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Abstract: Bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae and is one of the most
important diseases in rice. It results in significantly reduced productivity throughout all rice-growing
regions of the world. Four BB resistance genes have been reported; however, introgression of a
single gene into rice has not been able to sufficiently protect rice against BB infection. Pyramiding
of effective BB resistance genes (i.e., Xa genes) into background varieties is a potential approach
to controlling BB infection. In this study, combinations of four BB resistance genes, Xa4, xa5, xa13,
and Xa21, were pyramided into populations. The populations were derived from crossing Ciherang
(a widespread Indonesian rice variety) with IRBB60 (resistance to BB). Promising recombinants from
the F6 generation were identified by scoring the phenotype against three virulent bacterial strains,
C5, P6, and V, which cause widespread BB infection in most rice-growing countries. Pyramiding of
genes for BB resistance in 265 recombinant introgressed lines (RILs) were confirmed through marker-
assisted selection (MAS) of the F5 and F6 generations using gene-specific primers. Of these 265 RILs,
11, 34 and 45 lines had four, three, or two BB resistance genes, respectively. The RILs had pyramiding
of two or three resistance genes, with the Xa4 resistance gene showing broad spectrum resistance
against Xoo races with higher agronomic performance compared to their donor and recipients parents.
The developed BB-resistant RILs have high yield potential to be further developed for cultivation or
as sources of BB resistance donor material for varietal improvement in other rice lines.

Keywords: rice; bacterial blight; Xanthomonas oryzae pv. oryzae; resistance genes; pyramiding; marker-
assisted selection

1. Introduction

Globally, rice accounts for more than 21% of total food intake; it also provides up to
two-thirds of the total calories consumed by more than two billion people across Asia,
Africa, and Latin America [1–4]. It is estimated that rice production must increase by
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0.6–0.9% annually until 2050 in order to meet the demand of an increasing world popula-
tion [5]. However, rice yields have plateaued due to biotic and abiotic stresses [6]. Among
these, bacterial blight (BB), which is caused by Xanthomonas oryzae pv. Oryzae (Xoo), is one
of the most destructive diseases, limiting rice production around the world. BB was first
identified in Japan at the beginning of the twentieth century [7]. It can cause damage at
any stage of the rice-growing cycle. BB causes yield losses generally ranging between 10
and 30%, but which can be as high as 80%, depending on the location, season, weather,
crop growth stage, and cultivar [8–11]. There are no chemicals or management practices
known to reduce the severity of BB [12]. The development of a BB-resistant rice cultivar
through a gene introgression breeding program is critically important [13–15].

To date, at least 45 genes across 10 of 12 rice chromosomes have been identified which
confer resistance to various strains of Xoo [16–19]. Among these resistance genes, 17 (xa5,
xa8, xa13, xa15, xa19, xa20, xa24, xa25, xa26, xa28, xa31, xa32, xa33, xa34, xa41, xa42 and xa44)
are recessive, while the remaining 28 are dominant [20–22]. All the genes are in the series
from Xa1 to Xa45 [17]. Out of the 45 resistance genes, nine (Xa1, Xa3/xa26, xa5, Xa10, xa13,
Xa21, Xa23, xa25 and Xa27) have been cloned and twelve (Xa2, Xa4, Xa7, Xa22, Xa30, xa31,
xa33, xa34, Xa38, Xa39, Xa40 and Xa42) have been physically mapped [20–29]. Some of
these resistance genes have been successfully incorporated into rice cultivars that are now
extensively cultivated in many rice-growing countries [13,15,30]. Most of the resistance
genes follow the classic gene-for-gene concept against the race-specific interaction between
rice and Xoo [31]. Most of the genes show resistance in all growing stages of rice, while only
a few resistance genes, such as xa13, show resistance to Xoo only at mature plant stages,
and xa5 and Xa4 show a broad spectrum of resistance to Xoo isolates [32–34]. The gene
Xa21, which is found in the wild rice species O. longistaminata, shows resistance against BB
at the seedling stage [35] and has the potential to be highly effective against BB in South
and South-East Asia [32–34,36].

Rice lines with multiple BB resistance genes have a wider and more durable level
of resistance than those lines that have only a single BB resistance gene [15,26,37–39].
Large-scale, long-term cultivation of rice cultivars carrying a single BB resistance gene
may not be sufficient to beat the BB pathogen and resistance will not persist in a long time.
Conventional breeding approaches are not efficient enough for the rapid identification of
BB resistance genes [40–42].

