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Abstract

Objective: To identify a convergent, multitarget proliferation characteristic for

astrocytoma transformation that could be targeted for therapy discovery. Meth-

ods: Using an integrated functional genomics approach, we prioritized networks

associated with astrocytoma progression using the following criteria: differential

co-expression between grade II and grade III IDH1-mutated and 1p/19q

euploid astrocytomas, preferential enrichment for genetic risk to cancer, associ-

ation with patient survival and sample-level genomic features. Drugs targeting

the identified multitarget network characteristic for astrocytoma transformation

were computationally predicted using drug transcriptional perturbation data

and validated using primary human astrocytoma cells. Results: A single net-

work, M2, consisting of 177 genes, was associated with glioma progression on

the basis of the above criteria. Functionally, M2 encoded physically interacting

proteins regulating cell cycle processes and analysis of genome-wide gene-regu-

latory interactions using mutual information and DNA–protein interactions

revealed the known regulators of cell cycle processes FoxM1, B-Myb, and E2F2

as key regulators of M2. These results suggest functional disruption of M2 via

gene mutation or altered expression as a convergent pathway regulating astrocy-

toma transformation. By considering M2 as a multitarget drug target regulating

astrocytoma transformation, we identified several drugs that are predicted to

restore M2 expression in anaplastic astrocytoma toward its low-grade profile

and of these, we validated the known antiproliferative drug resveratrol as

down-regulating multiple nodes of M2 including at nanomolar concentrations

achievable in human cerebrospinal fluid by oral dosing. Interpretation: Our

results identify M2 as a multitarget network characteristic for astrocytoma pro-

gression and encourage M2-based drug screening to identify new compounds

for preventing glioma transformation.
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Background

Traditionally, drugs have been designed with the aim of

targeting a single biological entity, usually a protein, with

high selectivity to avoid unwanted “off-target” effects

which are perceived generally as being associated with an

increased risk of side effects.1 Consequently, a major focus

of recent cancer drug development has been the discovery

of drugs targeting single pathogenic variants or molecular

entities.2 While this approach can be effective in situations

where a pervasive driver underlies a particular cancer

diagnosis, such as BCR-ABL1 fusion gene in chronic mye-

loid leukaemia,3 the majority of cancers including gliomas

represents a complex spectrum of diseases characterized

by hundreds of molecular aberrations with different can-

cers exhibiting varied combinations of driver genes, which

can further vary between patients and even within a single

tumor.4 In this context, the effectiveness of targeting a

single target may be limited.5 Despite the genetic hetero-

geneity of cancer, the phenotype of uninhibited cellular

proliferation is shared by essentially all tumors, suggesting

common convergent multitarget oncogenic pathways that

could themselves be targeted as a novel therapeutic dis-

covery strategy. Moreover, in contrast to perceived wis-

dom, multitarget drugs where the selectivity is for a

certain group of “targets” rather than a single entity can

lead to both increased efficacy and reduced side effects.6

For the prevention of transformation of low-grade glio-

mas to ultimately fatal high-grade tumors, where continu-

ous drug treatment may be required for years or even

decades, a reduced side effect profile is a prerequisite to

delivering clinically implementable new therapeutics.

In this study, we aimed to identify a multitarget pathway

that could be targeted for the discovery of novel therapeu-

tics for the prevention or delay in transformation of non-

pediatric diffuse low-grade astrocytomas (LGAs). Classified

as grade II by the revised 4th edition of the World Health

Organisation (WHO) classification of brain tumors, adult

LGAs are one of the most common causes of cancer-related

morbidity and death in patients younger than fifty years

old.7 Surgical resection is often not achievable due to exten-

sive brain infiltration that goes far beyond the tumor epi-

center.8 LGAs typically carry mutations in the isocitrate

dehydrogenase 1 and 2 genes (IDH1, IDH2), TP53 and in

the ATRX and are 1p/19q euploid.9 Almost invariable

transformation of LGA into aggressive anaplastic astrocy-

toma (AA) and to secondary glioblastoma (GBM) is ulti-

mately fatal. The timescale for transformation is

unpredictable and the mechanisms causing them to become

aggressive are poorly characterized.10

To identify a convergent proliferation characteristic

underlying transformation of LGAs, we utilized an

integrated systems-level functional genomics framework

which posits that multiple diverse biological perturbations

(genetic, epigenetic) carrying risk for a given disorder

may converge mechanistically on a common pathway.11

Specifically, network analyses represent a systems-level

approach for capturing the convergent role of heteroge-

neous perturbations in complex diseases12–14 such that

tissue-specific clusters of transcriptionally co-regulated

genes (“modules”) represent candidate regulators and dri-

vers of disease states.12,15 To identify transcriptional mod-

ules underpinning LGA transformation, we made use of

publicly available IDH1-mutant 1p/19q euploid LGA and

AA gene expression data from The Cancer Genome Atlas

(TCGA).16 We focused on IDH1-mutant 1p/19q euploid

astrocytomas, as these two molecular markers define a

transcriptionally and epigenetically distinct subclass of

gliomas.17,18 Multilevel integrative analyses were then

applied to determine the relationship between individual

modules and LGA transformation, including differential

co-expression, integration with genetic risk data and inte-

gration with patient-level genomic features and clinical

survival. Reverse engineering analyses of genome-wide

gene–gene interactions and DNA–protein interactions

were used to identify key regulatory drivers of network

gene expression.19 Candidate drugs targeting the identi-

fied multitarget LGA transformation characteristic were

computationally prioritized by integration with gene

expression profiles from human cancer cell lines per-

turbed by small molecules (“drug perturbation data”),

including Food and Drug Administration (FDA)

approved drugs.20 Candidate drug predictions were vali-

dated using primary human anaplastic astrocytoma cells.

Our analyses presented below outline a novel paradigm

for elucidating a convergent pathway for astrocytoma

progression and provide a proof-of-principle for multitar-

get drug screening as a novel strategy for prevention of

transformation for low-grade gliomas.

Materials and Methods

Glioma cell culture and treatment

Primary Astrocytoma WHO grade III cultures (TB98,

TB62 and TB58) were established from fresh tumors and

maintained in DMEM/F12 (1:1) supplemented with 10%

fetal bovine serum (Complete medium, CM). Primary

(passage 5) cell lines were treated with 20 µmol/L,

10 nmol/L or 2 nmol/L resveratrol (Sigma) or dimethyl

sulfoxide (DMSO) (Sigma) and incubated for 24 h before

extracting total RNA using the RNasey Mini kit according

to the manufacturer’s instructions (QIAGEN). In order to

keep the proportion of the solvent in medium low (below
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1%), for the 20 lmol/L treatment experiment 2 mmol/L

resveratrol working solution was prepared in DMSO due

to resveratrol’s limited solubility in water (3 mg/mL,

131.44 lmol/L).

The effect of resveratrol on cell proliferation was deter-

mined at various time points using the sulforodamine B

(SRB) assay (Sigma). For the long-term exposure, resvera-

trol (2 nmol/L or 10 lmol/L) or DMSO was added to the

cell culture twice per week over a period of 60 days. The

cells were counted in the end of the treatment period.

