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Abstract

Background: Tetherin/BST-2 is a recently-identified potent restriction factor in human cells that restricts HIV particle release
following particle formation and budding at the plasma membrane. Vpu counteracts tetherin’s restriction of particle release
in a manner that has not yet been fully defined. We recently identified calcium-modulating cyclophilin ligand (CAML) as a
Vpu-interacting protein that also restricts particle release. We hypothesized that CAML may act to enhance tetherin-
mediated restriction of particle release and thereby explain how two distinct factors could be responsible for Vpu-
responsive restriction.

Methodology/Principal Findings: Endogenous levels of tetherin in human cells correlated well with their restriction pattern
and responsiveness to Vpu, while levels of cellular CAML protein did not. Tetherin but not CAML was inducible by interferon
in a wide variety of human cells. Stable depletion of human CAML in restrictive HeLa cells had no effect on cell surface levels
of tetherin, and failed to relieve tetherin-mediated restriction. Stable depletion of tetherin from HeLa cells, in contrast,
rendered HeLa cells permissive and Vpu-unresponsive. Tetherin but not CAML expression in permissive human cells
rendered them restrictive and Vpu responsive. Depletion of CAML had no influence on cell surface levels of tetherin.

Conclusions/Significance: We conclude that tetherin restricts particle release and does not require CAML for this effect.
Furthermore, these results do not support a major role for CAML in restricting HIV particle release in human cells.
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Introduction

Vpu is an 81-amino acid protein that is translated from a

bicistronic mRNA which also encodes the envelope glycoprotein

[1,2]. Vpu has two known functions that appear distinct [3]. One

of the well-described roles for Vpu is in degradation of CD4

through the formation of a ternary complex consisting of Vpu,

CD4, and bTrCP [4,5,6,7]. A second function of Vpu that was

recognized in early studies and is now receiving increased

attention is a role in enhancing particle release [8,9,10].

Heterokaryon studies between restrictive, Vpu-responsive human

cells and permissive, Vpu-unresponsive simian cells led to the

concept that Vpu enhances release by overcoming a dominant

host restriction [11]. The restriction to particle release was

subsequently shown to enhance endocytosis of retained particles,

and to inducible by interferon alpha [9,12]. In the past year, two

distinct molecules have been identified as human host cell

restriction factors that are counteracted by Vpu. Tetherin (also

known as BST-2) was identified by the Bieniasz and Guatelli

laboratories [13,14] and calcium-modulating cyclophilin ligand

(CAML) by our laboratory [15].

Bone marrow stromal cell surface gene (BST-2) was described

originally as a novel human membrane protein cloned from a

synovial cell line that was thought to be involved in pre-B cell

growth [16]. A surface antigen overexpressed on multiple

myeloma cells known at HM1.24 was subsequently shown to

be identical to BST-2 [17]. BST-2 is an unusual type II

membrane protein that is connected to the membrane via its N-

terminal transmembrane portion and via a C-terminal GPI

anchor [18]. Using a membrane proteomics approach, Bartee

and coworkers found that BST-2 was downmodulated by the

KSHV K5 protein, a RING-type E3 ubiquitin ligase known to

be an immune modulator [19]. BST-2 was renamed tetherin by

the Bieniasz laboratory when it was discovered that this

molecule is involved in tethering of HIV particles at the plasma

membrane [13]. These investigators found that tetherin can

convey resistance to particle release when expressed in

permissive cells, and that depletion of tetherin from restrictive

human cells relieved the restriction. Most importantly, the

restriction was specifically relieved by Vpu. The Guatelli group

subsequently demonstrated that Vpu expression downmodulates

tetherin/BST-2 from the cell surface [14]. Thus tetherin fits

very well as a new host restriction factor that acts at the level of

particle release and is overcome by Vpu.