The use of molecular markers to select a particular trait has numerous advantages
over the morphological markers of conventional plant breeding [14,39]. We examined the
potential for marker-assisted selection to identify rice lines with multiple BB resistance
genes (i.e., Xa genes). It is possible to develop closely linked molecular markers for each
of the resistance genes within the plants, for their easy identification [15,30,43]. Three BB
resistance genes (xa5, xa13, and Xa21) were incorporated in the cultivar PR106 through
marker-assisted selection (MAS), showing a broad spectrum of resistance against 17 Xoo
isolates under field conditions [15]. This study used phenotypic and molecular markers to
identify the BB resistance genes Xa4, xa5, xa13, and Xa21 in recombinant inbred lines (RILs)
derived from a cross between the rice varieties ‘Ciherang’ and ‘IRBB60’.

2. Results
2.1. Response of RILs toward BB Races

To assess the level of virulence of the isolates, the leaf area progressed with BB and
the percentage of resistance in RILs were examined (Figure 1). Of the three races (i.e.,
C5 (GD1358), V, and P6 (PX099)), P6 and V were more virulent than C5. Of the total of
265 RILs, only 93 and 94 showed resistance against the P6 and V races, respectively, while
149 RILs were resistant against C5 (Figure 2).
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gene bearing the IRBB4 genotype showed resistance against the C5 and P6 races, but was 

Figure 1. Disease scoring of infected leaves fourteen days after inoculation with three BB races.
DLA—diseased leaf area, R—resistant, MR—moderately resistant, MS—moderately susceptible,
S—susceptible, HS—highly susceptible.
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Figure 2. Response of plants in RIL to inoculation of fungus. Data are the average of 3 replications
with disease scored from 5 leaves in each replication. Mean separation was performed by Tukey test
(p ≤ 0.05). The notation indicates resistant (R), moderately resistant (MR), moderately susceptible
(MS), susceptible (S) and highly susceptible (HS).

Eighty-five RILs (32%) were moderately resistant against the P6 race, 76 (29%) mod-
erately resistant against V, while 36 RILs (14%) had moderately resistant against C5. In
contrast, the number of susceptible or moderately susceptible RILs against each of the
races was 92 (35%) for V, 86 (32%) for P6, and 80 (30%) for C5. Both the susceptible check
(IR24) and the recipient parent (Ciherang) showed susceptibility against all the tested
races. The resistance checks (IRBB5, IRBB13, and IRBB21) and their donor parent (IRBB60)
showed resistance or moderately resistant against all three races, and the Xa4 resistance
gene bearing the IRBB4 genotype showed resistance against the C5 and P6 races, but was
moderately susceptible to V, indicating race-specific resistance of the Xa4 gene. Of the
265 RILs, only three lines were highly susceptible to race V. One was highly susceptible
to P6, and no lines were highly susceptible to C5. We identified a higher amount of RILs
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resistant to C5 than in the other two races (Figure 2), indicating that C5 was comparatively
weaker than the V and P6 races.

Two hundred and seventeen RILs (82% of all RILs) were resistant to moderately
resistant against single to multiple BB races. Against the three tested races, 55 RILs were
resistant and a further eight were moderately resistant (Table 1).

Table 1. Phenotypic disease response of 265 RILs against different BB races of rice considering single
and multiple races together.

Races
Phenotypes

R MR MS S

C5 38 4 21 0
P6 8 17 0 0
V 7 6 0 0

C5 + P6 27 5 10 0
C5 + V 29 7 4 0
P6 + V 3 3 0 0

C5 + P6 + V 55 8 11 2

Total 217 48

2.2. Molecular Marker Analysis for Characterizing the RILs

A total of 265 RILs were screened by PCR using molecular markers to identify the
BB resistance genes (Xa4, xa5, xa13, and Xa21). These RILs had a combination of single,
double, triple and quadruple resistance genes in different combination (Table 2). For all the
tested markers, the recipient parent ‘Ciherang’ produced a PCR amplicon identical to that
of the susceptibility check IR24, while the BB resistant donor parent ‘IRBB60’ generated a
PCR amplicon identical to that of the four resistance checks.