RNA sequencing

Libraries for RNA sequencing (RNA-seq) were prepared

using the TruSeq Stranded Total RNA kit. The library was

then sequenced on Illumina HiSeq4000 using 75-bp

paired-end reads. The reads were mapped to the hg38 using

the Spliced Transcripts Alignment to a Reference (STAR)

software (version 2.5.0a).21 Quantification of mapped reads

was carried out using HTSeq (version 1.6.1p1).22

TCGA low-grade glioma data

Clinical data, somatic mutation annotation files and SNP

array data as well as raw and normalized RNA-seq read

counts for low-grade glioma samples were acquired from

TCGA data portal (https://tcga-data.nci.nih.gov). For

RNA-seq data, fragments per million reads mapped

(FPKM) was calculated for all genes.23 The genes with

very low expression were removed and the gene expres-

sion was corrected for batch effects.24 We selected 49

grade II and 70 grade III IDH1-mutated and 1p/19q

euploid astrocytomas for the analysis. Clinical covariates

used in this study are listed in Supplementary Table S1.

Differential gene co-expression and differential
gene expression

Differentially co-expressed genes between IDH1mut LGA

and AA were calculated using DiffCoEx25 using the

upper-quartile normalized, batch-corrected log2-trans-

fomed expression data. The statistical significance of co-

expression changes was determined using a permutation

of intramodular correlation dispersion.25 To compare cor-

relation of module genes between conditions, Wilcoxon

rank-sum test was used to determine the significance of

the difference between average absolute correlation of the

module genes. All differential gene expression analysis

was performed using DESeq2.26 The batch and grade were

added as factors in the design matrix for AA and LGA.

Expression data of TB98 cells treated with 2 nmol/L and

10 nmol/L resveratrol were adjusted for surrogate vari-

ables.27,28

Functional enrichment analysis

The gene ontology (GO) enrichment analysis was carried

out using MSigDB v6.2 web-based gene set investigation

tool whereas the pathway enrichments were performed

using WebGestalt.29 Enrichment ratio (r) representing the

proportion of genes overlapping with genes in a GO/

pathway category (k) compared to an expected value of k

(ke). The expected value of k was calculated as number of

module genes (n) divided by total number of genes in the

reference gene set (m) multiplied by number of genes in

the GO/pathway category (j), therefore ke = (n/m) * j

and r = k/ke.
25 In the WebGestalt analysis, background of

13,284 genes expressed in AA and LGA was used as refer-

ence, whereas in MSigDB analysis, all known human gene

symbols (m = 45,956) were considered.

Module preservation

Expression data for additional glioma subtypes, other

epithelial cancers and healthy tissues were downloaded

from various sources and processed as described in Sup-

plementary Table S6. Preservation of the differentially co-

expressed modules in other datasets was determined by

calculating the Zsummary preservation score.30 For Zsummary

scores > 10, module can be interpreted as preserved while

Zsummary scores < 2 suggest no preservation. Zsummary

scores between 2 and 10 indicate weak to moderate mod-

ule preservation.

Cox proportional-hazards model

To investigate the effect of module M2 activity on sur-

vival, Cox multivariable regression model was applied to

AA cohort using the coxph function from the survival

R-package (number of events = 19, censored = 51). In

the LGA cohort, number of events was not sufficient for

the analysis (number of events = 5, censored = 44).

Genomic lesions in TCGA low-grade gliomas

To identify significant mutations in LGA and AA, Mut-

SigCV tool version 1.3 was applied. As a modification to

the algorithm, instead of gene expression values averaged

over 91 cancer cell lines Cancer Cell Line Encyclopaedia,

the average gene expression in IDH1mut and 1p/19q euploid

astrocytomas was used.31 For the identification of arm-level

and focal chromosomal aberrations, the GISTIC 2.0 was

employed. The confidence level for identifying focal regions

containing a driver was set to 0.9 and the threshold for a

copy-number variation (CNV) occurrence was kept default.

Genomic alterations (focal and arm-level) were visualized

using the ComplexHeatmap R-package.32

1618 ª 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Computational Drug Screening for Astrocytoma Progression L. Laaniste et al.

https://tcga-data.nci.nih.gov


Association between module gene expression and
CNVs in regions harboring cancer genes

Oncogenes and tumor suppressor genes (TSG) were

defined according to the COSMIC v76 list of genes with

mutations causally implicated in cancer (Cancer Gene Cen-

sus) (http://cancer.sanger.ac.uk/census/).33 For each onco-

gene and TSG, the association between somatic CNVs

overlapping this oncogene or TSG and the average expres-

sion of M1 and M2 was calculated using a linear model.

Additionally, we calculated the difference in the relative fre-

quency of events in a given oncogene or TSG between LGA

and AA. The oncogene or TSG alteration event was deter-

mined using GISTIC2.0 output, where values >1 were con-

sidered as amplification and values <�1 as deletions of the

gene. The sum of alteration events per oncogene or TSG in

the samples of given histopathological grade was divided by

the number of samples in the cohort. Relative incidence of

alterations was calculated as the difference between cohort-

adjusted sum of alterations in an oncogene or TSG. Values

over 0 indicate that the cancer gene was preferentially

altered in AA.

Cancer predisposition genes

Cancer predisposition gene lists were retrieved from the

literature. Genes in which germline mutations increase

the risk of developing cancer (n = 114) were acquired

from Supplementary Table S1 in Rahman33 and from

the Catalogue Of Somatic Mutations In Cancer (COS-

MIC) v76 Cancer Gene Census catalogue (n = 84)

(http://cancer.sanger.ac.uk/census).30 Additionally, a set of

cancer-associated genes harboring rare germline trunca-

tion variants across 12 tumor types (n = 249) was

attained from Supplementary Data 2 in Lu et al.34 The

statistical significance of overrepresentation of cancer pre-

disposition and cancer-associated genes was calculated

using Fisher’s Exact test (FET) and the odds ratios (ORs)

were aggregated into a summary estimate using the fixed

effects model in the metafor R-package.35

Transcription factor binding site enrichment

To identify transcription factor (TF) binding sites

(TFBS) overrepresented in the promoters of M2 module

genes, two databases were used. WebGestalt29 was accessed

online at http://www.webgestalt.org. In parallel, the TRANS-

FAC� database release 2017.1. was queried, as experimental

evidence of binding and regulation can be obtained in addi-

tion to TF – regulatory site binding predictions. We

employed the “FMatch” analysis to identify overrepresented

TFs in the gene set list of interest. Best promoters supported

with binding site defined �500 to +200 bp from the tran-

scription start site were set as parameters.

Cell division cycle gene sets

Full list of human cell division cycle genes was downloaded

from GO database AmiGO v1.836 accession GO:0007049

(http://amigo.geneontology.org/amigo) (n = 1,768). The

rest of the cell cycle gene sets were obtained from the

Molecular Signature Database (MSigDB v6.2) (http://sof

tware.broadinstitute.org/gsea/msigdb/index.jsp).

