.

Relevant scholars put forward the following solutions: Canhua Peng REDIS [10] regarded

REDIS as valuable data storage. By optimizing the REDIS cache system algorithm, it can

improve efficiency and hardware capacity of the cache, It also imports the guide installation in

modern statistics theory and constructs pseudo number based on gauss random phase. Then it

configures serialization algorithm, and finally the stack method is used to import the stored

data into disk. At the same time, Huffman code can store the communication cache data.

However, in practical application, this method has high readout rate and poor accuracy, so it is

difficult to store information completely. Haidong Fu [11] proposed an HDVM serialization

structure based on data set index, which selects triple connection matrix from data set, and

uses the structure of correlation vector, predicate vector and object matrix to serialize hard-

ware. It can reduce the number of iterations of correlation data, and improve the speed of

information serialization. However, the algorithm requires high performance of the system

and is difficult to be widely used in real life. Literature [12] proposes a data-centered storage

method, which stores the data to the corresponding nodes through some mapping method

according to the attribute value of the data, so that each node can only store one type of data,

and the data can be obtained from the corresponding nodes through the corresponding map-

ping method when querying. For example, Combs [13], Double Ruling [14], SCOOP [15] and

GHT [16] algorithms affirm that all nodes of the network have the same status and store data

and index information on all nodes in a balanced way. In the GHT algorithm, there is only one

storage node for each type of event, so communication bottleneck and hot spot phenomenon

will occur. The hash position obtained by the hash function may not have a node; Also, the

energy overhead of data storage and querying is not taken into account.

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 2 / 14

https://doi.org/10.1371/journal.pone.0260697


Therefore, the Protobuf serialization method is introduced to study the serialization integ-

rity and efficiency evaluation of data storage information. The serialization data structure is

more concise and the method has obvious advantages in performance. In the data storage pro-

cedure, the content is only the data itself and label, without irrelevant names and boundary

characters. Under the same conditions of network data, Protobuf can save the system space

(binary mode) to the greatest extent, and use a fast and flexible way to store information. Users

can even build a specific sequence structure, use the transformed code to read its structural

information, and re-establish the structure without changing the deployment program to

achieve reliable data storage and information serialization.

ROTOBUF principle

The full name of Protobuf [17–19] is Protocol Buffer, which is Google’s serialization model for

open source goals on the web. Regardless of language and information platform limitations, it

can be used for various types of communication protocols as a data series tool for information

storage due to its excellent scalability and communication. It provides a good environment for

data communication and exchange between networks. Codec flow is shown in Fig 1.

The encoding of the data content is selected according to the data type, and the selection

method is shown in the Fig 2 below.

Protobuf can be understood as the serialization structure that needs to be built to store any

proto file in which the message information is part of the logic of the data. Then, through its

own compiler, the Protobuf file is converted to a fixed computer language, including Java, C+

+, Python and other categories. In this way, any field can be read easily and quickly, and it can

be serialized or deserialized with access to complete the acquisition of message information.

PROTOBUF data structures are different from XML and JSON in that JSON data structures

are defined as name/value pairs when they are defined and transmitted, including names, val-

ues, and boundary characters. It has one or more specific fields, each of which has a modifier,

value type, value name, and field label. The data representation is very compact, so it can see

that Protobuf uses less storage to transmit data and the sales volume is relatively high.

The encoding that Protobuf uses is the compact number Varints [20], Users can bind the

initial data to the associated numbers and store them in the same location, If it is an integer

Fig 1. Code flow.

https://doi.org/10.1371/journal.pone.0260697.g001

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 3 / 14

https://doi.org/10.1371/journal.pone.0260697.g001
https://doi.org/10.1371/journal.pone.0260697


and the number is of type INT32, Varints can be represented with only one byte. The highest

bit of each byte in Varints indicates whether this byte is the last byte. 1 means that the subse-

quent byte also means the number, and 0 means that this byte is the last byte. For example,

123456 uses the Varints encoding method of 11000000 11000100 00000111Details are shown

in Fig 3 below.