Table 2. Phenotypic and genotypic status of 265 RILs assessed by bioassay against three BB races
screened with four markers.

Phenotypic Status Genic Status *
RILs with Different Genes

Xa4 xa5 xa13 Xa21

Single locus 41 23 29 25
Resistant Double loci 19 20 19 22

Triple loci 29 18 27 28
Quadruple loci 11 11 11 11

Susceptible No amplification 165 193 179 179

Total 265 265 265 265
* Single locus: presence of any one gene out of targeted four pyramiding loci; Double loci: presence of any 2 genes
out of targeted four pyramiding loci; Triple loci: presence of any 3 genes out of targeted four pyramiding loci; and
Quadruple loci: presence of any 4 genes out of targeted four pyramiding loci.

Overall, 217 RILs were phenotypically identified as resistant against the three tested
races. Of these, 203 RILs had at least one marker amplified by the PCR: a single marker
was amplified in 118 RILs and in the remaining 85 RILs, multiple markers were amplified.
PCR amplicons were found in 41 RILs for the Xa4 gene, in 23 RILs for the xa5 gene,
in 29 RILs for the xa13 gene, and in 25 RILs for the Xa21 gene (Figure 3a). The PCR
results identified 100 RILs that carried the Xa4 gene, either alone or in combination with
other genes (Figure 3b). Of these, 41 RILs carried only the Xa4 gene, while 19, 29 and
11 RILs amplified the Xa4 gene in combination with one, two or three other resistance
genes, respectively (Figure 3b). Seventy-two RILs produced PCR amplicons of the xa5
gene; of these, 23 carried only the xa5 gene, and 20 and 29 RILs amplified the xa5 gene in
combination with one or more than one other gene, respectively. Eighty-six RILs carried the
xa13 gene both in solely or in combination with other loci; of these, 29 RILs carried only the
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xa13 gene and the remaining 57 RILs had amplicons with two or more genes. In terms of the
Xa21 gene, 25 RILs carried Xa21 alone and 61 RILs had amplicons with two or more genes
(Figure 3b). The RILs that carried dominant genes generally combined with other dominant
genes, while those with recessive genes combined with other recessive-gene RILs.
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Figure 3. Molecular characterization of the RILs using gene-based and gene-linked markers:
(a) number of RILs with a single resistance gene, (b) the RILs which possessed more than one resis-
tance gene in combination.

A total of 85 pyramided lines with multiple resistance genes was identified from
203 RILs with R genes. Of these, PCR amplification identified 40, 34, and 11 RILs with
two, three, or four resistance genes, respectively. Nineteen of the 85 pyramided lines
carried one or more heterozygous alleles of the BB resistance gene(s). These pyramided
RILs were evaluated in a pedigree nursery up to the F7 generation, and the resistance
reaction against BB races was observed. The pyramided RILs that contained four specific
resistance genes are shown in Figure 4 along with their parent lines and the resistance and
susceptibility checks.
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2.3. Agronomic Performance of Pyramided Lines

The 85 pyramided RILs previously identified were categorized into 11 groups (G1
to G11) on the basis of the number and combination of the resistance genes (Table 3).
These groups were evaluated under field conditions in Beijing to assess their agronomic
performance.

Table 3. Grouping of the pyramided RILs with more than one resistance gene.

Group R Genes Number of RILs with Tag Number within Parenthesis

G1 Xa4 + xa5 4 (68, 78, 163, 219)
G2 Xa4 + xa13 3 (107, 121, 128)
G3 Xa4 + Xa21 12 (16, 28, 63, 66, 69, 91, 126, 164, 180, 189, 212, 255)
G4 xa5 + xa13 11 (39, 43, 52, 61, 71, 117, 144, 182, 202, 210, 253)
G5 xa5 + Xa21 5 (109, 134, 143, 213, 252)
G6 xa13 + Xa21 5 (11, 77, 191, 211, 248)
G7 Xa4 + xa5 + xa13 6 (47, 58, 64, 206, 235, 262)
G8 Xa4 + xa5 + Xa21 7 (7, 34, 74, 94, 186, 207, 199)
G9 Xa4 + xa13 + Xa21 16 (3, 31, 35, 40, 42, 49, 57, 79, 118, 122, 127, 141, 161, 162, 194, 247)
G10 xa5 + xa13 + Xa21 5 (133, 174, 221, 222, 223)
G11 Xa4 + xa5 + xa13 + Xa21 11 (12, 15, 32, 44, 51, 53, 155, 156, 166, 215, 232)

There were significant differences between the pyramiding RIL groups in terms of
plant height, panicle length, 1000-grain weight, spikelets per panicle, and the length-to-
width ratio of the spikelet (Table 4).