Master regulator analysis

To infer TF–target interactions, Accurate Reconstruction

of Cellular Networks (ARACNe) was applied.37 ARACNe-

AP (ARACNe with Adaptive Partitioning) tool (version

1.4) was run as a command-line java executable described

by Lachmann et al.38 Batch-corrected FPKM values for

both, LGA and AA along with genes defined as TFs in

FANTOM 5 project39 were used as input. First, the signif-

icance threshold for mutual information was calculated

(aMI = 0.21 at P-value < 10�8) and thereafter ARACNe

was ran in 100 bootstraps to generate a consensus net-

work robust to expression outliers (edge significance P-

value < 0.05 with Bonferroni correction).40 The ARA-

CNe-derived network was converted into a regulon by

determining the direction for each ARACNe-inferred TF–
target pair using the Spearman’s correlation. Positively

correlated TF and its predicted target expression is inter-

preted as positive TF mode, while TFs’ expression is nega-

tively correlated with its inferred targets is considered a

negative regulator of the gene expression.41 Master regula-

tors (MRs), which are up-regulated in one condition and

its positively regulated targets are enriched for overex-

pressed genes and negatively regulated targets for under-

expressed genes, are termed activated MRs while for

repressed MRs behave in the opposite manner. Most

strongly influenced targets (highly ranked members of

gene sets) were extracted for each MR in leading

edge analysis. After extracting the leading edges of gene

set enrichment for all the significant MRs, we performed

a one-tailed FET to calculate the significance of the over-

lap between the activated and repressed MR target gene

sets and the differentially co-expressed modules M1 and

M2. The ssmarina package R-functions (version 2) imple-

mented in the MR analysis were downloaded from http://

dx.doi.org/10.6084/m9.figshare.785718.

Literature-based discovery of FoxM1 and B-Myb
targets

FoxM1 and B-Myb binding data were collected from the

literature. Chromatin immunoprecipitation (ChIP) data

for FoxM1 binding peaks were retrieved from the Supple-

mentary Table S1 in Wiseman et al.42 Supplementary
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Table S1 in Chen et al.43 and Supplementary Table S8 in

Fisher et al.44. ChIP peaks for B-Myb were obtained from

deposited Supplementary Table S2 in Sadasivam et al.45

and processed ENCODE B-Myb binding data Supplemen-

tary Table S8 in Fisher et al.44 We considered gene a tar-

get if it appeared in two-thirds of FoxM1 binding peak

lists and in 2/2 of B-Myb binding studies.

E2F2 ChIP-seq data analysis

Raw ChIP-seq data were downloaded for Gene Expression

Omnibus (GEO) database (accession number

GSM1208606 for E2F2 and GSM1208813 for IgG con-

trol).46 The reads were aligned to human genome NCBI

GRCh38 using the bowtie aligner version 1.0.0 and pre-

built index file sourced from http://bowtie-bio.sourcef

orge.net/manual.shtml#what-is-bowtie on 3/07/2017.

Reads with more than one reportable alignment were

omitted from further analysis. ChIP-seq quality was

assessed by applying Phantompeakqualtools46 version 1.1

and the quality metrics of experiments satisfied the rec-

ommendations by ENCODE and modENCODE consor-

tia.47 Peaks were called using the Macs2 software version

2.1.1., with False Discovery Rate ( FDR) cut-off of 0.01 to

call significant regions.48 Called peaks annotated using the

annotatePeak function from the ChIPseeker R-

package.49 Peaks between 500 bp upstream to 200 down-

stream from the transcription start sites were retained for

further analysis.

Connectivity Map analysis

Connectivity Map (CMap) is a public database containing

genome-wide expression profiles for three human cancer

cell lines (MCF7, PC3, HL60), 6 hours after treatment

with different concentrations of ~1300 small chemical

compounds. Raw .CEL files and pre-ranked data are

available for download at https://portals.broadinstitute.

org/cmap/. Expression was profiled using one of Human

Affymetrix U133A platforms (HT_HG-U133A, HT_HG-

U133A_EA, HG-U133A). Raw .CEL files were processed

from probe to gene-level using custom (CDF) probe

annotations to GENCODE gene ids.50,51 Background cor-

rection and normalization of expression were performed

using RMA and variance stabilization normalization (vsn)

methods as implemented in the affy R-package.52,53 To

conduct differential expression analysis, assays with less

than two control or drug treatment samples were

excluded. For ease of interpretation, GENCODE gene IDs

were converted HUGO gene IDs. Differential expression

was quantified using the limma package,54 while account-

ing for batch effects within the model. To perform mod-

ule enrichments for genes whose expression is modulated

by drug treatment, we first looked for drugs that modu-

late at least five genes at 10% FDR in the dataset of inter-

est. Subsequently, significance of the overlap of module

genes with the list of genes up or down-regulated by the

drug was calculated using one-tailed FET. P-values of

enrichment were corrected for multiple testing using Ben-

jamini–Hochberg FDR procedure.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed

using GSEA Java desktop application by the Broad Insti-

tute (version 2.2.4). The significance of module M2 gene

set enrichments in the extremities of ranked list with val-

ues ordered by –log10(P-value) 9 log2(fold change) was

assessed by permuting the rank list 10,000 times. The

ranked list was ordered from the most up-regulated to

the most down-regulated genes so that positive normal-

ized enrichment score would indicate overrepresentation

of the gene set among the most down-regulated genes.

GSEA of genes up- and down-regulated by resveratrol in

different concentrations, the Hallmark Gene Set from

MSigDB were used.55

Protein–protein interactions

The protein-protein interactions (PPIs) were acquired

from the STRING database v10.5.56 Interaction sources

selected were text-mining, experiments, and databases.

The minimum required interaction score was set to 0.4.

Kinase inhibition data

Kinase Profiling Inhibitor Database (http://www.kinase-sc

reen.mrc.ac.uk) accessed 02/11/2018. The database was

queried for resveratrol.

Results

Gene network and differential co-
expression analysis in astrocytomas

Transcriptional changes can be related to a disease state

via two paradigms, the analysis of gene covariation (dif-

ferential gene co-expression) and gene expression levels

(differential gene expression).57 In order to identify sets

of genes differentially covarying in the progression of

LGA, we selected supratentorial IDH1 mutant and 1p/19q

euploid adult astrocytoma samples from the TCGA data-

base (Supplementary Table S1). The cohort included 49

LGA and 70 AA samples (Supplementary Fig. S1). We

used DiffCoEx algorithm25 to identify set of genes with

differential co-expression between the tumor grades (see
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Methods), yielding two modules of significantly differen-

tially co-expressed genes: M1 (ngenes = 272) (P-

value < 0.001) and M2 (ngenes = 177) (P-value < 0.001)

(Fig. 1A) (Supplementary Figure S2) (Supplementary

Table S2). Genes without differential co-expression clus-

ter assignment were grouped in module M0

(ngenes = 12,835). The average correlation of M1 genes

was significantly higher in LGAs (P-value < 10�16,

Mann–Whitney U-test) while the average correlation of

module genes for M2 was higher in AAs (P-

value < 10�16, Mann–Whitney U-test) (Fig. 1B).