In the image, t if the highest MSG of the first byte is 1, it indicates that part of valid data still

exists in the following byte; if MSG is 0, it indicates that the last few digits in the following byte

are the last significant digits, and then the MSG of the highest bit can be removed. After Vari-

ants encoding, the data takes up less system space, and the digits no more than 127 can be rep-

resented by a single byte. A number larger than 0xfffffff would need to be represented in five

bytes, but such a large number would not exist under normal operations.

Fig 2. Data processing flow.

https://doi.org/10.1371/journal.pone.0260697.g002

Fig 3. Varints coding procedure analysis.

https://doi.org/10.1371/journal.pone.0260697.g003

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 4 / 14

https://doi.org/10.1371/journal.pone.0260697.g002
https://doi.org/10.1371/journal.pone.0260697.g003
https://doi.org/10.1371/journal.pone.0260697


Protobuf serialization can minimize the byte space occupied by information and reduce the

requirement of system space performance under the premise of ensuring the integrity of data

information.

All data is serialized in binary form, with any byte closely linked by semantic syntax. The

Tag USES Varints encoding are shown in Fig 4

In Fig 4, a message contains multiple fields. When serializing the message, the byte length

required for serializing all the fields is calculated first. In ProtoBuf, the number of bytes taken

by each type of field is known (except Bytes and String), and you just need to sum it up. Each

field outputs byte data of int32(tag, type) and value. Each field has a unique number tag that

represents its index position and write_type is the type of the field. The message is serialized

into a binary data stream consisting of a series of key-value pairs.

One of the core technologies of Protobuf is serialization and deserialization. Serialization

refers to the process of converting a data structure or object into a binary string, while deseria-

lization is the reverse operation of the above process, converting the binary string generated

during the serialization process into a data structure or object. The serialization process does

not need delimiters to separate fields, and each field is stored very compact, so storage space

utilization is very high; If a field is not set with a field value, then the field is not present in the

serialization data at all, that is, it does not need encoding. The Protobuf deserialization process

is as follows: (1) Call parse From(input) of the message class to resolve the binary byte data

stream read from the input stream;(2) Read the parsed data into the corresponding structure

types of Java, C++ and Python according to the specified format. Since deserialization is the

inverse process of serialization, there is no need for complex lexical syntax analysis, and the

parsing process can be completed only by simple decoding [21,22].

Data storage algorithm analysis

The snake gap method is most commonly used in computer networks, which divides different

areas by network, screens out nodes with large storage space and close distance. The corre-

sponding information of data is stored in it first, so it can reduc storage energy consumption

and improve the effect.

Network node allocation interval

The essence of the snake gap method [23,24] is the allocation interval of all nodes in the grid.

Through time gap analysis, only two nodes in the global grid are in operation, and the rest

nodes are at rest.

Firstly, the number of all nodes in the global grid and the distance between any node and

the network center are calculated. Nodes are numbered in order of distance, with those closest

to the center in the first place and those farther away in the last. The matrix T with m rows and

n columns is set as the allocation interval for all nodes in the grid. In order to maintain the

Fig 4. Tag uses Varints encoding.

https://doi.org/10.1371/journal.pone.0260697.g004

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 5 / 14

https://doi.org/10.1371/journal.pone.0260697.g004
https://doi.org/10.1371/journal.pone.0260697


dynamic balance between rest and work, it is necessary to minimize the difference between m

and n [25,26]. Then, the relationship between T and m, n and the number of all nodes N in the

grid is shown in Formula (1).

mþ n ¼ N

m ¼ ½N=2�
ð1Þ

(

Where, if N is even, then m = n = N/2; If N is odd, then m = N /2 and n = N-m.