Table 4. Agronomic performance of the 85 BB resistance RILs relative to their donor and recipient parents, data represent
average of 3 replications and number of RILs in a particular group.

Genotype HD PH TN PL S/P SF% L/W TGW Y

Ciherang 108.00i 83.33f 9.67ab 20.09i 114.33f 79.83c–e 3.25b–d 24.15c–f 16.10i
IRBB60 117.00c–e 82.13f 9.27a–c 21.85h 125.27ef 86.57ab 2.76e 23.51e–g 17.24gh

G1 119.17a–c 90.57de 7.00gh 23.75d–f 189.30ab 77.32e 3.41ab 23.41f–h 19.38bc
G2 120.78a 90.42de 8.01c–g 23.06fg 117.70ef 83.49a–d 3.42ab 23.56e–g 22.64a
G3 120.44ab 94.58cd 6.85gh 24.22c–e 163.05b–d 78.89de 3.47a 25.29ab 19.92b
G4 114.91e–g 100.82ab 8.66b–f 25.26a 186.13ab 85.48ab 3.43a 24.48b–f 18.56c–e
G5 116.47d–f 96.12b–d 7.77d–g 24.52a–d 193.21a 85.45ab 3.45a 25.27a–c 18.68fg
G6 116.60de 95.37b–d 8.83b–e 24.20c–e 172.03ab 79.71de 3.49a 23.87d–f 16.63hi
G7 118.11cd 103.59a 7.91c–g 25.31a 187.23ab 83.55a–d 3.43a 25.15a–c 18.16ef
G8 113.10gh 99.91a–c 7.94c–g 23.56ef 190.78a 81.54b–e 3. 41ab 24.58a–e 19.08cd
G9 116.67de 100.18a–c 8.85b–e 25.04ab 191.44a 85.21a–c 3.38a–c 24.72a–d 19.29bc

G10 116.80de 96.33b–d 10.36a 24.72a–c 142.67de 87.46a 3.53a 25.64a 18.29d–f
G11 116.55d–f 101.36ab 9.16a–d 25.20ab 171.65a–c 88.26a 3.42ab 24.76a–d 18.57c–e

IRBB4 114.33fg 88.00ef 7.67e–h 23.21fg 140.00df 79.67de 3.17d 22.36hi 18.45d–f
IRBB5 115.67ef 85.44ef 7.00gh 23.32fg 128.33ef 83.28a–d 3.08d 22.13i 17.63fg

IRBB13 111.00h 86.00ef 6.67gh 23.50e–f 128.67ef 83.00a–d 3.19d 22.70g–i 16.89g–i
IRBB21 118.33b–d 86.56ef 7.33f–h 24.45b–d 120.00ef 83.53a–d 3.20cd 22.60g–i 18.26d–f

IR24 115.33ef 99.00a–c 6.33h 22.58gh 144.33c–e 69.67f 3.08d 22.28hi 16.11i

p (≤0.05) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

St dev (±) 0.72 2.00 0.46 0.26 9.00 1.78 0.06 0.37 0.27

HD = days to 50% heading, PH = plant height (cm), TN = number of effective tillers, PL = panicle length (cm), S/P = spikelets per panicle,
SF% = percentage of spikelet fertility, L/W = length-to-width spikelet ratio, TGW = 1000-grain weight (g), and Y = yield per plant (g).

RILs were grouped based on the number and combination of different resistance
genes present in the RIL genotypes. Most of the selected RILs were combinations of the
IRBB60 and Ciherang gene pools, which showed positive resistance against Xoo races.
In comparison with the donor and recipient parents, the RILs showed better agronomic
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performance. RILs contained the Xa4 resistance gene in combination with other any of the
resistance genes showed higher agronomic performance for all the studied traits. These
data indicates that RILs with three to four introgressed resistance genes had no adverse
effect on the agronomic traits. Although one or two resistance genes in combination with
the dominant resistance gene Xa4 were sufficient to resistance response against all three
tested virulent Xoo races.