We then investigated whether modules differentially

co-expressed between LGA and AA were also differen-

tially expressed. Out of 272 genes in M1, 18 genes

(6.6%) were significantly (FDR < 5%) differentially

expressed and down-regulated in AA, whereas 160 out

of 177 genes (90%) in module M2 were up-regulated in

AA (FDR < 5%) (Supplementary Fig. S3) (Supplemen-

tary Table S3). The average expression of module M2

genes was significantly higher in AAs (P-

value = 1.32 9 10�5, Mann–Whitney U-test), while the

average expression of M1 did not vary significantly

between LGAs and AAs (P-value = 0.60) (Supplementary

Fig. S4).

As co-expressed genes may share related biological func-

tions,58,59 we investigated whether the two differentially co-

expressed modules were enriched for genes relating to

specific biological pathways or GO terms using web-based

tools – WebGestalt29 and MSigDB.60 Module M1 genes

were enriched for GO terms related to neuronal con-

stituents such as “neuron part” (Enrichment ratio

(r) = 11.62, FDR = 1.89 9 10�63) and “synapse”

(r = 14.57, FDR = 3.10 9 10�52), while M2 was highly

enriched for cell division genes such as GO term “cell

cycle” (r = 16.82, FDR = 3.83 9 10�160) (Fig. 2A and 2)

(Supplementary Tables S4 and S5), suggesting a func-

tional distinction between these two modules. In keep-

ing with their functional specialization from the

Figure 1. Identification of differential co-expression modules M1 and M2. (A) Heatmaps showing the strength of correlation between module

genes in low-grade (LGA) and high-grade (AA) astrocytomas. (B) Frequency plots of absolute mean correlation of module M1 (right panel) and

M2 (left panel) genes in LGA and AA samples. The absolute mean correlation of M1 was significantly higher in LGA samples (P-value < 10–16,

Wilcoxon rank-sum test), and the absolute mean correlation of M2 higher in AAs (P-value < 10–16, Wilcoxon rank-sum test).
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analysis of GO terms, M1 and M2 were highly enriched for

biological pathways such as “neuronal” system (M1,

r = 5.46, FDR = 2.98 9 10�6) and “cell cycle” (M2,

r = 17.98, FDR = 1.18 9 10�68), respectively (Supplemen-

tary Fig. S5).

Next, to provide evidence for the biological validity of

modules M1 and M2, we undertook a series of compara-

tive network analyses assessing the conservation of co-ex-

pression between module genes in unrelated gene

expression datasets. We explored module preservation in

other malignancies such as oligodendroglioma, IDH1-wild

type astrocytoma, GBM, colon adenocarcinoma, liver

hepatocellular carcinoma, lung adenocarcinoma, as well

as in healthy tissue with proliferative potential (colon,

lung, liver), and normal cerebral cortex tissue (Supple-

mentary Table S6). We used the module composite

preservation statistic Zsummary score, where Zsummary scores

>10 indicate strong module preservation, Zsummary

scores < 2 suggest no preservation and Zsummary scores

between 2 and 10 indicate weak to moderate module

preservation.30 Since module M1 genes were on average

more highly co-expressed in LGA and M2 genes more

strongly co-expressed in AA, the reference datasets to test

module preservation were set to LGA for M1 and AA for

M2. Taking this Zsummary score approach, we found that

co-expression of M1 was preserved only in neural tissue,

in keeping with its functional specificity (“neuronal pro-

cesses”) (Table 1), while module M2 (“cell cycle”) was

highly preserved in proliferating tissues, including differ-

ent types of cancers as well as renewing healthy tissue.

To further assess the biological validity of module

M2, we investigated the physical interactions between

the protein products of M2 genes. Out of the 177

genes in module M2, 133 (75%) were identified as cell

cycle genes according to GO biological process annota-

tion36 (FDR = 1.18 9 10�68). Selecting sources of
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Figure 2. Characterization of modules M1 and M2. (A) Bar-plot showing the functional enrichment of module M1 genes. The top enriched

genes encode for genes annotated by GO as components of a neuron. (B) Bar-plot of module M2 functional enrichment. The genes with cell

cycle GO term were most significantly enriched. The x-axis represents the significance of overrepresentation of biological pathway genes in

modules calculated by the hypergeometric test. Blue-dashed line represents FDR = 0.05, and red-dashed line represents FDR = 0.01. (C)

Estimated survival function for the Cox regression of time to death in AA cohort. Factors analyzed were the mean expression of module M2 and

M1 in the AA and age at diagnosis. The dashed lines show point-wise 95% confidence intervals around the survival function. Number of

events = 19, censored = 55. (D) Forest plot showing the enrichment of M2 genes among cancer predisposition genes and genes harboring rare

germline variants in cancer. The gene sets tested were derived from publications by Rahman33 (n = 102), and Lu et al.34 (n = 209), as well as

germline mutations from COSMIC Cancer Gene Consensus (CGC)61 (n = 72). The figure shows the OR representing that the module M2 is more

likely to contain genes from these gene sets than expected by chance with corresponding 95% confidence intervals. Overlap, number of query

genes overlapping the module M2; Query, number of genes in each query list; OR, odds ratio; CI, confidence intervals.
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PPI from the STRING database56 for the total 1,768 cell

cycle genes defined by the GO biological process anno-

tation (GO:0007049, n = 1,768), we found that the

most highly connected cell cycle genes were significantly

(P-value < 10�4) overrepresented in module M2 (Sup-

plementary Fig. S6A and B). These results highlight that

the genes constituting M2 represent central hubs of the

overall set of genes governing the cell cycle and point

toward an important influence of M2 on this biological

process.

M2 gene network’s relevance to astrocytoma

The above results suggest that M2 network represents a

set of co-regulated genes capturing the known relation-

ship between cell cycle regulation and progression of LGA

to AA.19 To investigate this further, we assessed the rela-

tionship between M2 genes and known cancer predisposi-

tion genes; the identification of disease predisposition

genes (i.e., genes which when impacted by germline

mutation increase the lifetime risk of a disease) has been

instrumental to the discovery of causal pathways.57

For module M2, we observed a significant (OR = 4.75,

95% CI [1.67–10.94], FDR = 0.007) overrepresentation of

bona fide cancer predisposition genes annotated by Rah-

man,33 for cancer genes listed in the COSMIC Cancer Gene

Census catalogue61 (OR = 6.92, 95% CI [2.42–16.21],
FDR = 0.001) and a significant overrepresentation of rare

germline truncation variants identified in 249 cancer-associ-

ated genes across 4,034 cancer cases from TCGA34

(OR = 4.31, 95% CI [2.08–8.09], FDR = 0.0003) (Fig. 2D).

