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Magnetic Order with Fractionalized 
Excitations in Pyrochlore Magnets 
with Strong Spin-Orbit Coupling
Li Ern Chern1 & Yong Baek Kim1,2,3

A recent inelastic neutron scattering experiment on the pyrochlore magnet Yb2Ti2O7 uncovers an 
unusual scattering continuum in the spin excitation spectrum despite the splayed ferromagnetic order 
in the ground state. While there exist well defined spin wave excitations at high magnetic fields, the 
one magnon modes and the two magnon continuum start to strongly overlap upon decreasing the field, 
and eventually they become the scattering continuum at zero field. Motivated by these observations, 
we investigate the possible emergence of a magnetically ordered ground state with fractionalized 
excitations in the spin model with the exchange parameters determined from two previous 
experiments. Using the fermionic parton mean field theory, we show that the magnetically ordered 
state with fractionalized excitations can arise as a stable mean field ground state in the presence 
of sufficiently strong quantum fluctuations. The spin excitation spectrum in such a ground state is 
computed and shown to have the scattering continuum. Upon increasing the field, the fractionalized 
magnetically ordered state is suppressed, and is eventually replaced by the conventional magnetically 
ordered phase at high fields, which is consistent with the experimental data. We discuss further 
implications of these results to the experiments and possible improvements on the theoretical analysis.

The family of rare earth pyrochlore compounds is the exemplar of three dimensional frustrated magnets that offer 
tremendous opportunities for the discovery of exotic phases of matter. For instance, one of the most celebrated 
emergent phenomena in condensed matter physics is the identification of low energy excitations as effective 
magnetic monopoles1–4 in the classical spin ice materials Ho2Ti2O7 and Dy2Ti2O7, where the rare earth ion carries 
large magnetic moment μ ≈ 10 μB subjected to strong local Ising anisotropy. Many other pyrochlore compounds, 
such as Yb2Ti2O7, Yb2Sn2O7, Tb2Ti2O7, and Pr2Zr2O7 5, to name a few, are characterized by strong quantum fluc-
tuations and complex exchange interactions. They are less understood and currently still under intense exper-
imental and theoretical investigations. Among the exciting prospects is the realization of the long-sought-after 
quantum spin liquid state5–10, which is devoid of magnetic order down to very low temperatures while exhibiting 
long range entanglement and fractionalized excitations, in these materials.

In Yb2Ti2O7, the low energy degrees of freedom of each Yb3+ ion is described by a Kramers doublet well 
separated from the first excited crystal field states11–13, so that the system can be treated as a pyrochlore array of 
pseudospin-1/2 moments. A number of experiments14–19 have identified the splayed/noncollinear ferromagnetic 
order, where a net magnetization develops through canted spins, as the ground state of Yb2Ti2O7. Yet a recent 
inelastic neutron scattering experiment20 on Yb2Ti2O7 revealed some remarkably unconventional features in the 
magnetic ground state. While sharp one magnon modes and a two magnon continuum are well separated at high 
magnetic fields, they overlap with each other upon lowering the field, which leads to strong renormalization of the 
spin wave dispersions. As the field approaches zero, well defined spin wave dispersions can no longer be observed 
over a large region in the Brillouin zone, whereas a broad scattering continuum appears. This is interpreted in 
ref.20 as a consequence of one magnon decaying into two magnons, and their interaction is so strong that the 
linear spin wave theory is no longer an adequate description of the system.

The breakdown of magnons suggests the presence of strong quantum fluctuations despite the magnetic order 
in the ground state21,22. Since the scattering continuum seen in the experiment is reminiscent of the two spinon 
continuum in a quantum spin liquid, it may be useful to start from the extreme quantum limit or the spinon 
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representation of the spin exchange interactions. The magnetically ordered state is obtained via confinement of 
spinons in the underlying spin liquid state. If the magnetically ordered state is on the verge of making a phase 
transition to a nearby spin liquid state, the confinement energy scale may be very small. It is then conceivable 
that the two spinon continuum could be seen above the small confinement energy scale, providing an alternative 
description of the scattering continuum seen in the experiment. With this picture in mind, we investigate in this 
work the possibility of a quantum spin liquid coexisting with a magnetic order, where the ground state is magnet-
ically ordered, but the deconfined spinons exist as elementary excitations. Such a coexisting phase is possible in 
three dimensions and some two dimensional systems8,23–26, in which the deconfined spinons are inherited from 
some parent spin liquid states. There may be a transition from the coexisting phase to a confining phase with 
conventional magnetic order upon tuning the parameters of the model.