2.4. Associations between the Number and Combinations of Pyramided Resistance Genes and
Disease Reaction against Different BB Races

A principal component analysis of the reaction in different BB races in the RILs
identified three principal components (PCs) with eigenvalues near to unity (Table 5). The
first three PCs together explained 96.9% of the total variance in BB disease reaction in the
RILs: 65.8% of the variance was explained by PC1, 21.3% by PC2 and 9.7% by PC3 (Table 5).

Table 5. Component loadings and mean principal component (PC) scores, showing (1) the association
between resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible
groups, along with their BB resistance gene(s) individually or in pyramiding conditions; and (2) the
disease reaction in BB races (individually or in combinations) as determined using the principal
component analysis. The combinations of resistance genes are grouped alphabetically for easier
representation in Figure 5.

Variables PC1 PC2 PC3

C5 0.189 −0.145 0.11
P6 −0.084 −0.041 0.644
V −0.123 0.21 0.514

C5 P6 0.234 −0.096 0.201
C5V 0.242 −0.063 0.191
P6 V −0.117 0.283 0.436

C5 P6 V 0.26 0.021 0.091
Xa4 0.009 0.454 −0.09
xa5 −0.06 0.44 −0.092

xa13 −0.047 0.445 −0.092
Xa21 −0.036 0.448 −0.092

Xa4 + xa5 (A) 0.259 0.061 0.006
Xa4 + xa13 (B) 0.259 0.061 0.006
Xa4 + Xa21 (C) 0.259 0.061 0.006
xa5 + xa13 (D) 0.259 0.061 0.006
xa5 + Xa21 (E) 0.259 0.061 0.006
xa13 + Xa21 (F) 0.259 0.061 0.006

Xa4 + xa5 + xa13 (G) 0.259 0.061 0.006
Xa4 + xa5 + Xa21 (H) 0.259 0.061 0.006
Xa4 + xa13 + Xa21 (I) 0.259 0.061 0.006
xa5 + xa13 + Xa21 (J) 0.259 0.061 0.006

Xa4 + xa5 + xa13 + Xa21 (K) 0.259 0.061 0.006

Eigenvalue 14.474 4.689 2.145
Proportion 0.658 0.213 0.097

Cumulative 0.658 0.871 0.969

The variation accounted for by PC1 was a result of the higher positive coefficients of
the resistance reactions of the combinations of the pyramided genes and the strength of the
C5 race in combination with the P6 and V races, compared to the high negative coefficients
of the individual resistance genes xa5, xa13, Xa4, and Xa21, as well as the weaker disease
reaction in RILs in the P6 and V races (Figure 5).
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Figure 5. Distribution of RILs in terms of resistant, moderately resistant, moderately susceptible, sus-
ceptible, and highly susceptible groups, with their BB resistance genes individually or in pyramided
conditions, and the disease reaction against individual or combinations of BB races. The combina-
tions of the four BB resistance genes in the figure are: A: Xa4 + xa5; B: Xa4 + xa13; C: Xa4 + Xa21;
D: xa5 + xa13; E: xa5 + Xa21; F: xa13 + Xa21; G: Xa4 + xa5 + xa13; H: Xa4 + xa5 + Xa21; I: Xa4 + xa13 +
Xa21; J: xa5 + xa13 + Xa21 and K: Xa4 + xa5 + xa13 + Xa21.

PC1 clearly distinguished between resistant and susceptible RILs (although the identi-
fication of moderately resistant RILs was less distinct). This clear distinction corresponded
to strong disease-resistance reactions in the pyramided genes in the RILs, either against
strong virulent individual races or in a combination of strong and weaker races. Moderately
resistant RILs had at least one resistance gene and were moderately resistant against the
weaker BB races; therefore these RILs were classified as ‘susceptible’ (Figure 5). These
results were applied to the selection of resistant RILs to create the next generation, by
excluding those with only moderately resistant.

PC2 divided RILs into resistant and susceptible groups, along with their respective
resistant individual or pyramided gene(s) (Figure 5). The susceptible group included those
RILs which had no resistance gene; these RILs had mean PC scores of +7.1 and −2.1 from
the resistant and susceptible parents, IRBB60 and Ciherang, respectively.