The biological functions of the cancer predisposition genes

overlapping M2 genes were related to cell division and DNA

repair (Supplementary Table S7), therefore the enrichment

of these genes in module M2 is influenced by overrepresenta-

tion of cell cycle genes among module M2 genes. These

results highlight that M2 is significantly enriched for cancer

predisposing genes in excess of random expectation suggest-

ing M2 captures molecular processes associated with the

development and maintenance of cancer.

Next, we explored the relationship between M2 expres-

sion in the human glioma tissue sample and patient sur-

vival. Survival analysis among the AA cohort (n = 70,

number of events = 19) using the Cox proportional-haz-

ards regression model62 revealed that AA patient survival

was slightly but significantly dependent on average expres-

sion of module M2 (Hazard Ratio (HR) = 1.74, 95% CI

[1.14–2.64], P-value = 0.01), but not average expression of

module M1 (HR = 1.68, 95% CI [0.83–3.369], P-

value = 0.142) or age at diagnosis (HR = 1.03, 95% CI

[0.98–1.08], P-value = 0.25) (Fig. 2C), suggesting an asso-

ciation between M2 expression and tumor progression.

Finally, we explored the relationship between M2

expression in LGA and AA, and patient-level genetic fea-

tures. Among the TCGA cohort of IDH1mut LGA and AA,

we observed that AA samples had on average more single

nucleotide variants and INDEL mutations per sample

than LGAs (Supplementary Fig. S7A). However, only the

TP53 (nmut = 134, FDR < 10�13), ATRX (nmut = 96,

FDR < 10�13) and Mucin-4 (MUC4) (nmut = 17,

FDR = 4.80 9 10�7) genes carried significantly more

somatic mutations than expected considering the average

Table 1. Preservation of differential co-expression networks

Tissue

Origin Histopathology

Data

source Tissue

Zsummary score

M1

Zsummary score

M2

Neural Malignant TCGA WHO grade III IDH1wt astrocytoma 26.8 46.5

Neural Malignant TCGA WHO grade II IDH1mut 1p/19q codeleted oligodendroglioma 63.3 48.8

Neural Malignant TCGA WHO grade III IDH1mut 1p/19q codeleted oligodendroglioma 16.4 18.9

Neural Malignant TCGA Glioblastoma 23.0 67.1

Neural Malignant GEO Glioblastoma (GSE77530) 12.8 29.9

Neural Malignant GEO Glioblastoma (non-enhancing) (GSE59612) 30.0 18.9

Neural Malignant GEO Glioblastoma (enhancing) (GSE59612) 3.7 45.9

Nonneural Malignant TCGA Colon adenocarcinoma 0.8 33.8

Nonneural Malignant TCGA Liver hepatocellular carcinoma 1.4 58.8

Nonneural Malignant TCGA Lung adenocarcinoma 2.0 101.9

Nonneural Nonmalignant GTEx Colon 1.1 15.0

Nonneural Nonmalignant GTEx Lung 0.5 16.6

Nonneural Nonmalignant GTEx Liver 0.1 6.9

Neural Nonmalignant GTEx Cerebral cortex 11.8 –1.3

Preservation of modules M1 and M2 in neural and non-neural malignant and non-cancerous tissues assessed by the composite network preserva-

tion statistic Zsummary.
30 Zsummary scores >10 represent strong evidence for preservation, Zsummary < 2 is interpreted as no preservation and Zsummary

2–10 suggests weak to moderate preservation. LGA expression was used as the reference set to investigate M1 preservation and AA to explore

module M2 preservation in other datasets.
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background mutation frequency of the genes in these

samples (see Methods) (Supplementary Table S8).

Somatic mutations in other genes were not frequent in

this collection of samples with the large proportion of

mutated genes observed only once or seldom in more

than 3% of the glioma samples (Supplementary Fig. S7B).

In contrast, we observed recurrent somatic CNVs in mul-

tiple samples including copy number loss of well-known

TSG CDKN2A at 9p21.3 (ndel = 45/119), RB1 at 13q14.3

(ndel = 40/119) and PTEN at 10q23.31 (ndel = 22/119)

(Supplementary Fig. S8). We next explored the effect of

copy number change (i.e., gene dosage) on the genes pre-

senting the alteration. We focused on the known oncoge-

nes and TSG obtained from the COSMIC list of genes

with somatic mutations causally implicated in cancer

(Cancer Gene Census).61 Out of 484 oncogenes and TSG

from the COSMIC Cancer Gene Census database, 338

(69.8%) were affected by CNVs in our sample set (based

on the GISTIC analysis, see Methods). As not all CNVs

induce aberrant activity of their gene products, we

selected these oncogenes and TSG-altering CNVs, whose

ploidy influences expression of that gene (functional copy

number alterations, FCNAs).63 Among the 338 oncogenes

and TSGs altered by CNVs, 156 genes (46.2%) were con-

sidered influenced by FCNAs, that is, their gene dosage

had a significant (FDR < 0.05) effect on the expression of

the affected gene. The 338 oncogenes and TSG as well as

156 oncogenes and TSG affected by FCNA were not sig-

nificantly (P-value > 0.05) over- or underrepresented

among module M1 and M2 genes. Only 5 of 338 oncoge-

nes and TSG (OR = 1.12, P-value = 0.81) and 2 of 156

oncogenes and TSG affected by FCNV (OR = 0.96, P-

value = 1.00) were found in module M2 and 2 of 338

oncogenes and TSG (OR = 0.28, P-value = 0.05) and none

of the 156 oncogenes and TSG affected by FCNV (OR = 0,

P-value = 0.08) in module M1. We observed, however, that

the gene dosage of 61 of 338 (18.1%) oncogenes and TSG

and 36 of 156 (23.1%) oncogenes and TSG affected by

FCNA were significantly (FDR < 0.05) associated with an

increase in the average expression level of module M2

across the patient cohort (n = 119) (Supplementary

Table S9). In contrast, M1 expression was not associated

Figure 3. Association of module expression with dosage of oncogenes and tumor suppressor genes. Average module M2 expression is

significantly associated with gene dosage of several functionally aberrant oncogenes and TSG (cancer genes) (-log10(FDR) > 1.30, red dashed line)