We apply the complex fermion mean field theory27–30 to the nearest neighbor S = 1/2 Hamiltonian

∑ ∑ ∑ ∑ μ= −
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on the pyrochlore lattice, which in general contains four independent exchange parameters J1, J2, J3, and J4 (defined 
in the global coordinates)31. We list Gaulin31 and Coldea20 parametrizations of Yb2Ti2O7, which are obtained from 
spin wave analysis of the inelastic neutron scattering data at high magnetic fields, in Table 1. From the second row, 
we see that J4 is negligible in Gaulin parametrization, though comparable to J1 in Coldea parametrization. Still, 
it is one order of magnitude less than J2 and J3 in both cases. Therefore, to decrease the level of complexity we set 
J4 = 0, so that the spin Hamiltonian reduces to the JKΓ model. In the absence of the magnetic field B,
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where J = J1 is the Heisenberg interaction, K = J2 − J1 the Kitaev interaction, Γ = J3 the symmetric anisotropic 
exchange interaction, (λ, μ, ν) is a cyclic permutation of (x, y, z). The sign of the Γ coupling depends on the 
bond orientation. The spatially anisotropic exchange interactions K and Γ are known to cause strong magnetic 
frustration, for instance the pure Kitaev model on the honeycomb lattice supports an exactly soluble quantum 
spin liquid ground state32. Classically, it means that there exist degenerate ground states so that the system has 
difficulty in selecting one of them. From Table 1, K and Γ are manifestly the dominant exchange interactions in 
Yb2Ti2O7. It thus becomes clear why the system is so close to the classical phase boundary between two competing 
magnetically ordered phases, the splayed ferromagnetic state (abbrieviated as FM) and an antiferromagnetic state 
(abbreviated as AFM) with a U(1) symmetry, as shown in Fig. 1. We notice that Coldea parametrization falls into 
the AFM phase, but it is really an artifact of the simplification J4 = 0. This happens because the full parametriza-
tion, while sitting on the FM side, is extremely close to the FM/AFM boundary. Nevertheless, we will see later 
that a small magnetic field stabilizes the FM phase at the simplified Coldea parametrization. Also, these para-
metrizations should be taken as useful references but not exact values of the exchange interactions. Hence we will 
consider an extended neighborhood of Gaulin and Coldea parametrizations in the phase space rather than just 
taking two isolated points. The real parametrization of the material could be somewhere in this extended region.

We envision that a new quantum ground state such as the coexisting phase or a pure spin liquid phase may 
emerge near the classical phase boundary. We examine the conditions under which the fractionalized magnet-
ically ordered phase emerges as a stable mean field ground state and find that, as discussed later, it appears only 
when quantum fluctuations are sufficiently strong. We present the J1 − J2 phase diagram (with J3 = −1 fixed) in 
the vicinity of Gaulin and Coldea parametrizations (the shaded region in Fig. 1). Our results demonstrate that the 
low lying excitation continuum observed in the recent inelastic neutron scattering experiment20 on Yb2Ti2O7 at 
weak magnetic fields may be attributed to deconfined spinons in the fractionalized magnetically ordered phase. 
The disappearance of the spin liquid/coexisting phase under sufficiently strong magnetic fields, which signals 
the complete confinement of spinons, is also consistent with the absence of such continuum and the presence of 
sharp magnon modes at high magnetic fields in the experiment. We establish the splayed ferromagnetic state with 
deconfined spinons as an alternative account of the experimental findings at the qualitative level. The coexistence 
of scattering continuum and magnetic order also occurs in other related rare earth pyrochlore compounds, for 
example Yb2Ge2O7 which orders antiferromagnetically but shows diffusive spin excitations similar to that of 
Yb2Ti2O7 33. Our result may thus provide a useful starting point for a unified theoretical description of such a 
phenomenon in these systems.