The interval allocation of node working state Tij is shown in Formula (2)

Tij ¼
i � n � nþ j ði wsa oddÞ

i � nþ i � j ði was evenÞ
ð2Þ

(

Suppose there are 6 nodes in the grid (A,B,C,D,E,F), n = 6, It can be obtained from Formula

1, m = 3,n = 3, The construction matrix is shown in Fig 5.

Time slots are allocated from left to right starting at Row 1, Column 1, and vertically to the

next row if a matrix boundary is encountered, and time slots are allocated in the opposite

direction. As shown in Fig 5, the time slot of Row1 from left to right is 1–3, and Row2 from

right to left is 4–6, and so on. Each node is mapped to Row i or Column j, ensuring that two

nodes are active in each slot. In matrix T, the elements in the corresponding row or column of

the node represent the working time slot of the node. The active time slot of node A is 1–3,

and the rest time slots are in sleep state. The active time slot of node D is 1,6,7. Snaketiming

allocation method is adopted to ensure that nodes are always in working state when switching

slots. For example, nodes A and D in slot 1 are in the working state. When slot 1 switches to

slot 2, node D enters the sleep state, and node E enters the working state from the sleep state.

Node A is always in the working state during the switching process. This allocation method

can avoid the packet loss phenomenon during slot switching, and ensure the reliability of the

network operation. Formula (3)shows the node working slot allocation more intuitively, trans-

forming the matrix T into a matrix S with m+n rows and M �n columns. In the matrix, 1 repre-

sents the working state and 0 represents the rest state.

s ¼

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð3Þ

Convert Row i’ of matrix T to Row i of matrix S, and Column j’ of matrix T to Row (j + m)

of matrix S; Converts the element value Ti’j’ of matrix T to the columns of matrix S. After trans-

formation, the rows of matrix S correspond to (m + n) nodes in the grid, and the columns cor-

respond to (m × n) working time slots. The value of matrix element Sij is only 1 or 0. Sij = 1

means that node i is in active state at the jth time slot. Sij = 0 means that node i is in dormant

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 6 / 14

https://doi.org/10.1371/journal.pone.0260697


state at the jth time slot, as shown in Formula (4).

Sij ¼

1 ðWorkingÞTij ¼ 1; 1 � i � m; 1 � j; � n;

Ti; ¼ j or m < i � mþ n;

1 � i; � m

0 ðSleepingÞ other

ð4Þ

8
>>>><

>>>>:

Data storage target node filtering

The target node of data storage is filtered to achieve the initial data storage [27]. Fig 6 shows

the distribution of data storage nodes.

In Fig 6, the observation node is B(Xb,Yb), and the corresponding position G(Xg,Yg) is

found by using the hash method, and the homomorphic hash position G0 (Xg0,Yg0) is

obtained from the observation points and the azimuth Angle of the hash, where G and G0 are

within the same circular arc, and the observation point B and G0 are on the same extension

line. The working node inG0 grid is regarded as the storage node of the initial data, Its

Fig 5. Schematic diagram of node working slot allocation in 3x3 matrix.

https://doi.org/10.1371/journal.pone.0260697.g005

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 7 / 14

https://doi.org/10.1371/journal.pone.0260697.g005
https://doi.org/10.1371/journal.pone.0260697


coordinates are obtained from Formulas (5) and (6).

Xg0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2

g þ Y2
g Þ � X2

b

X2
b þ Y2

b

s

ð5Þ

Yg0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2

g þ Y2
g Þ � Y2

b

X2
b þ Y2

b

s

ð6Þ

However, this method does not take into account the effect of network cache factor and

cannot determine part of grid access mechanism. Therefore, the storage data life cycle is added

to optimize the above algorithm. The initial data life cycle calculation is shown in Formula (7)

T ¼ aNs þ bNm ð7Þ

Where, probability Nm is shown in Formula (8):

Nm ¼

Pn
i¼1

Pi

t
ð8Þ

Fig 6. Data storage node distribution map.