CAML is a ubiquitous protein that was originally identified as a

cyclophilin B-binding protein and plays an important role in T cell
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signaling [20,21]. CAML is an ER-resident, type II integral

membrane protein with three putative transmembrane domains at

its C-terminus. CAML expression induces calcium-mediated

signaling in T lymphocytes [22], and is required for efficient

recycling of EGF receptor [23] and of GABAA receptors [24] to

the cell surface. Our group identified CAML as a Vpu-interacting

protein through a yeast 2-hybrid approach, and expression and

depletion studies revealed that CAML shared many of the same

characteristics of a host restriction factor acting at the stage of

particle retention [15]. Expression of Vpu or of the HIV-2

envelope glycoprotein counteracted the restriction posed by

CAML. We therefore proposed that CAML either acts as an

independent restriction factor at the same stage of replication as

tetherin, or that it might modulate the restriction posed by

tetherin. One attractive model that could tie both factors together

would be a role for CAML in the recycling of tetherin to the cell

surface, similar to the role of CAML in the recycling of the EGF

receptor [23].

This study sought to define the role of CAML in tetherin-

mediated restriction of HIV particle release. We reproduced

findings from the Bieniasz laboratory demonstrating the potent

Vpu-responsive restriction of particle release conferred by tetherin.

Stable cell lines with depletion of CAML or tetherin were created

to probe the dependence of one factor on the other. No effects of

CAML depletion on cell surface tetherin were demonstrable, while

Vpu expression led to downmodulation of cell surface tetherin.

Stable depletion of tetherin relieved the restriction to particle

release in HeLa cells, while stable depletion of CAML had no

effect. These results, combined with the correlation of endogenous

tetherin levels and restrictive cell phenotype, strongly support the

role of tetherin as a potent, Vpu-responsive restriction factor and

indicate that CAML is not required for restriction of particle

release.

Results

Direct Comparison of Endogenous CAML and Tetherin
Levels in Permissive and Restrictive Cells

We first sought to understand more completely the relationship

between endogenous protein levels and restrictive/permissive cell

phenotype, as this should provide a powerful indication of the role

of CAML and tetherin in contributing to these phenotypes. To

facilitate this study, we developed specific rabbit antisera to the

cytoplasmic domain of CAML and the ectodomain of tetherin. We

examined the level of CAML and tetherin RNA and protein levels

in permissive and restrictive cells. To add to the utility of this

comparison, we performed the analysis on the same cell types

following stimulation with interferon alpha. Three permissive

human cell types (293T, HOS, and HT1080) and three restrictive

cell types (HeLa, A3.01 T cell line, and Jurkat T cell line) were

examined, along with the permissive African green monkey cell

line Cos-7.

To confirm the interferon-inducible nature of tetherin and

investigate further the inducibility of CAML, we performed

Western blots on samples from each of the cell lines, normalizing

for total protein loaded. Using tetherin-specific polyclonal antisera,

a series of bands representing variably-glycosylated tetherin

monomers were noted of 30–34 Kd molecular mass, and in some

samples a slower migrating series of bands were noted (Fig. 1A).

HeLa cells demonstrated substantial levels of tetherin in the

uninduced samples. Jurkat cells had visibly less tetherin in the

unstimulated samples, and it was difficult to appreciate tetherin

bands in A3.01 cells until after interferon treatment (Fig. 1A). Note

that the antisera detected a non-specific cross-reacting bands

(asterisks). Nevertheless, the intensity of tetherin detected in each

of the restrictive cell types increased markedly following interferon

alpha treatment. The detection of tetherin protein was somewhat

Figure 1. Tetherin is interferon-inducible; CAML is not interferon-inducible. A) Western blot for endogenous tetherin was performed using
rabbit polyclonal antisera before or 48 hours after interferon-induction. Note that induction was demonstrated in each case, and baseline levels of
tetherin were highest in HeLa cells. Lanes were normalized by total protein quantitation. D) Western blotting for endogenous CAML was performed in
the same panel of cells. Note that no induction was demonstrated, and all cell types expressed detectable CAML. Cell lines are indicated above the
blots, and IFN treatment is indicated with a plus sign. M = molecular mass markers.
doi:10.1371/journal.pone.0009005.g001
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more difficult in permissive cells, and very little tetherin was seen

in any of the uninduced permissive cells. Following interferon

treatment, substantial increases in tetherin were noted in all four

cell lines examined, including Cos-7 cells (Fig. 1B). The

enhancement of tetherin expression in HOS cells was less

prominent than that seen in HT1080 cells or Cos-7 cells.