Results
Complex fermion mean field theory.  The spin operator is first represented in terms of fermionic spinon 
creation and annihilation operators as

Gaulin Coldea

local (0.17, 0.05, 0.05, −0.14) (0.026, 0.074, 0.048, −0.159)

global (−0.09, −0.22, −0.29, 0.01) (−0.028, −0.326, −0.272,0.049)

standard (−0.09, −0.13, −0.29, 0.01) (−0.028, −0.298, −0.272, 0.049)

Table 1.  Gaulin and Coldea parametrizations in the local (Jzz, J±, J±±, Jz±) and global (J1, J2, J3, J4) coordinates, 
and in the form of standard exchanges (J, K, Γ, D). Energy is in units of meV.
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so that the Hamiltonian (1) is quartic in these spinon operators. Next, we rewrite the Hamiltonian as a summation 
of bilinears of various order parameters, and perform a mean field decoupling (see Supplementary Sec. S3 for 
more details). The mean field theory is then solved self consistently. On the one hand, we have the spinon pairing 
and hopping channels that signify the quantum spin liquid state29,
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A specific choice of the respective mean field parameters {χij, Δij, Eij, Dij} is called an ansatz for the spin liquid. 
We consider the 2 uniform ansatz (abbreviated as U2 ) and the U(1) monopole flux ansatz34 (abbrieviated as 
U(1)M) as the possible spin liquid ground states (see Supplementary Sec. S4 in for more details). On the other 
hand, we have the magnetic channels that signify the FM and AFM orders35,
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Figure 1.  The classical phase diagram of the pyrochlore lattice in the J1 − J2 phase space (with J3 = −1, and J4 = 0 
for simplicity) reported in ref.35. The location of Gaulin and Coldea parametrizations, (J1, J2) = (−0.31, −0.76) 
and (−0.1, −1.2), are indicated. They are very close to the phase boundary between the splayed ferromagnetic 
order, where a finite net magnetization develops along one of the cubic axes through canted spins, and the 
antiferromagnetic order, which is a one dimensional manifold of states (indicated by the circular loops) with 
zero net magnetization. It is shown in ref.35 that the nearest neighbor bilinear spin model (1) on the pyrochlore 
lattice admits only q = 0 orderings, i.e. all the possible symmetry breaking patterns are invariant under a Bravais 
lattice translation. It is thus sufficient to know the arrangement of spins on a tetrahedral unit.
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where the subscripts 0, 1, 2, and 3 denote the four sublattices of a tetrahedral unit in the pyrochlore lattice, and 
θ = × + + −− J J J J J1/2 tan [ 8 /(2 2 2 )]T

1
3 1 2 3 41

. There are other classical phases than the FM and AFM orders, 
for instance the Palmer-Chalker phase shown in Fig. 1. However, these other classical phases are energetically 
unfavorable in the neighborhood of the parametrizations of Yb2Ti2O7, so their respective order parameters will 
vanish if we formally include them. Here we simply set them to be zero. Interested readers can refer to Table III 
and V in ref.35 for the complete set of magnetic order parameters. Such a strategy of incorporating both spin liquid 
and magnetic order channels within a single framework using complex fermion mean field theory has been sim-
ilarly applied in refs25,26.

Since the original spin Hamiltonian (1) can be expressed solely in terms of the spin liquid channels or the 
magnetic order channels, an ambiguity arises when we try to incorporate both types of channels into a single 
Hamiltonian. A relative weight r ∈ [0, 1] is thus introduced such that the spin liquid component is multiplied by a 
factor of 1 − r, while the magnetic order component by r. r = 0 (r = 1) then correponds to the quantum (classical) 
limit and yields a pure spin liquid (magnetic order) description. Physically speaking, r is a parameter that controls 
the strength of quantum fluctuations in the system, with smaller r indicating stronger quantum fluctuations. The 
value of r is not fixed at the mean field level. We find that there exists a window of intermediate values of r for 
which the coexisting phase, where both spin liquid and magnetic order parameters are finite (see Fig. 2), is sta-
bilized in the vicinity of the experimentally determined parametrizations. With several choices of the weighting 
factor r and the magnetic field Bz, we plot the J1 − J2 phase diagram (with J3 = −1 fixed) around Gaulin and Coldea 
parametrizations.