https://doi.org/10.1371/journal.pone.0260697.g006

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 8 / 14

https://doi.org/10.1371/journal.pone.0260697.g006
https://doi.org/10.1371/journal.pone.0260697


In Formula (9):

Pi ¼
1; access

0; not access
ð9Þ

(

N s represents the probability of accessing the original data again, and Nm represents the

probability that the consumer determines the initial data cache entry, α and β are random

numbers, which is convenient for calculation and has no practical significance. When the net-

work storage node are scattered, their cache access probability is small, Therefore, in the pro-

cess of life cycle calculation, only the import, processing and output regions are divided. So the

formula for N S is shown in Formula (10):

Ns ¼
Nsy=φt þ

Nsm=t þ
gNsc=t ð10Þ

In Formula (10), T represents the time cycle ΔT consumed by importing initial data into

system cache, NSY represents the number of cached items that are accessed only, NSM repre-

sents the number of initial data cache entries processed, N SC is used to evaluate whether the

data is new,φ (φ�1) and γ (γ�1) as parameters. Here, the value of Nsc is shown in Formula

(11):

Nsc ¼
1; new

0; read
ð11Þ

(

The above formula can realize data storage and improve its storage efficiency.

Data storage information integrity and efficiency evaluation method

Protobuf is a kind of information serialization, whose purpose is to convert target data into a

form that can be stored or transmitted, and then read by code accessing or modifying the serial

object. In other words, it is the process of converting user stored data sets into a Protobuf for-

mat that can reflect the semantic and logical framework of the target information. In this pro-

cess, the data structure of the receiving target set is serialized, and the corresponding

information is extracted from the initial data set to complete the serialization of data storage

information. This is a data storage process, whose essence is to extract and transform the origi-

nal data set in the network, then recompile the meaning of information according to some spe-

cific conditions, and encode the output according to its requirements. The main contents can

be divided into three steps, namely, input, processing and output.

Step 1: Input. Using serialization to process the feature information in the data and infer

the subsequent access patterns from the initial data structure Protobuf circulates the value in

massage information after encoding Varints: Value& ~ 0 x7f = = 0 if the value of the value is

less than 128, which is 1 byte can hold, is coming to an end at the end of message has to jump

out of the loop, or the current value using a byte to hold the value & (0 x7f) | 0 x80 operation,

the highest for 1 said there is behind the data, Continue the loop to determine the following

data. So the top bit of the first byte of value is 1, which means there’s more data to follow, and

if it’s 0, there’s no data, so it can reduce the running time and simplify the operation.

Step 2: Processing. In data processing, the information obtained from the initial data set

will be recombined according to some specific conditions to clarify the meaning of semantic

information, and the data will be output according to the format of the data set to be

processed.

Step 3: Output. Serialize the output according to the target data set structure for the formal

output. It is necessary to understand the target data structure and semantic description model.

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 9 / 14

https://doi.org/10.1371/journal.pone.0260697


The above three steps can be analyzed in detail in Fig 7, and the serialization form correspond-

ing to any step is shown in Fig 7.

Initial data set structure

At present, network data is mostly static structure, so the precondition of the Protobuf seriali-

zation of data storage information is to comprehensively analyze its structure, However, the

key to data structures is semantics and syntax.

(1) Semantic structure in the initial data. Semantics refers to value theory implied by

data, including the meaning and expression of information. Before the data is serialized by

Protobuf, the corresponding semantic information is obscure and uncertain, and its default

value cannot identify or determine the object contained in the data through the network, so it

cannot be understood and processed by the computer. When studying semantic structure, it is

necessary to determine the corresponding relationship between different objects in the data

(such as entity, number, attribute, etc.), and use the directed graph pattern to describe them.

The purpose of studying semantic structure is to increase the matching degree between the ini-

tial data and the corresponding entity, establish the mapping relationship, and facilitate the

computer extraction and recognition.