Induction varied from 1.5-fold for HeLa to a maximum of 6.1-

fold for HT1080 (Fig. 1A and 1B). These results confirm the

inducibility of tetherin by interferon alpha at the protein level, and

overall support a model in which tetherin is an interferon-

inducible host restriction factor. We then examined CAML

protein levels in the same panel of cells by Western blot. CAML

was easily detected in all restrictive and permissive cells (Fig. 1C

and 1D). There was some variation in protein level between cell

lines, but this minor variation did not correlate with segregation of

cells into restrictive, Vpu-responsive phenotype or permissive,

Vpu-unresponsive categories. Notably, CAML levels in HeLa cells

were not significantly different than 293T or HOS, and permissive

Cos-7 cells demonstrated a significant amount of CAML. There

was a near complete absence of response to interferon in any of the

cell lines (Fig. 1C and 1D, fold-induction shown above). These

results demonstrate that CAML is not inducible by alpha

interferon, and there is not an apparent correlation between

CAML levels and the restrictive phenotype for particle release at

either the RNA or protein level.

CAML Is Not Required for Tetherin-Mediated Restriction
Although CAML protein levels appeared unrelated to restrictive

cell phenotype, we hypothesized that CAML might play an

important accessory role in tetherin-mediated restriction of

particle release. To address this possibility, we first utilized the

permissive 293T cell line. Employing lentivirus-mediated shRNA

transduction, we generated 293T cells that were depleted of

endogenous CAML. CAML was depleted by over 90% in these

cells (red band at 34 Kd, Fig. 2, compare lanes 1 and 3 with lanes

5 and 7). Control shRNA-transduced 293T cells were employed in

parallel (lanes 1–4). Cells were transfected with pNL4-3 bearing an

in-frame deletion of the vpu ORF (NLUdel, [8]) in the presence or

absence of expression of tetherin, and particle output monitored

by Western blotting. In control cells with normal levels of CAML,

the expression of tetherin resulted in a marked restriction of

particle release as indicated by p24 in the supernatant (Fig. 2,

compare lanes 2 and 4). In cells with CAML depletion, there was

no difference in particle output from control cells (compare lane 6

to lane 2), and tetherin expression still induced a potent restriction

to particle release (lane 8). These results suggested that CAML

levels do not modulate tetherin-mediated restriction in 293T cells.

In order to directly compare the effects of CAML and tetherin

expression in permissive human cells, we next expressed CAML or

tetherin in 293T cells in a dose-escalating fashion, and compared

particle output by NL4-3 and NLUdel. Using plasmid transfec-

tions ranging from 100 to 500 ng of CAML per 35 mm2 dish, we

were unable to demonstrate restriction of NL4-3 or NLUdel

(Fig. 3A, CAML lanes). In striking contrast, as little as 20 ng of

tetherin expression plasmid resulted in a restriction of NLUdel,

and the restriction was clearly Vpu-responsive as indicated by

normal particle release by NL4-3 (Fig. 3A, tetherin lanes). These

results, taken together with the depletion experiments in Fig. 2,

suggest that in 293T cells CAML is unable to induce restriction,

while expression of tetherin potently restricts particle release.

We reasoned that 293T cells may represent an exception to the

proposed role of CAML in restricting particle release. We

therefore repeated the head-to-head comparison of CAML and

tetherin in HT1080 cells, a second permissive human cell line.

Results were essentially identical, with no apparent restriction or

influence of Vpu on particle release in cells expressing CAML

(Fig. 3B, CAML lanes), while tetherin expression restricted particle

release in a Vpu-dependent fashion (Fig. 3B, tetherin lanes). Thus,

while CAML did not demonstrate restriction in human cells,

results with tetherin agree completely with those of Neil and

coworkers [13].