Phase diagram.  For the  U2  ansatz, when the weighting factor r is decreased to about 0.25, we can stabilize 
the coexisting phase over a finite area in the J1 − J2 phase space (see Fig. 3a). We label this phase by FM* or AFM* 
depending on which magnetic order parameter is turned on, which means ‘a magnetically ordered state with 
fractionalized excitations/deconfined spinons’. As r is further decreased, for instance to 0.23 and 0.20, the classical 
ordering is further suppressed, the phase region with deconfined spinons expands, and a pure spin liquid phase, 
where all the magnetic order parameters converge to zero, emerges (see Fig. 3b,c). We calculate the magnitude of 
the expectation value of the spin operator ˆ≡ |〈 〉|S S , and compare it to the normalization in the classical limit 
S0≡|Si| = 1/2. The ratio S/S0 is unity (zero) when the system is in the pure magnetically ordered state (pure spin 
liquid state), while 0 < S/S0 < 1 in the fractionalized magnetically ordered state. The latter can be interpreted as 
the reduction of ordered moments due to quantum fluctuations.

For the U(1)M ansatz, we can similarly obtain the coexisting phases FM* and AFM* at r ~ 0.25 (see Fig. 4a). 
However, in these phases, S/S0 ~ 0.01, leading to a small but finite magnetic order parameter and indicating the 
system is highly quantum. In contrast, for the U2  ansatz, S/S0 is usually of the order of 0.1 in the coexisting 
phase. Interestingly, decreasing r further to 0.23 and 0.20, the area in the phase space with deconfined spinons 
expands (see Fig. 4b,c), but always with a finite magnetic order parameter, whose magnitude can be as small as 
 .0 01 of the classical value. Strictly speaking, no pure spin liquid phase is obtained in this case, but one can say 
that the coexisting phase obtained with the U(1)M ansatz is almost a pure spin liquid due to extremely small 
magnetic order parameter.

We pick a representative value of the weighting factor r = 0.23 and investigate the evolution of phase diagram 
with the application of magnetic field along one of the cubic axes (in the z direction, say). The FM phase is ener-
getically favored under such a field. The g tensor in (1) takes the form diag(gxy, gxy, gz) in the local coordinates. We 
fix the g factors gxy = 4.2 and gz = 2.0, based on the reported values of (gxy, gz) = (4.27, 1.79) and (4.17, 2.14) in 
refs11,20 respectively. We also absorb the Bohr magneton into the magnetic field, μBB → B, so that the latter has the 
same unit as energy. With increasing field strength, we observe that the phase region with deconfined spinons 
shrinks, while that of FM grows and crosses the classical phase boundary at zero field (see Figs 3d,e or 4d,e). It is 

Figure 2.  Schematic behavior of the system described by our mean field theory. The spin liquid channels and 
the magnetic order channels are weighted by the factors 1 − r and r respectively. For small (large) values of 
the weighting factor r, only the spin liquid (magnetic order) parameters are finite, and the system is in a pure 
quantum spin liquid (magnetically ordered) phase. For intermediate values of r (the shaded region), both 
the spin liquid and magnetic order parameters are finite, and the system is in a coexisting or fractionalized 
magnetically ordered phase.
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also possible to obtain a solution where both the FM and AFM order parameters are finite and comparable, on top 
of which the spin liquid parameters may be zero or finite. The resulting phase is typically a canted AFM state with 
a finite FM moment, so we label it by cAFM or cAFM*. These phases are absent in the zero field limit. When the 
FM and AFM order parameter have about the same magnitude (e.g. m 0 7T A1,

~| | .
′

 and |mE| ~ 0.7), the precise 
ordering pattern of spins in the cAFM phase can be visualized by evaluating and plotting the expectation value of 
the spin operator ˆ〈 〉Si . Otherwise, if one of the FM and AFM order parameters is much larger than the other (e.g. 
| | .