3. Discussion

More than half of the global population eats rice to meet their daily dietary require-
ments. The demand for rice production is increasing, and many studies have reported
that global rice production needs to double by 2050 to meet this growing demand [44].
Additionally, there are many biotic and abiotic stresses which affect both the yield quantity
and quality of rice crops. To address these constraints and to increase rice production, it is
necessary to develop high-yielding cultivars enriched with disease-resistance genes. The
development of rice varieties with broad-spectrum resistance against bacterial blight (BB)
(caused by the Xoo bacteria) is hugely challenging due to the presence of several genetically
distinct virulent Xoo strains in different rice growing locations in the world [45]. There
is little published literature on the development of multiple-race-resistant cultivars. To
improve the sustainable cultivation of rice we have planned and executed the introgression
of four BB (Xa4, xa5, xa13, and Xa21) resistance genes/QTLs into a Ciherang × IRBB60
cross in order to achieve multiple-BB race resistance in rice. We observed distinct polymor-
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phism with four co-dominant markers linked to the BB resistance genes from the Ciherang
(recipient) parent and IRBB60 (donor) parent material (Figure 4).

The main objective of this study was to identify and successfully demonstrate the
function of the four BB resistance genes (Xa4, xa5, xa13, and Xa21) in the RILs of the F6
generation. These four target BB resistance genes were identified through bioassays against
three BB races (C5, P6, and V) and an effective foreground selection was undertaken using
gene-specific markers in 265 RILs in two consecutive generations (F5 and F6). These markers
were MP, xa5, xa13, and pTA248 for the Xa4, xa5, xa13, and Xa21 genes, respectively. PCR
products showed approximately 140 bp band for the Xa4 gene [46,47], 198 bp band for the
xa5 gene, 500 bp for the xa13 gene [48], and 980 bp for the Xa21 gene [46,49,50]; these were
confirmed by the resistance checks IRBB4, IRBB5, IRBB13 and IRBB21 (Figure 4).

Of 265 lines, 203 had one or more of the targeted BB resistance genes in different
combinations (Figure 3), and 40, 34 and 11 lines had two, three, or four BB resistance
genes. These recombinant lines exhibited a high level of resistance against three virulent
BB isolates, which correlates with the results of [51]. Mundt [52] also reported that the
effectiveness of a combination two or more genes is higher than that of a single gene in
defeating simultaneous pathogen mutations for virulence, therefore assembling several
resistance genes into a host plant is a viable and practical strategy.

We observed inheritance of some unfavorable characteristics (i.e., biomass growth
and grain weight) along with some favorable traits while pyramiding genes/QTLs from
the parent IRBB60 variety. A “pull” of undesirable genes from the parent occurred when
the Xa21, xa13, and xa5 genes were introgressed from the SS1113 variety [30]. Ramalingam
et al. [53] assessed the homozygous improved pyramiding lines (BC3F3 generation) that
harbored the xa5 + xa13 + Xa21 + Pi54 + qSBR7-1 + qSBR11-1 + qSBR11-2 genes in terms of
physical resistance under greenhouse conditions and suggested that pyramiding three BB
resistance genes resulted in higher resistance levels than the lines with only one or two BB
resistance genes.

In our bioassay study, 85 pyramided lines which carried at least two BB resistance
genes showed a high level of resistance (Figures 3 and 4). Eleven pyramided lines (RIL 12,
RIL 15, RIL 32, RIL 44, RIL 51, RIL 53, RIL 155, RIL 156, RIL 166, RIL 215 and RIL 232), all
of which had Xa4 + xa5 + xa13 + Xa21 in combination, had higher resistance performance
than the RILS with combinations of other genes (Figure 4) [51,54–58]. These 11 RILs had an
average of 1.57 cm of diseased leaf area infected with the three BB races (Figure 6), which
is similar to results from other reports [41,47,51,57,59,60]. The enhanced resistance due
to the combination of two or more genes compared to the resistance from a single gene
is known as synergistic action, or quantitative complementation [61]. This result is also
further confirmed and explained by our PC analysis.