The studies above in permissive cells involve expression of

CAML or tetherin from expression plasmids with strong

promoters, and may not reflect the endogenous restriction found

in restrictive human cells. To understand the possible role that

CAML plays in tetherin-mediated restriction in HeLa cells, we

generated a HeLa cell line that is stably depleted of CAML. As

reported previously from transient siRNA-mediated depletion

[15], we expected depletion of CAML to convert these cells to the

permissive, Vpu-unresponsive phenotype. However, we observed

a major difference with our previous report. In Fig. 4, endogenous

CAML is shown on the fluorescent blot as a red band at 34 Kd.

The depletion of CAML by lentivirus-mediated shRNA expression

was nearly complete by this assay (compare cell lane 3 with lane 1,

and lane 7 with lane 5). Particle output by NL4-3 did not differ

between control and CAML-depleted cells (supernatant lanes 2

and 4, respectively). Remarkably, depletion of CAML also failed to

relieve the restriction of Vpu-deleted virus (NLUdel, supernatant

lane 8). These results thus failed to support those in our previous

report indicating that CAML depletion in HeLa cells relieves the

restriction to particle release. These results are in complete

agreement with those employing exogenous expression of tetherin

in 293T cells (Fig. 2 of this report), and strongly support the ability

of tetherin to restrict particle release in a manner that is

independent of CAML.

We next performed a similar experiment in HeLa cells that

were stably depleted of tetherin. We reasoned that these cells have

substantial levels of CAML (Fig. 1B), and that if CAML exhibited

independent restriction of particle release that tetherin depletion

Figure 2. CAML depletion does not inhibit tetherin-mediated
restriction of particle release. 293T cells were transduced with an
shRNA-encoding lentivirus expressing control shRNA or CAML shRNA
and selected with puromycin. Selected cell populations were then
transfected with tetherin expression vector and NLUdel proviral DNA.
Cells (C) and supernatants (S) harvested at 48 hours for Western blot
analysis. Particles present in supernatants were pelleted through 20%
sucrose prior to loading. Analysis was performed using infrared
detection, allowing simultaneous assessment of CAML in cell lysates
by rabbit polyclonal antisera (red) and HIV Gag proteins by anti-p24
monoclonal antibody (green). Co-transfection of cells with a tetherin
expression construct is indicated by plus signs. M = molecular mass
markers.
doi:10.1371/journal.pone.0009005.g002
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alone should not relieve the restriction. Depletion of endogenous

tetherin is shown for two different HeLa cell populations in Fig. 5A,

compared with control shRNA transduced cells. In marked

contrast to the results with CAML knockdown, depletion of

tetherin relieved the restriction of particle release. Transfection of

NLUdel in these tetherin-depleted cells resulted in efficient particle

release (lanes 1 and 2, compare to control HeLa cells in lane C).

These results are consistent with previous reports indicating that

tetherin knockdown alone is sufficient to relieve the restriction to

particle release. When combined with the results demonstrating

substantial levels of endogenous CAML in HeLa cells (Fig. 1),

these results do not substantiate an independent restrictive effect of

CAML on particle release.

Finally, we considered the possibility that CAML modulates cell

surface levels of tetherin. Depletion of cell surface tetherin by Vpu

has been reported to correlate with relief of restriction [14],

although the precise role of removal of tetherin from the cell

surface remains debated. We measured endogenous cell surface

tetherin levels in HeLa cells in which CAML had been depleted

using shRNA, and compared them to control shRNA-transduced

cells. For these experiments, we utilized the HeLa cell pool that

had been depleted of CAML as shown by the Western blots in

Fig. 5. Unstained and surface-stained HeLa cells are shown in

Fig. 6A and B, respectively. Partial tetherin depletion was

employed as a control to demonstrate the shift in cell surface

staining in this experiment (control shRNA shown in grey

histogram, Fig. 6B vs. tetherin shRNA, dashed lines). CAML

shRNA had no measurable effect on cell surface levels of tetherin,

demonstrating no shift from control shRNA-transduced popula-

tion (Fig. 6C, CAML-depleted cells represented by dashed lines).