′
m 0 9T A1,

~  and |mE| ~ 0.1), then the spin configuration of the cAFM phase will of course resemble the dominant 
order. Eventually, when the field strength is sufficiently large, the phase region with deconfined spinons vanishes 
entirely and the system becomes classical in the neighborhood of Gaulin and Coldea parametrizations (see Figs 3f 
or 4f).

Local and global minima.  We pick a representative value of the weighting factor r = 0.23 to extract some 
qualitative features of the mean field solutions at the Gaulin and Coldea parametrizations. In the zero field limit, 
with the U2  ansatz, these parametrizations are in the fractionalized magnetically ordered phases, but are located 
very close to the pure spin liquid phase (see Fig. 3b). On the other hand, with the U(1)M ansatz, the magnetic 
order is very weak, i.e. S/S0 is very small, in the FM* and AFM* phases, at Gaulin and Coldea parametrizations 
respectively (see Fig. 4b and Supplementary Tables S4 and S5). These suggest that a pure spin liquid phase is ener-
getically competitive with the fractionalized magnetically ordered ground states.

Indeed, for the  U2  ansatz, we find that the pure spin liquid state is another convergent solution from the self 
consistent calculations, but it corresponds to a local minimum, in the zero field limit. We compare the energies of 
the two mean field solutions corresponding to the local and global minima, where the spin liquid ( S S/ 10 ) and 
magnetic order (S/S0 ~ 1) dominate respectively. Similar comparison is made for the U(1)M ansatz, where the spin 
liquid dominant coexisting state is also the ground state at small enough fields. Details can be found in 
Supplementary Sec. S5. The energy difference between the local and global minima is quite small in the low field 
limit, but becomes significant as the magnetic field Bz increases in strength such that the FM state is more favora-
ble. When the field strength is sufficiently large (Bz  0.01|J3|), we can no longer get the FM* phase, the self con-

Figure 3.  The J1 − J2 phase diagrams (with J3 = −1) with the U2  ansatz. The gray dashed line represents the 
classical phase boundary between the FM and AFM orders (see Fig. 1). The phase diagrams at zero magnetic 
field, with weighting factors (a) r = 0.25, (b) r = 0.23, and (c) r = 0.20. The area with deconfined spinons expands 
as r decreases due to the suppression of classical order. Choosing a representative weighting factor r = 0.23, we 
apply magnetic fields (d) Bz = 0.01|J3|, (e) Bz = 0.02|J3|, and (f) Bz = 0.04|J3| along one of the cubic axes. The area 
with deconfined spinons shrinks and eventually disappears with increasing field. The meaning of the various 
labels can be found in the main text.
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sistent calculation always yields the FM phase, and the system becomes fully classical. The coexisting solution for 
the Coldea parametrization is relatively more persistent with increasing field compared to the Gaulin 
parametrization.

Spinon dispersion and dynamical spin structure factor.  With the mean field solutions, we can plot the 
spinon band structures of the various phases along some high symmetry directions in the Brillouin zone36. To 
illustrate the generic behavior, we consider the U2  ansatz at Gaulin parametrization with r = 0.23. At zero field, 
the pure spin liquid state is a local minimum, and has a small gap of the order of 0.01|J3| (see Fig. 5a). The bands 
are two fold degenerate due to the presence of both inversion and time reserval symmetries. In comparison, the 
global minimum is a FM* phase with dominant magnetic order (see Fig. 5b). The two fold degeneracy is lifted, the 
spinon dispersion is relatively flat, and the excitation gap is relatively large. At finite fields, the magnetic order 
parameter (spin liquid parameters) further increases (decreases), the bands becomes less dispersing and eventu-
ally completely flatten out as the system enters the pure magnetically ordered (FM) phase when the field is suffi-
ciently large (see Fig. 5c). The flat bands are four fold degenerate (see Supplementary Sec. S6 for explanation).