(right panel), whereas average module M1 expression is not significantly associated with gene dosage changes in any oncogenes and TSG (left

panel). M2 module is most significantly associated with deletion of PTEN, TCF7L2, WDR11, CIC and amplification of PDGFRA, FIPL1, CHIC2. The

stronger association between module genes and alterations in oncogenes and TSG more frequent in AA is highlighted by linear model fit

represented by blue line with 95% confidence intervals in gray shading. On the y-axis: difference of sample size-adjusted number of CNV events

in a given cancer gene. Relative frequency >0 represents gene dosage alteration events more often found in AA whereas relative frequency <0 is

assigned to gene dosage alteration events more frequent in LGA. The horizontal gray line marks the relative frequency = 0. On the x-axis:

negative logarithm of the FDR of difference in average module expression between samples where a given oncogene or TSG is altered and

samples where the gene is intact. The oncogenes or TSG having significant associations (FDR < 0.05) with module expression and are

preferentially altered in AA (ratio > 0.1) are labelled. Vertical dashed red line represents log10(FDR) = 1.3. The data point size corresponds to the

combined number of alteration events in the cancer gene (LGA + AA).
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with gene dosage of any oncogenes or TSG. The change in

average M2 expression in relation to FCNA in oncogene or

TSG dosage was strongest (FDR < 0.0003) for loss of can-

cer-related genes located on chromosome arm 10q (VTI1A,

TCF7L2, WDR11 and PTEN) a structural genetic variant

previously associated with poor prognosis in LGAs and

AAs and occurring more frequently in AAs in this cohort

(Fig. 3).64–66 Additionally, strong associations were found

between PDGFRA amplification (FDR < 0.001) and CIC

deletion (FDR < 0.001). The COSMIC Cancer Gene Cen-

sus gene list does not list WDR11 as a cancer gene, but the

gene was included in the analysis since its disruption in

glioma has been previously reported.67,68

In summary, these integrative systems-level analyses

reveal that module M2 is differentially co-expressed

between IDH1mut LGA and AA, overexpressed in AA

compared to LGA, enriched for known cancer predisposi-

tion genes, functionally enriched for genes related to the

cell cycle, and has a pattern of expression in human

glioma samples associated with both patient survival and

genetic aberrations in chromosomal regions harboring

known oncogenes or TSG. These results suggest M2 as a

candidate network associated with astrocytoma progres-

sion. We therefore set out to investigate the transcrip-

tional regulation of M2 in more detail.

Transcriptional regulation of M2 gene network

We first investigated whether the gene co-expression might

result from the regulatory control of a common TF; this

may be reflected by enrichment for TFBS sequences in a set

of co-expressed genes.69 Analysis for enrichment of TFBS

among M2 genes using the web-based gene set enrichment

analysis tools – WebGestalt70 and the TRANSFAC�71 data-

base revealed an overrepresentation of TFBS in M2 for the

E2F-family TFs (WebGestalt, FDR = 3.42 9 10�17)

(TRANSFAC�, P-value = 2.16 9 10�4). The E2F-family of

TFs has an established direct role in cell cycle control and

loss of function in E2F-binding suppressor protein Rb leads

to uncontrolled cell proliferation.72,73 Additionally, we

observed enriched TFBS among M2 genes for CUX1 (Cut

Like Homeobox 1), Myb-like factors and NF-Y (Nuclear

Factor Y) TF family, which have been previously associated

with the regulation of cell division74–76 (Supplementary

Table S10).

These TFBS enrichment analyses provided an indepen-

dent line of evidence to support the validity of M2 as a

gene co-regulatory network which is functionally related

to cell cycle regulation. However, since sequence specifici-

ties of TFBS motifs have yet to be established for more

than half of bona fide TFs,77 enrichments for TFBS alone

are unlikely to provide a complete picture of the regula-

tory control of gene co-expression networks. Factors like

cell lineage-specific chromatin conformation, promoter

methylation, and utilization of alternative promoters may

all contribute to the complexity of transcriptional regula-

tion.78 With this in mind, we employed the

ARACNe through Adaptive Partitioning inference of

mutual information (ARACNe-AP)37 to derive a global

IDH1mut and 1p/19q euploid astrocytoma-specific tran-

scriptional regulatory network (“regulome”). In addition,

this approach allowed us to investigate the relationship of

this empirically derived tissue-specific regulome and mod-

ule M2 (and M1) expression. ARACNe uses mutual infor-

mation to infer statistical dependency between gene

expression profiles of TFs and their target genes. Signifi-

cant mutual information between a given TF and a gene’s

expression is interpreted as a functional relationship

between the two.79 We applied the ARACNe-AP algo-

rithm to LGA and AA gene expression profiles combined

and obtained a regulome with 1,293 regulators, 13,260

targets and 171,429 interactions (see Methods). In the

second step, we used the Master Regulator Inference

Algorithm (MaRInA)52,53 to prioritize TFs influencing the

transcriptional programs associated with progressing

glioma. The MaRInA method makes use of differentially

expressed genes between two conditions (i.e., between

LGA and AA) and the directionality of the ARACNe-in-

ferred TF targets in the regulon. If the transition of the

phenotype between LGA and AA is prompted by activa-

tion or repression of specific TFs, then their positively

and negatively regulated target genes would be among the

most differentially expressed. Using this strategy, we iden-

tified 23 candidate MRs of low-grade astrocytoma pro-

gression (P-value < 0.01), among which 16 were activated

and seven repressed in the anaplastic astrocytoma state

(Fig. 4).

Next, we integrated the information about differential

TF activity and differential co-expression in LGA and AA

(Supplementary Fig. S9). We found significant enrichment

of module M2 genes among the overexpressed genes of the

activated MR targets (FET, P-value = 1.4 9 10�198, one-

tailed) and the underexpressed genes of repressed MR tar-

gets (FET, P-value = 9.3 9 10�35, one-tailed) (Supplemen-

tary Table S11). Module M1 genes were not significantly

overrepresented in any of the MR-regulated gene sets. To

prioritize the MRs with the greatest influence on M2

expression, we ranked these TFs based on the significance

of overlap of their individual regulons with the M2 module

(see Methods). We found that cumulatively the top three

TFs (FOXM1, MYBL2, E2F2) are predicted to influence the

expression of 149 of 177 (84%) of M2 network genes

(Table 2). The TFs FoxM1 and B-Myb are known to coop-

erate during the G2 to M transition of the cell cycle and are

up-regulated in several cancers, including gliomas.19,45,80

Supporting the regulation of M2 network by FOXM1,
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MYBL2, and E2F2, we found that binding targets of FoxM1

detected by ChIP-seq analysis (coded by FOXM1), B-Myb

(coded by MYBL2) and E2F2 were also highly significantly

enriched among M2 module genes (FDR = 6.06 9 10�34,

FDR = 1.74 9 10�92 and FDR = 1.10 9 10�21, respec-

tively) (Supplementary Table S12). A considerable

proportion of ChIP-seq detected FoxM1, B-Myb, and E2F2

targets in the M2 module had been predicted to be posi-

tively regulated by these TFs in the MaRInA analysis

(Fig. 5A–C) (Supplementary Fig. S10). The large overlap

between the predictions of MaRInA approach and experi-

mentally detected target gene sets for the FoxM1 and B-

Figure 4. Significant MRs determined by MaRInA analysis for the IDH1mut astrocytoma-specific transcriptional signature (P-value < 0.01). Each

row of the plot corresponds to the MaRInA results obtained for the respective MR. The narrow heatmap column on the right illustrates the

predicted MR activity, with red indicating an increase of activity in AA samples (positive NES) and blue indicating a decrease (negative NES). The

x-axis represents the AA-specific gene expression signature, rank-ordered from the most down-regulated to most up-regulated gene in AA,

compared to LGA. The red and blue bar code lines correspond to the ARACNe-predicted target genes of a given MR. Positively regulated target

genes are shown in red and negatively regulated target genes are shown in blue. Module M2 genes are noted as black lines. Increased activity of

an MR is implied by the enrichment of its positive targets among the overexpressed genes in the AA signature and of its negative targets among

the underexpressed genes in the AA signature. Conversely, decreased MR activity is indicated by the enrichment of its positive targets among the

underexpressed genes in the AA signature and of its negative targets among the overexpressed genes in the AA signature. AA, anaplastic

astrocytoma, LGA, low-grade astrocytoma, NES, normalized enrichment score, TF, transcription factor.
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Table 2. Transcription factor regulons with strongest overlap with M2 module genes.