(2) Syntax structure in the initial data. As a specific condition of serialization, the syn-

tactic structure can restrict the semantic structure and expression form in the process of

encoding, transmission and exchange, so that the network can show the real world through

data. Studying the syntax structure of the initial data can provide a more convenient way for

the system to access.

Fig 7. The Protobuf serialization step and its corresponding serialization form.

https://doi.org/10.1371/journal.pone.0260697.g007

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 10 / 14

https://doi.org/10.1371/journal.pone.0260697.g007
https://doi.org/10.1371/journal.pone.0260697


Structure of target data set

The Protobuf used in the target dataset is structured encoding, in other words, the semantic

expression pattern will change according to the ontology or thesaurus used, so will the seriali-

zation file pattern. It is still based on the semantic and syntactic aspects.

(1) Research on semantic structure in target data. Analyze its semantic structure, under-

stand the type, shape and attribute restriction of the target individual, and determine the

vocabulary and hierarchical relationship contained in the semantics of serialization.

(2) Study on syntactic structure in target data. The representation of the target dataset

can be found in the syntax, Although the important hierarchical relationships are presented in

the form of directional diagrams, the parsing is presented in a tree hierarchy. When describing

the meaning of a single attribute, Protobuf usually uses embedded components to reflect char-

acters or to describe the logical and organizational relationship of framework.

Build the mapping relationship between the initial data set and the target

data set

The mapping relationship between the initial data set and the target data set based on semantic

and syntactic structure needs to be constructed, so that the structure and template can be fur-

ther provided for the Protobuf serialization transformation. Mapping relationships mainly

exist at the semantic and syntactic levels of data.

Firstly, through the mapping relationship between the two semantic levels, the information

attributes that must be preserved in data serialization are obtained.

Next, the initial data structure is analyzed, and the subsequent access patterns are deter-

mined, Then the expression is used to filter, and the structure is returned to the template.

Then, the data serialization transformation mode is determined through the mapping rela-

tionship between the two syntactic levels. According to the different semantic information

contained in different data, the corresponding conditions and corresponding templates are

set. The template rules correspond to the data serialization path, and the semantic explicit

description of the transformation path is given by the Protobuf element. Also, the Protobuf

serialization encoding is obtained.

Finally, based on the structural relations of syntax and semantics, the construction template

of the object data set is defined. Templates are divided into multiple regions according to the

semantic structure requirements of the target data set. Each template has different functions

and can independently complete the corresponding import and output. Different templates

complement and harmonize each other to complete the overall semantic and grammatical

structure processing of the data.

Protobuf serialization conversion

The design and format of Protobuf conversion data must correspond to the target content.

The Protobuf overall file structure must be edited from top to bottom, and different template

functions are carefully planned to guarantee that no bytes are lost during serialization. At the

same time, in order to ensure that the byte attributes have no deviation, all attribute absolute

values of the source node in the initial data are extracted and processed according to the con-

straint conditions, and the data Protobuf serialization transformation is implemented.

Simulation data and results

In this experiment, Storm under the flow computing system was used to evaluate the perfor-

mance of data storage information serialization integrity and efficiency evaluation method.

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 11 / 14

https://doi.org/10.1371/journal.pone.0260697


Storm can effectively sort out all kinds of data streams, and conduct real-time cluster monitor-

ing. It can distribute target data codes to task computers by Nimbus, and open or close task

programs as required.

Data storage image information serialization integrity verification

The image data samples were tested and compared after serialization program processing, it

was found that the difference value of the two images was close to 0, and the integrity of trans-

mission was good.

Protobuf serialization time detection

Take the user’s purchase information in a platform as the initial data set, and the bytes from

left to right are user’s purchase ID, the product ID, and the purchase time. The user’s ID is

recorded as the key value and the product ID as the value, and it is stored in the user’s corre-

sponding ID file. Through the data set size, the serialization conversion time is detected as

shown in Fig 8. The dataset of experimental results is shown in Table 1.