On the other hand, for the U(1)M ansatz, the pure spin liquid state is gapless (see Fig. 5d). Although the 
ground state is a FM* phase, it is very proximate to the pure spin liquid state as the magnetic order is very weak 
(see Supplementary Table S4 and the discussion above). The bands are two fold degenerate because, while the 
inversion and time reserval symmetries are broken separately, the combination of them is a symmetry34. When 
the magnetic order parameter becomes significant with increasing field, the band degeneracy is lifted, an excita-
tion gap appears and grows, the bands becomes less dispersing and gradually flatten out. The corresponding fig-
ures are not shown here for brevity as these observations are qualitatively similar to the case with the  U2  ansatz.

Importantly, as long as the spin liquid parameters are not all zero, i.e. in the pure spin liquid phase or the 
coexisting phase, we will have dispersing spinon bands and thus a two spinon continuum, which is related to the 
dynamical spin structure factor,

Figure 4.  The J1 − J2 phase diagrams (setting J3 = −1) with the U(1)M ansatz, at various weighting factors r and 
magnetic fields Bz studied above. The main difference between the U(1)M and U2  ansatzes is that no pure spin 
liquid state appears in the phase diagram, as the magnetic order parameter always converges to some finite 
number, although it can be as small as  .0 01 of its classical value (compare (a–c) here to Fig. 3a–c). The 
qualitative features which remain the same are that the area with deconfined spinons expands as r decreases due 
to the suppression of classical order, and shrinks with increasing magnetic field Bz.
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We plot the dynamical spin structure factor for a few illustrative cases along the kx direction. In the coexist-
ing phase, the width of the continuum depends on the relative magnitude of the spin liquid parameters to the 
magnetic order parameters. If the spin liquid parameters dominate over the magnetic order parameters, i.e. the 
ratio S/S0 → 0 is small and the quantum effect is strong, then a broad continuum is obtained (see Fig. 6a,c). If the 
converse is true, i.e. S/S0 → 1 and the quantum effect is weak, then a narrow continuum is obtained (see Fig. 6b).

Discussion
In summary, we have applied the complex fermion mean field theory to the JKΓ model of the S = 1/2 pyrochlore 
magnet. We have devised a Hamiltonian that includes both the spin liquid and magnetic order channels with a 
relative weight r between them. By decreasing r and hence increasing quantum fluctuations, we have found that 
the fractionalized magnetically ordered state can be stabilized in the vicinity of the parametrizations of Yb2Ti2O7. 
Such a coexisting phase, which has reduced ordered moments and deconfined spinons, may explain the peculiar 
low lying excitation continuum observed in the recent inelastic neutron scattering experiment. Furthermore, in 
the coexisting phase, given a particular spin liquid ansatz, if the spin liquid component is dominant, then natu-
rally the two spinon continuum will look similar regardless of the underlying magnetic order. Our result may thus 
account for the resemblance of the diffusive spin excitation spectrum of Yb2Ti2O7 (a splayed ferromagnet) to that 
of Yb2Ge2O7 (an antiferromagnet) observed in inelastic neutron scattering measurements33, assuming the low 
energy excitations in these two different systems originates from the same quantum spin liquid state.

At this stage, there is no systematic way to decide which value of r should be used within a mean field theory, 
but it may be determined dynamically if we go beyond the mean field theory. Nevertheless, we believe that some 
intermediate values of r correspond to the physical case as significant quantum fluctuations must be present in 
the ground state of the spin model with Gaulin and Coldea parametrizations. It would be great if there is a way to 
estimate the appropriate value of r with an analysis similar to the application of the Gutzwiller approximation in 
the tJ model, which leads to renormalization of the hopping integral t and the Heisenberg interaction J37.