TF

# regulon

genes

# overlap

with M2 FET FDR

# unique

added genes

Cumulative

contribution

% M2 network

coverage

1. FOXM1 156 124 3.69 9 10–25 124 124 70

2. MYBL2 174 126 6.43 9 10–220 15 139 79

3. E2F2 167 121 8.49 9 10–210 10 149 84

4. ZNF367 141 115 5.12 9 10–209 9 158 89

5. E2F7 138 108 7.66 9 10–191 4 162 92

6. ZNF695 153 105 3.35 9 10–174 2 164 93

7. WDHD1 174 103 4.80 9 10–160 3 167 94

8. TCF19 134 85 3.01 9 10–133 1 168 95

9. BRCA1 82 53 2.16 9 10–81 1 169 95

10. MKX 86 26 2.89 9 10–28 0 169 95

11. NR3C2 135 22 1.30 9 10–17 0 169 95

12. TTF2 189 24 1.40 9 10–16 1 170 96

13. CUX1 51 10 3.27 9 10–09 0 170 96

14. THRA 122 12 2.35 9 10–07 0 170 96

15. ZNF257 20 4 3.75 9 10–04 0 170 96

16. NR1D1 27 4 1.26 9 10–03 0 170 96

17. NFATC3 40 4 5.75 9 10–03 0 170 96

18. ZNF35 56 4 1.96 9 10–02 0 170 96

The TFs are ranked by significance of overlap of regulon genes with the M2 module genes (FDR corrected P-value < 0.05). The cumulative contri-

bution of TF regulon genes to the M2 module. Taken together, the genes belonging to regulons of the MR cover 96% (170/177) of module M2

genes. The number of unique genes each MR contributes in addition to the higher ranking MRs is shown in the # unique added genes column.

Collectively the top 5 TF regulons include 92% (162/177) genes of the M2 module.

Figure 5. Concordance between the predicted and validated TF targets in the M2 module. (A–C) Pairwise comparison of positively regulated TF

target predictions by ARACNe-MaRInA algorithm and experimentally detected bindings in ChIP-seq analysis. (D) Overlap between up-regulated

FoxM1 and B-Myb targets predicted by ARACNe-MaRInA analysis and respective promoter bindings identified in a ChIP-sequencing experiments.
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Myb in M2, supports a role for these TFs and their func-

tional relationship to M2 in orchestrating aberrant cell

cycle gene expression (Fig. 5D).44,81 Compared to a list of

cell cycle genes and cell cycle phase-specific gene signatures,

the strongest enrichment of ChIP-seq detected targets of

FoxM1 and B-Myb was among the M2 genes (Supplemen-

tary Fig. S11), suggesting that M2 captures the downstream

targets of these MRs.

In silico prediction of compounds targeting the
M2 gene network

The above results highlight module M2 as a gene co-regu-

latory network capturing convergent cellular process active

in AA. To translate this insight to therapeutic discovery,

we sought to identify compounds with the ability to

repress M2 overexpression in AA as a potential means of

inhibiting the growth of AA and, by extension, delaying

transformation of LGA to AA.14 To this purpose, we used

publicly available data reporting changes in gene expres-

sion in human cancer cells following exposure to ~1300
bioactive compounds (CMap).14,82 We aimed to identify

compounds that are able to induce a cellular transcrip-

tional response (i.e., a gene expression profile) that is anti-

correlated to the coordinated transcriptional program M2

underpinning AA. To identify drugs predicted to down-

regulate module M2, we assessed the significance of over-

lap between M2 module genes and genes significantly

Table 3. Connectivity Map hits.

Compound FDR (FET) Cell line Concentration (µM) Treated Controls

1. Etoposide 1.26 9 10–80 MCF7 6.8 2 12

2. Resveratrol 7.38 9 10–61 MCF7 10.0 2 12

3. Monobenzone 3.66 9 10–60 MCF7 20.0 2 12

4. Thioridazine 8.15 9 10–52 PC3 10.0 3 13

5. Methotrexate 1.28 9 10–51 HL60 8.8 2 12

6. 15-delta prostaglandin J2 2.82 9 10–51 MCF7 10.0 5 30

7. Resveratrol 5.65 9 10–49 MCF7 17.6 2 12

8. Trifluridine 1.56 9 10–47 MCF7 13.6 2 11

9. Pyrvinium 4.65 9 10–47 MCF7 3.4 2 11

10. 0173570-0000 4.15 9 10–46 PC3 10.0 2 11

Top 10 compounds significantly down-regulating module M2 genes according to the CMap dataset determined by Fisher’s Exact Test (FET).

Resveratrol was represented among the top 10 twice.
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down-regulated by any given compound (Supplementary

Table S13). Taking this approach, we found that genes

down-regulated in response to the known anticancer drug

etoposide had the most significant overlap with M2 mod-

ule genes (FET, FDR = 4.17 9 10�83, one-tailed), while

those down-regulated by methotrexate had the fifth most

significant overlap with M2 (FET, FDR = 1.28 9 10�51,

one-tailed) (Table 3). Etoposide is a topoisomerase inhibi-

tor and its efficacy in improving survival in high-grade

glioma patients has been shown in a large scale meta-anal-

ysis,83 while adjuvant methotrexate was suggested to pro-

long event-free survival in pediatric high-grade glioma in

Phase II clinical trial.84 In addition to drugs with known

efficacy in glioma, several drugs not previously implicated

in the treatment of glioma were predicted to down-regu-

late M2 including the naturally occurring stilbenoid

resveratrol, which was the second most efficient drug pre-

dicted to down-regulate M2 (resveratrol 10 µmol/L, FET

FDR = 2.44 9 10�63, one-tailed; resveratrol 17.6 µmol/L,

FDR = 1.90 9 10�51, one-tailed; resveratrol 50 µmol/L,

FDR = 1.15 9 10�28, one-tailed). The effect of resveratrol

on M2 network expression provides a novel insight to the

mechanism underlying its reported antineoplastic

effects.85–87

To explore the mechanism by which resveratrol might

act upon M2 network, we investigated the direct PPI

between MRs (FoxM1, B-Myb, E2F2) and the rest of the

M2 gene products. We reasoned that proteins directly

binding to the MRs may have greater influence on their

activity than proteins with no known interaction with the

MRs. We identified 26 proteins that bind one or all three

of the MRs, among which several protein kinases

(Fig. 6A). We queried the Kinase Profiling Database (see

Methods) to identify kinases strongly inhibited by resver-

atrol in low concentrations. We identified MELK as the

only kinase, which activity was reduced over 50% by

exposure to resveratrol concentrations as low as 1 lmol/L

(Fig. 6B). Serine-threonine kinase MELK has been shown

to phosphorylate and activate FoxM1 in a PLK1-depen-

dent manner.88 We therefore propose MELK inhibition

and subsequent dephosphorylation of FoxM1 as one of

the potential mechanisms by which resveratrol could exert

its effect on module M2.