It can be seen from Fig 8 that the three methods have different processing times for data

serialization. The serialization method based on relational matrix fluctuates within 290 ~ 590s

and has the longest processing time. The processing time of the serialization method based on

Redis varied between 180 ~ 280s, while that of the serialization method based on Protobuf var-

ied between 60 ~ 80s, with the shortest time and the fastest processing speed.

The conclusion

Through serialization and deserialization of files and images, it verifies that the serialization

integrity of data storage information and the efficiency evaluation method have good accuracy

and completeness, which solves the problem that the traditional technology cannot store and

Fig 8. Data serialization processing time.

https://doi.org/10.1371/journal.pone.0260697.g008

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 12 / 14

https://doi.org/10.1371/journal.pone.0260697.g008
https://doi.org/10.1371/journal.pone.0260697


access the data in real time when processing unstructured data. In this paper, HDVM, Redis

and Protobuf are used to carry out comparative experiments to serialize and deserialize files

and images. The experimental results verify the serialization integrity and efficiency of data

storage information. It is found that the HDVM method takes a longer time to process large

information, while the Protobuf method takes a smaller time increment to process large infor-

mation. Compared with Redis, Protobuf has a fast transformation speed, is not affected by the

amount of serialized data, and the processing time increases linearly. The method has high effi-

ciency and low requirements on system performance, which can meet the needs of most ordi-

nary users. The evaluation method has good accuracy and integrity, which solves the problem

that unstructured data cannot be stored and accessed in real time.

Author Contributions

Conceptualization: Bin Huang, You Tang.

Investigation: You Tang.

Methodology: Bin Huang.

Validation: You Tang.

Writing – original draft: Bin Huang.

Writing – review & editing: Bin Huang, You Tang.

References
1. Kobo HI, Abu-Mahfouz AM, Hancke GP. A Survey on Software-Defined Wireless Sensor Networks:

Challenges and Design Requirements. IEEE Access. 2017. https://doi.org/10.1109/ACCESS.2017.

2666200

2. Mulyarchik KS, Polochanskiy AS. Quality of service in wireless sensor networks. Zhurnal Beloruss Gos

Univ Mat Inform. 2017; 2017. https://doi.org/10.5120/ijca2020920036

3. Afsari K, Eastman CM, Castro-Lacouture D. JavaScript Object Notation (JSON) data serialization for

IFC schema in web-based BIM data exchange. Autom Constr. 2017;77. https://doi.org/10.1016/j.

autcon.2017.01.011

4. TruicăCO, Apostol ES, Darmont J, Pedersen TB. The Forgotten Document-Oriented Database Man-

agement Systems: An Overview and Benchmark of Native XML DODBMSes in Comparison with JSON

DODBMSes. Big Data Res. 2021; 25. https://doi.org/10.1016/j.bdr.2021.100205

Table 1. Experimental data results.

Run

time(s)

Data

size(GB)

Protobuf Redis HDVM

0.2 53.5975 175.5859 289.5255

0.4 55.5513 187.4627 309.5622

0.6 58.5847 196.5485 330.2945

0.8 60.5544 222.2155 365.5566

1 63.2541 238.1555 400.5448

1.2 66.4785 254.4548 419.5565

1.4 68.1554 269.4852 433.6554

1.6 69.9548 280.4822 446.5955

1.8 71.1654 291.1544 469.5545

2 74.9579 302.2458 491.5842

https://doi.org/10.1371/journal.pone.0260697.t001

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 13 / 14

https://doi.org/10.1109/ACCESS.2017.2666200
https://doi.org/10.1109/ACCESS.2017.2666200
https://doi.org/10.5120/ijca2020920036
https://doi.org/10.1016/j.autcon.2017.01.011
https://doi.org/10.1016/j.autcon.2017.01.011
https://doi.org/10.1016/j.bdr.2021.100205
https://doi.org/10.1371/journal.pone.0260697.t001
https://doi.org/10.1371/journal.pone.0260697