The pyramided lines were categorized into 11 groups determined by the number
and combinations of genes. These pyramided RILs were significantly different in terms
of plant height, panicle length, 1000-grain weight, and the spikelet length-to-width ratio,
indicating that these pyramided lines have diverse yield potentiality. The field evaluation
of improved pyramided lines of the F7 generation demonstrated that selected lines had
equivalent yield, agro-morphological, and quality traits and equivalent pyramided genes
for BB. This higher level of resistance to BB disease observed in different races without yield
penalty is a positive outcome from our approach of integrated genotypic and phenotypic
selection methods.
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4. Materials and Methods
4.1. Plant Materials

In this study, we used 265 RILs at the F6 generation of the ‘Ciherang × IRBB60’ cross,
which were recombinant of recipient and donor parents, four gene-specific BB resistant
cultivars (viz. IRBB4, IRBB5, IRBB13, IRBB21) and one BB susceptible line (IR24) (Figure 7).
Among these genotypes, the recipient parent ‘Ciherang’, Oryza sativa ssp. indica, is a
variety popular in Indonesia which is susceptible to BB, and the donor parent ‘IRBB60’ was
developed by the International Rice Research Institute (IRRI) through the pyramiding of
four BB resistance genes (Xa4, xa5, xa13, and Xa21) into the existing IR24 variety. The plant
materials were evaluated up to the F7 generation for agronomic traits and the segregation
of the pyramided BB resistance genes was followed by molecular markers. A rice breeding
flowchart is presented in Figure 8 to illustrate the selection work of each generation of the
pyramiding rice lines against three BB races.
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4.2. Preparation of Inocula to Infect Rice Plants

Three BB races—C5 (GD1358) and V, which are newly virulent strains in China [62],
and P6 (PX099), which contained TALE PthXo7 [63] collected from the Philippines—were
grown in Wakimoto semi-solid medium (potato 300 g, sucrose 20 g, Na2HPO4·2H2O2 2 g,
Ca(NO3)2·4H2O 0.5 g, agar 25 g,) per liter at 25 ◦C for 72 h and preserved at 4 ◦C following
the standard methodology [64–66]. A single colony was further sub-cultured in Wakimoto
liquid medium with agitation at room temperature for 72 h and the cell suspension diluted
to 108 cells per milliliter of distilled water, which was confirmed by measurement using a
spectrophotometer (BOECO MODELS S-200 VIS & S-220 UV/VIS, Hamburg, Germany)
with A600 OD. This sub-culture was used to inoculate the F7 rice plants grown in the field.

4.3. Inoculation of Rice Plants with BB Races/Isolates

Seeds of the RILs, their parent varieties, and the check varieties were sown in a
50 × 50 cm seedbed. After 22 days, rice seedlings were manually transplanted into experi-
mental plots in Hainan (18.30 N, 109.30 E). Each plot consisted of two rows with 10 plants
per row; spacing was 20 cm row-to-row and 17.5 plant-to-plant. The field experiment
was conducted using a randomized complete block design with three replicates. The
F5 generation of all varieties and RILs were inoculated with the C5 bacterial race at the
reproductive stage (i.e., onset of heading) by clipping 2–3 cm from the tip of the flag leaves
and removing all other leaves [67]. In each plot, four hills per row were randomly selected
and inoculated.

Subsequently, the F6 generation of RILs, parents, and check varieties were moved to
Beijing (40.20 N, 116.20 E) and inoculated with the V and P6 races. To do this, four hills
were randomly selected from the first row of each plot and inoculated with the P6 race; a
further four hills were inoculated with the V race. The middle two hills in each row were
left without inoculation to avoid contamination of the bacterial races.
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4.4. Assessment of Disease Response and Scoring

Disease scoring was conducted two weeks after inoculation, following the protocol
recommended by the international rice research institute, IRRI [68]. The percentage of
diseased leaf area (DLA) was calculated as the lesion length (LL) per total leaf length (TLL)
× 100. DLA was categorized as resistant (R) if DLA was 5% or less; as moderately resistant
(MR) if DLA was between 6and 12%; as moderately susceptible (MS) if DLA was between
13 and 25%; as susceptible (S) if DLA was between 26 and 50%; and as highly susceptible
(HS) if DLA was greater than 50% [68].