An analogy can be drawn between our approach and the method of Schwinger boson mean field theory in 
refs38–40. In the latter, the original SU(2) Heisenberg antiferromagnet is treated with a large N expansion technique 

Figure 5.  The spinon band structures of the various phases at Gaulin parametrization. (a) The pure spin liquid 
state with the U2  ansatz. Each band is two fold degenerate. (b) The magnetic order dominant FM* ground state 
with the  U2  ansatz. Each band is non-degenerate. In (a,b), the red dashed horizontal line indicates the zero 
level, above which the excitation spectrum of Bogoliubov quasiparticles of spinons lies. (c) The pure 
magnetically ordered (FM) state. Each band is four fold degenerate. (d) The pure spin liquid state with the U(1)
M ansatz. Each band is two fold degenerate. In (c,d), the red dashed line indicates the Fermi level of spinons. 
Detailed discussion can be found in the main text.
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by introducing 2N flavors of bosonic spinons biα, which transform under the symplectic group Sp(N), at each site i. 
For the smallest possible value of N = 1, Sp(1) is isomorphic to SU(2). It can be shown that the number of bosonic 
spinons per site (i.e. the density), ≡ ∑α α α

†n b bb i i , is related to the spin S by nb = 2S for SU(2). For arbitrary N, the 
parameter κ ≡ nb/N is taken as the generalization of the spin S. By varying κ, one is able to access the magnetically 
ordered phase (κ → ∞, large “spin”) and the quantum spin liquid phase (κ → 0, small “spin”) within a single 
Hamiltonian. In other words, the choice of κ reflects the extent of quantum fluctuations such that large (small) 
values of κ correspond to the classical (quantum) limit. The weighting factor r in our present work can therefore 
be viewed as playing the same role as that of κ in Schwinger boson mean field theory.

We take the point of view that the experimentally observed scattering continuum at low magnetic fields and 
the two magnon continuum at high magnetic fields have different origins. At high fields, the system is magnet-
ically ordered, and its behavior can be well accounted for by the linear spin wave theory. Sharp one magnon 
modes exist, and the two magnon continuum results from exciting pairs of these magnons. Such a two magnon 
continuum is naturally well separated in energy from the one magnon modes. At low fields, however, we interpret 
the continuum as coming from two spinon excitations, which would overlap with and strongly renormalize the 
magnon dispersion. In this sense, the two spinon continuum replaces the two magnon continuum at low mag-
netic fields. If one insists on describing the continuum in terms of spin wave theory, it would be necessary to go 
well beyond the linear spin wave theory and take into account the decay into multi-magnon excitations, not just 
the two magnon continuum.

We consider here only two quantum spin liquid ansatzes, the 2  uniform and U(1) monopole flux states, 
which are allowed by the projective symmetry group27 (PSG) of the pyrochlore lattice. Certainly, there are many 
other competing spin liquid states that may also permit a coexisting magnetic order. In order to carry out a more 
systematic investigation, one will have to classify all the possible fermionic spin liquid states on the pyrochlore 
lattice. Future work on this issue will be desirable for a more complete analysis of the possible spin liquid and 
fractionalized magnetically ordered phases in Yb2Ti2O7.

Methods
Mean field self consistent equations.  The mean field theory is solved by minimizing the Hamiltonian 
H E D m m( , , , , , )ij ij ij ij

MF
T EA1,

χ Δ
′

 with respect to the variational parameters, which yields the self consistent 
equations,

χ

∂〈 〉
∂

= ⇔ = 〈 〉

= Δ
′

H
O

O O

O E D m m

0 ,

, , , , , , (7)ij ij ij ij

MF

T EA1,

ˆ

while Lagrange multipliers are introduced to enforce the single occupancy constraint

∑ =
α

α αf f 1
(8)i i

†

on average, as the Hilbert space is enlarged by the parton construction. The self consistent calculations are per-
formed numerically in momentum space, through the Fourier transform

Figure 6.  The dynamical spin structure factors at Gaulin parametrization in the zero field limit. (a) The pure 
spin liquid state with the  U2  ansatz, where S/S0 = 0, (b) the magnetic order dominant FM* ground state with 
the U2  ansatz, where S/S0 = 0.975, and (c) the spin liquid dominant FM* ground state with the U(1)M ansatz, 
where S/S0 = 0.008. Darker regions indicate higher intensities. A broad (narrow) continuum is obtained when 
the spin liquid (magnetic order) parameters dominate.
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i
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R

R
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, , , ,

where R, s and α label the unit cell, sublattice, and spin flavor respectively. We also acknowledge refs41–46.

Data Availability
All relevant data are available from the corresponding author upon reasonable request.
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