5. Irshad L, Yan L, Ma Z. Schema-based JSON data stores in relational databases. J Database Manag.

2019;30. https://doi.org/10.4018/JDM.2019070103

6. Aazam M, Huh EN, Zeadally S, Harras KA, AbuKhousa E, Mohamed N, et al. Fog computing—Glimps

of Upcoming Research Area (#4). Futur Gener Comput Syst. 2017;5. https://doi.org/10.1155/2020/

8857346 PMID: 33204404

7. Brahmia Z, Hamrouni H, Bouaziz R. XML data manipulation in conventional and temporal XML data-

bases: A survey. Computer Science Review. 2020. https://doi.org/10.1016/j.cosrev.2020.100307

PMID: 32989380

8. Piech M, Marcjan R. A new approach to storing dynamic data in relational databases using JSON. Com-

put Sci. 2018;19. https://doi.org/10.7494/csci.2018.19.1.2505

9. ECMA-404. The JSON Data Interchange Format. ECMA Int. 2013; 1st Editio.

10. Qi X, Hu H, Wei X, Huang C, Zhou X, Zhou A. High Performance Design for Redis with Fast Event-

Driven RDMA RPCs. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). 2020. https://doi.org/10.1007/978-3-030-59410-7_12

11. Fu HD, Peng S, Huang L, Gu JG. HDVM: Compression & Query Model of Linked-Data Based on Rela-

tional Matrix. Tien Tzu Hsueh Pao/Acta Electron Sin. 2018;46. https://doi.org/10.3969/j.issn.0372-

2112.2018.03.030

12. Zulfa MI, Fadli A, Wardhana AW. Application caching strategy based on in-memory using Redis server

to accelerate relational data access. J Teknol dan Sist Komput. 2020; 8: 157–163. https://doi.org/10.

14710/jtsiskom.8.2.2020.157–163

13. Brasch V, Lucas E, Jost JD, Geiselmann M, Kippenberg TJ. Self-referenced photonic chip soliton Kerr

frequency comb. Light Sci Appl. 2017;6. https://doi.org/10.1038/lsa.2016.202 PMID: 30167198

14. Tang YJ, Kuo JJ, Tsai MJ. Double-ruling-based location-free data replication and retrieval scheme in

mobile ad hoc networks. Proceedings—International Conference on Computer Communications and

Networks, ICCCN. Institute of Electrical and Electronics Engineers Inc.; 2014. https://doi.org/10.1109/

ICCCN.2014.6911822

15. Ryba M, Wickler G. Managing ad hoc virtual enterprises in open SME networks: The SCOOP solution.

Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2004; 3292:

456–467. https://doi.org/10.1007/978-3-540-30470-8_60

16. Yang S, He G. Multi-target Detection Adaptive Termination Algorithm Based on GHT. Shuju Caiji Yu Chuli/

Journal Data Acquis Process. 2020; 35: 526–535. https://doi.org/10.16337/j.1004-9037.2020.03.015

17. Proos DP, Carlsson N. Performance Comparison of Messaging Protocols and Serialization Formats for

Digital Twins in IoV. IFIP Networking 2020 Conference and Workshops, Networking 2020. 2020.

18. Syberfeldt A, Karlsson I, Ng A, Svantesson J, Almgren T. A web-based platform for the simulation-opti-

mization of industrial problems. Comput Ind Eng. 2013;64. https://doi.org/10.1016/j.cie.2013.01.008

19. Protobuf Sazanavets F. Beginning gRPC on ASPNET Core. 2020. https://doi.org/10.1007/978-1-4842-

6211-5_2

20. Lemire D, Kurz N, Rupp C. STREAM VBYTE: Faster byte-oriented integer compression. Inf Process

Lett. 2018; 130: 1–6. https://doi.org/10.1016/j.ipl.2017.09.011

21. Koutroumpouchos N, Lavdanis G, Veroni E, Ntantogian C, Xenakis C. ObjectMap: Detecting insecure

object deserialization. ACM International Conference Proceeding Series. Association for Computing

Machinery; 2019. https://doi.org/10.1145/3368640.3368680

22. Seacord RC. Combating Java Deserialization Vulnerabilities with Look-Ahead Object Input Streams

(LAOIS). NCC Gr Whitepaper. 2017.