We then asked if the HeLa cells used in this analysis were

competent for cell surface downregulation of tetherin by Vpu

(expressed in these cells as an EGFP fusion protein). Vpu-EGFP

efficiently downregulated tetherin from the cell surface of control

cells (Fig. 6D, note shift to left upper quadrant). CAML shRNA-

treated cells had no effect on this phenotype, appearing essentially

identical (Fig. 6E). Together, the flow cytometry data presented

here indicate that depletion of cellular CAML did not modulate

Figure 3. Direct comparison of CAML and tetherin effect on particle release in 293T cells and HT1080 cells. A) 293T cells were
transfected with increasing amounts of CAML or tetherin expression vectors and NL4-3 (left) or NLUdel provirus (right). Cells and particles in
supernatants were harvested at 48 hours post-transfection and analyzed by Western blotting using an anti-p24 monoclonal antibody. Total amount
of transfected CAML or tetherin plasmid DNA per 35 mm2 well is indicated above the blots. B) HT1080 cells were employed in experiments identical
to those described for 293T cells. No consistent effect of CAML on virus release was noted in either cell type, while tetherin potently inhibited virus
release. Molecular mass markers are indicated on the left of each panel.
doi:10.1371/journal.pone.0009005.g003
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cell surface tetherin, and that Vpu’s ability to downmodulate cell

surface tetherin was similarly unaffected by changes in cellular

levels of CAML. Alltogether, the data do not support a significant

role for CAML in modulating tetherin-mediated restriction of

particle release; neither do they support an independent restriction

of particle release by CAML.

Discussion

Tetherin/BST-2 was identified in early 2008 as the host cell

restriction that is counteracted by Vpu [13,14]. Tetherin is an

interferon-responsive gene product, which matches well the

phenotype previously described by the Bieniasz laboratory [12].

The activity of tetherin in restricting retrovirus release has

subsequently been extended to filoviruses [25,26], and the impact

of the depletion of tetherin by Vpu or by SIV Nef on particle

release has been confirmed in a number of reports [27,28,29,30].

We reported the identification of CAML in 2008 as a Vpu-

interacting protein that appeared promising as an independent

restriction factor or as a potential cofactor for tetherin-mediated

restriction [15]. CAML demonstrated many attractive features as

a potential cofactor, in particular its influence on the trafficking of

transmembrane receptors such as the EGF receptor to the cell

surface [23]. We postulated that recycling of tetherin to the cell

surface might require CAML, providing an explanation for

enhanced restriction upon the overexpression of CAML and relief

of restriction upon CAML depletion [15].

Here we report that there is no influence of CAML on tetherin-

mediated restriction of HIV particle release. We could not identify

any effect on cell surface levels of tetherin upon depletion of

CAML, nor could we demonstrate a reproducible restriction to

particle release by CAML when compared directly with tetherin.

During the course of the present study, it became apparent that

some of the findings from our previous report indicating that

CAML plays a role in restriction could not be substantiated. In

particular, depletion of CAML did not relieve the restriction to

particle release in HeLa cells. We cannot adequately explain this

discrepancy with our previous findings, other than by implicating

experimental error or misinterpretation of nonspecific toxic effects

as specific restriction. We present strong arguments here, using a

number of experimental approaches, that CAML is not modulat-

ing tetherin’s effects or providing an independent restriction to

particle release. When compared head-to-head with tetherin in

human cells as we demonstrate in this report, no restriction to

particle release by CAML was appreciated. In support of these

data, we have received initial verification of the lack of restriction

by CAML from investigators working within two other laborato-

ries in the field to whom we sent CAML expression constructs

(data not shown). A recent publication also reports the lack of

effect of CAML on restriction of HIV particle release, in

agreement with our recent findings [31]. These findings have led

us to initiate a retraction of the previous publication reporting that

CAML is a restriction factor that is overcome by Vpu, although

not all authors were in agreement [15]. We anticipate that the

head-to-head comparison presented here will be of some benefit in

Figure 4. Depletion of CAML in HeLa cells fails to relieve
restriction to particle release. A stably-transduced cell population
demonstrating marked CAML knockdown (lanes 3, 4, 7, 8) was
transfected with NL4-3 or NLUdel proviral DNA and compared with
control shRNA transduced cells (lanes 1, 2, 5, 6). CAML protein is shown
in red. In the presence of Vpu, particle release was equivalent in CAML
knockdown or control cells (lanes 1–4). In the absence of Vpu, the
restriction to particle release was present and was not affected by CAML
depletion (lane 8 vs. lane 6).
doi:10.1371/journal.pone.0009005.g004