4.5. DNA Isolation and PCR Analysis

DNA was extracted from leaf samples of four week old seedlings using the CTAB
method [69]. The gene-specific and gene-linked markers MP1, MP2, xa5, xa13 prom, and
pTA248, which are linked to genes Xa4, xa5, xa13, and Xa21, were synthesized by the Open
Lab of the Chinese Academy of Agricultural Sciences (Table 6) and used to confirm the
presence of resistance genes [70]. The polymerase chain reaction (PCR) was performed
using 25 µL mixture, which contained 1 µL of 50 ng DNA, 1 µL of 5 µM of each forward and
reverse primers, 0.5 µL of 5.0 mM dNTPs, 2.5 µL of 10× PCR buffer (500 mM KCL, 100 mM
Tris-HCl pH 8.4, 15 mM MgCl2, 0.1% gelatin), 1.8 µL of 25 mM MgCl2, 1.0~0.75 units/µL
Taq polymerase, and 16.2 µL sterile distilled H2O, for the MP1, MP2, xa13 prom and
pTA248 markers.

Table 6. Gene-specific DNA markers linked to BB resistance genes which were used in screening and selection of
pyramided lines.

Gene Chr No. Marker Name Primer Sequences Expected Size (bp) References

Xa4 11
MP1 Forward ATCGATCGATCTTCACGAGG

150 [69]MP2 Reverse TGCTATAAAAGGCATTCGGG

xa5 5 xa5
Forward GCTCGCCATTCAAGTTCTTGAG 198

[70]
Reverse CCTTGATAGAAACCT

TGCCTTGAC

xa13 8 xa13 prom Forward CCTGATATGTGAGGTAGT 500
[22]Reverse GAGAAAGGCTTAAGTGC

Xa21 11 pTA248 Forward CGATCGGTATAACAGCAAAAC 1000
[71]Reverse AGACGCGGTAATCGAAAGATGAAA

A reaction mixture of 20 µL, consisting of 5 µL DNA (50 ng/µL), 2 µL of 5 µM of each
forward and reverse primers, 0.4 µL of 10 mM dNTPs, 2 µL of 10× PCR buffer, 1.6 µL
of 25 mM MgCl2, 0.4 of 5 units/µL Taq polymerase and 6.6 µL sterile distilled H2O, was
used for the xa5 marker. For the MP1 and MP2 markers, the PCR profile was followed
with the initial denaturation at 94 ◦C for 4 min followed by 35 cycles of denaturation for
1 min at 94 ◦C, annealing for 1 min at 56 ◦C and extension for 2 min at 72 ◦C, with the final
extension for 8 min at 72 ◦C. The PCR profile was followed with the initial denaturation
for 5 min at 94 ◦C followed by 35 cycles of denaturation for 30 s at 94 ◦C and annealing
for 30 s for the xa13 gene; at 1.4 min for the pTA248 markers targeted to the Xa21 gene at
55 ◦C with a final extension for 10 min at 72 ◦C. For the for xa5 gene, the PCR was followed
with an initial denaturation for 5 min at 94 ◦C, followed by 35 cycles of denaturation for
1 min at 94 ◦C, annealing for 1 min at 68 ◦C and extension for 1 min at 72 ◦C, with a final
elongation for 4 min at 72 ◦C.

PCR amplicons were mixed with 5 µL loading dye (loading dye:SYBR = 3:1) and
visualized under UV-light after electrophoresis with an 8% polyacrylamide gel for Xa4,
with 1.5% agarose gel for the xa13 gene, and a 2% agarose gel for the Xa21 and xa5 genes.

4.6. Data Collection and Analysis

Five plants were sampled from each pyramided line at maturity stage, from which
yield and yield-contributing traits were measured. These traits were the number of days
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until 50% heading was achieved, plant height, the number of effective tillers per hill,
panicle length, the number of spikelets per panicle, the percentage of spikelets which were
fertile, the spikelet length-to-width ratio, the 1000-grain weight, and the grain yield per
plant. Data were analyzed using Microsoft Office Excel 2007 and Statistix 10 software
(http://www.biosci.global/softwar-en/genstat/, accessed on 15 July 2021).

5. Conclusions

This study aimed to identify bacterial blight-resistant pyramided rice lines in RILs of
the F6 generation derived from a cross between the Ciherang and IRBB60 parent varieties.
Eighty-five pyramided lines (carrying two to four combinations of the BB resistance genes
Xa4, xa5, xa13, and Xa21) were analyzed using phenotypic and MAS techniques. We
observed improved agronomic performance of the pyramided lines compared to that of
their parent lines or of the check varieties. These pyramided rice lines have potential to be
used as agronomic cultivars and/or potential source for increased BB resistance in future
breeding programs.
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