23. Butenuth M, Heipke C. Network snakes: Graph-based object delineation with active contour models.

Mach Vis Appl. 2012; 23: 91–109. https://doi.org/10.1007/s00138-010-0294-8

24. Saati M, Amini J. Road network extraction from high-resolution sar imagery based on the network

snake model. Photogramm Eng Remote Sensing. 2017; 83: 207–215. https://doi.org/10.14358/PERS.

83.3.207

25. Hashemi S, Valadan Zoej MJ, Mokhtarzadeh M. AUTOMATIC ROAD GAP DETECTION USING

FUZZY INFERENCE SYSTEM. ISPRS—Int Arch Photogramm Remote Sens Spat Inf Sci. 2012;

XXXVIII-4/W19: 101–103. https://doi.org/10.5194/isprsarchives-xxxviii-4-w19-101-2011

26. Chen G, Bing Z, Röhrbein F, Conradt J, Huang K, Cheng L, et al. Toward Brain-Inspired Learning with

the Neuromorphic Snake-Like Robot and the Neurorobotic Platform. IEEE Trans Cogn Dev Syst. 2019;

11: 1–12. https://doi.org/10.1109/TCDS.2017.2712712

27. Kumar A, Pais AR. Blockchain based En-Route Filtering of False Data in Wireless Sensor Networks. 2019

11th International Conference on Communication Systems and Networks, COMSNETS 2019. Institute of

Electrical and Electronics Engineers Inc.; 2019. https://doi.org/10.1109/COMSNETS.2019.8711352

PLOS ONE Research on optimization of real-time efficient storage algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260697 December 16, 2021 14 / 14

https://doi.org/10.4018/JDM.2019070103
https://doi.org/10.1155/2020/8857346
https://doi.org/10.1155/2020/8857346
http://www.ncbi.nlm.nih.gov/pubmed/33204404
https://doi.org/10.1016/j.cosrev.2020.100307
http://www.ncbi.nlm.nih.gov/pubmed/32989380
https://doi.org/10.7494/csci.2018.19.1.2505
https://doi.org/10.1007/978-3-030-59410-7%5F12
https://doi.org/10.3969/j.issn.0372-2112.2018.03.030
https://doi.org/10.3969/j.issn.0372-2112.2018.03.030
https://doi.org/10.14710/jtsiskom.8.2.2020.157%26%23x2013%3B163
https://doi.org/10.14710/jtsiskom.8.2.2020.157%26%23x2013%3B163
https://doi.org/10.1038/lsa.2016.202
http://www.ncbi.nlm.nih.gov/pubmed/30167198
https://doi.org/10.1109/ICCCN.2014.6911822
https://doi.org/10.1109/ICCCN.2014.6911822
https://doi.org/10.1007/978-3-540-30470-8_60
https://doi.org/10.16337/j.1004-9037.2020.03.015
https://doi.org/10.1016/j.cie.2013.01.008
https://doi.org/10.1007/978-1-4842-6211-5_2
https://doi.org/10.1007/978-1-4842-6211-5_2
https://doi.org/10.1016/j.ipl.2017.09.011
https://doi.org/10.1145/3368640.3368680
https://doi.org/10.1007/s00138-010-0294-8
https://doi.org/10.14358/PERS.83.3.207
https://doi.org/10.14358/PERS.83.3.207
https://doi.org/10.5194/isprsarchives-xxxviii-4-w19-101-2011
https://doi.org/10.1109/TCDS.2017.2712712
https://doi.org/10.1109/COMSNETS.2019.8711352
https://doi.org/10.1371/journal.pone.0260697