Figure 5. Tetherin depletion alone rescues particle release in
HeLa cells. A) Two independently-derived knockdown cell populations
(labeled 1,2) were employed in which knockdown of endogenous
tetherin was nearly complete. Asterisk indicates a background band
present in all lanes. B) Particle release defect in control shRNA-
transduced HeLa cells (C) vs. knockdown cells (1, 2) is shown. Particle
release was inhibited in control cells expressing NLUdel virus, while
both knockdown cell populations restored particle release (NLUdel, 1
and 2 vs. C).
doi:10.1371/journal.pone.0009005.g005
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clarifying this issue, and in preventing investigators from further

pursuing the relationship of CAML and tetherin. In summary, the

data presented here support a model in which tetherin acts alone

as a Vpu-responsive restriction factor to particle release.

Materials and Methods

Ethics Statement
Animals for production of antisera were housed and handled at

Cocalico Biologicals, Inc., Reamstown, PA. All animals were

handled in strict accordance with good animal practice in

accordance with NIH’s Office of Laboratory Animal Welfare as

reviewed by the Institutional Animal Care and Use Committee

(IACUC) at Cocalico Biologicals (Animal Welfare Assurance

number A3669-01).

Cell Lines, Plasmids and Primers
293T, HeLa, and Cos-7 cells were obtained from the American

Type Culture Collection (ATCC) and were maintained in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% fetal bovine serum (FBS) and penicillin/streptomycin. A3.01

cells (a gift from Klaus Strebel, NIH) and Jurkat cells (ATCC) were

propagated in RPMI-1640 supplemented with 10% FBS, 2 mM

L-glutamine, and penicillin/streptomycin. Tetherin/BST2 expres-

sion constructs were created from a cDNA clone from Origene.

HA-tetherin was created by PCR amplification of the tetherin

gene using primers as a Sal-Xho1 fragment and ligation of this

fragment into pCMV-HA (Clontech). Primers were ACGCGTC-

GACCATGGCATCTACTTCGTATGAC (Sal1, forward) and

CCGCTCGAGTCACTGCAGCAGAGCGCTGAG (Xho1, re-

verse). The full-length sequence of tetherin was confirmed by

automated sequencing. CAML plasmids and Vpu expression

plasmids have been previously described [15].

Transfection and Western Blot Analysis
293T or HT1080 cells were transfected with the indicated

amount of CAML or tetherin expression cDNA and pNL4-3 or

NLUdel plasmids using Lipofectamine 2000 (Invitrogen). Cells

and supernatants were harvested 48 hours following transfection.

Particles in supernatant fractions were harvested by centrifugation

at 100,0006g through a 20% sucrose cushion in 1.5 ml

microcentrifuge tubes using an M120-SE micro-ultracentrifuge

(Thermo Scientific). Cell lysates and particles were subjected to

SDS-PAGE followed by Western blotting for detection of Gag

proteins. Monoclonal antibody CA-183 was produced from

hybridoma 183-H12-5C provided by Bruce Chesebro and Hardy

Chen through the NIH AIDS Reference and Reagent Program,

and was employed as the primary antibody for immunoblotting,

followed by detection with anti-mouse IgG conjugated to infrared

dye (IRDye 800 goat anti-mouse) and detection on the Odyssey

infrared imager (Li-Cor Biosciences). In some experiments,

CAML protein in cell lysates was detected using polyclonal rabbit

antiserum against CAML that was produced in our laboratory.

This antiserum was produced by inoculating rabbits with purified

protein representing the cytoplasmic domain of CAML. To do

this, the cDNA representing the cytoplasmic domain of CAML

was cloned into vector pGEX-6p-1 (GE Lifesciences) and

recombinant protein purified from bacteria using glutathione

agarose. Purified protein cleaved from beads using Prescission

protease was then purified by FPLC and utilized to inoculate

rabbits in a commercial protocol carried out by Cocalico

Biologicals. The specificity of the antiserum was initially verified

by ELISA and Western blotting in comparison with antiserum

provided by Richard Bram (Mayo Clinic, Rochester, Minnesota).

For detection of CAML on Western blots, we used a secondary

anti-rabbit antibody conjugated to a second infrared dye (IRDye

600 Goat anti-rabbit IgG, Li-Cor). Polyclonal rabbit antiserum

directed against tetherin was produced in a similar manner.

Briefly, a GST-tetherin construct in plasmid pGEX-6p-1 (GE

Lifesciences) encoding the ectodomain of tetherin was employed to

produce recombinant protein in bacteria. The recombinant

protein was cleaved from glutathione resin using Prescission

protease (GE Lifesciences) and purified by FPLC. The recombi-

nant protein was injected into rabbits by Cocalico Biologicals, and

Figure 6. CAML does not regulate cell surface levels of tetherin.
A rabbit polyclonal anti-tetherin antibody was used to quantify tetherin
on the cell surface of HeLa cells by flow cytometry. A) Unstained cell
control (white) and tetherin surface staining (filled histogram) using
primary rabbit anti-tetherin followed by anti-rabbit APC staining. B)
HeLa cells transduced with a control shRNA lentiviral vector (filled
histogram) compared with unstained control cells (white). Dashed line
indicates histogram of tetherin shRNA-transduced cells, demonstrating
that cell surface levels were diminished by tetherin shRNA. C) Cell
surface levels of tetherin in control shRNA transduced cells (filled
histogram) did not differ from cells in which CAML was significantly
depleted using CAML-specific shRNA (dashed lines). D) Vpu-EGFP
transfected HeLa cells demonstrate cell surface downregulation of
tetherin, as indicated by left shift of EGFP-positive population. E) CAML
knockdown HeLa cells demonstrate cell surface downregulation of
tetherin by Vpu-EGFP, similar to that shown in D.
doi:10.1371/journal.pone.0009005.g006
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antisera specificity verified by ELISA and Western blotting against

tetherin.

shRNA Knockdown and Preparation of Stable
Knockdown Cells

Lentiviral vectors from Open Biosystems were employed to

attain stable knockdown of CAML or tetherin in the indicated cell

lines. Recombinant lentiviruses were produced by cotransfecting

293T cells with 5 mg lentiviral vector expressing CAML or tetherin

shRNA, and 3.3 mg lentiviral packaging vectors psPAX2, and

1.25 mg vesicular stomatitis virus G glycoprotein (VSV-G)

expression vector pMD2g using Lipfectamine 2000 (Invitrogen).

Lentivirus stocks were harvested at 72 hours post- transfection and

filtered through 0.45-mm syringe filters. A lentiviral vector

containing the green fluorescent protein (GFP) expression cassette

was used as a positive control for lentivirus production, and a

lentiviral vector containing scrambled shRNA was used as

negative control. The optimal shRNA from a series of four

constructs were first identified following Western blotting, then

used to generate a stably-transduced cell population. Briefly, HeLa

or 293T cells were transduced with viruses in the presence of

polybrene (5 mg/ml) and selected for stable integrants by culturing

in complete medium containing puromycin (1 mg/ml). After 5–7

days of selection, there were no viable cells in mock wells and

puromycin resistance polyclonal cell populations were isolated for

further studies. Confirmation of stable knockdown was obtained

by Western blotting for CAML or tetherin as already described.

Cell Surface Staining for Tetherin
Rabbit polyclonal anti-tetherin antibody was incubated with

HeLa cells, followed by staining with anti-rabbit IgG conjugated to

APC (BD Biosciences). Flow cytometry was performed using a

FACSCanto cytometer, and analysis performed using FlowJo

software (Tree Star Inc.).
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