Resveratrol treatment of human primary
anaplastic astrocytoma cell cultures

To validate the in silico predictions of drugs targeting M2

network from the analysis of drug perturbation data

(above), we chose to study the of effect of resveratrol on

M2 module genes in human low-passage primary anaplas-

tic astrocytoma cell culture as resveratrol has not previously

been implicated in prevention of glioma progression. We

chose first to study resveratrol at 20 µmol/L dissolved in

DMSO to match the concentrations and solvent used in

the CMap database. We used low-passage IDH1 mutant

human tumor-derived TB98 cells and exposed them to

20 µmol/L resveratrol or DMSO or left the cells untreated

in triplicates for 24 h in vitro. Genome-wide transcrip-

tional changes in response to exposure were captured using

RNA-seq. Resveratrol treatment had a widespread effect on

gene expression at 20 µmol/L concentration with 10,622

protein coding genes being significantly (FDR < 0.05) dif-

ferentially expressed (Supplementary Table S14). In agree-

ment with the CMap data, the genes showing more robust

down-regulation (FDR < 0.01, log2FC < �1) in resvera-

trol-treated cells were enriched for module M2 genes (FET

FDR = 1.12 9 10�41, GSEA P-value < 10�5) (Fig. 7A–C).
This analysis confirmed that M2 genes are substantially

and significantly down-regulated as a result of resveratrol

exposure. However, the concentration used in this experi-

ment (20 µmol/L) is not achievable in human subjects

due it being rapidly metabolised by the liver.89 In con-

trast, resveratrol concentrations of 2 nmol/L and

10 nmol/L have been shown to be achievable in human

cerebrospinal fluid (CSF) by oral dosing.90 We therefore

explored the transcriptional signature of TB98 cells fol-

lowing exposure to 2 nmol/L and 10 nmol/L resveratrol.

Analysis of the change in expression of M2 using GSEA

revealed that M2 remains highly significantly enriched (P-

value < 10�5) for genes down-regulated at both 2 nmol/L

and 10 nmol/L resveratrol concentrations (Fig. 7A–B)
(Supplementary Fig. S12A,B; Supplementary Tables S15,

S16). In particular, genes with expression peaks during G2

to M phase of the cell cycle, such as TOP2A and PLK1

were consistently down-regulated after resveratrol expo-

sure, including at nanomolar concentrations. Consistent

with resveratrol acting on G2 to M progression, using the

hallmark gene set collection from the Molecular Signature

Database,91 we further confirmed that genes encoding

G2M progression, E2F targets and MYC targets were con-

sistently and significantly (FDR < 0.1) enriched among

the genes down-regulated after 24 h exposure with

20 µmol/L, 10 nmol/L and 2 nmol/L resveratrol (Table 4;

Supplementary Table S17).

These above results confirmed that resveratrol is cap-

able of inducing a transcriptional response in genes

related to cell cycle progression in primary anaplastic

astrocytoma cell culture, including at nanomolar concen-

trations. We therefore investigated the phenotypic effect

of resveratrol exposure on cell growth in vitro in two

low-passage IDH1mut AA-derived cell lines (TB98, TB58)

and IDH1wt AA cell line (TB62). After 8 days, the wells

treated with 20 µmol/L resveratrol had significantly (P-

value < 0.05) reduced number of cells than the DMSO-

treated wells indicated by colorimetric cell proliferation
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Figure 7. Down-regulation of module M2 genes by resveratrol. (A) Volcano plots showing the genes changing in response to resveratrol

treatment in different concentrations (n = 3, TB98 cells). Genes with P-value < 0.05 (10 nmol/L and 2 nmol/L treatment) or changed more than

twofold (20 µmol/L treatment) are in black, module M2 genes are marked in red. Top 10 down-regulated module M2 genes are labelled (P-value

ranked). M2 genes names among the top 10 down-regulated genes in at least two assays are written in bold. (B) Gene Set Enrichment Analysis

(GSEA) plots showing enrichment of module M2 genes among differentially expressed genes between DMSO and resveratrol treatment. Genes

were ranked based on log10(fold change) 9 P-value from the most up-regulated to most down-regulated genes. Positive normalized enrichment

score indicates enrichment among the down-regulated genes. (C) M2 network depicted as consensus TF – target interactions for MRs FOXM1,

MYBL2, and E2F2. Differential expression in response to 20 µmol/L resveratrol treatment is shown in yellow to red (absolute log2 fold change

value of gene expression between resveratrol and DMSO-treated primary astrocytoma-derived cells). Targets of FOXM1 and MYBL2 were strongly

down-regulated after 24 h treatment with 20 µmol/L resveratrol (TB98 cells). Network edges represent an interaction between MR and its target

as inferred by MaRInA detected by ChIP-seq (intersect). Edge colors are assigned to individual MR–target interactions. All TFs in the network are

noted as triangles. The size of the node represents the number of MR–target interactions for a given gene and the border color symbolizes up- or

down-regulation in response to resveratrol.
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assay (Fig. 8A). The experiment was replicated in TB98-

derived cells with an added harvesting time-point of

4 days (Fig. 8B). Treatment with 20 µmol/L resveratrol

consistently and significantly (P-value < 0.0001,

independent two sample t test) reduced the cell numbers

in the TB98 cells. Similarly, we observed a significant (P-

value < 0.05, independent two sample t test) reduction in

cell numbers after exposing TB98 cells to 2 nmol/L and

Figure 8. Resveratrol’s effect on cell numbers. (A–C) Optic density change (ΔOD = ODday8 – ODday0) after treatment with 20 µmol/L resveratrol

in three different cell lines was significantly greater in comparison to the control (DMSO), which indicates reduced number of cells (n = 3). (D)

Exposure to 20 µmol/L resveratrol significantly reduced the cell numbers (reflected by OD measurement) after 4 and 8 days in TB98 cells (n = 3)

in comparison to DMSO. (E) Cells treated with 2 nmol/L and 10 nmol/L resveratrol over a period of 60 days were significantly fewer than DMSO-

treated cells (n = 3). P-value < 0.05*; P-value < 0.01**; P-value < 0.001***, P-value < 0.0001**** (independent two sample Student’s t test).
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10 nmol/L resveratrol for 60 days, compared to DMSO

control (Fig. 8C).

Discussion

Progression of relatively slowly growing grade II diffuse

astrocytomas to an ultimately lethal higher grade glio-

mas is, at large, inevitable.92 While aggressive

chemotherapy followed by radiotherapy may improve

survival of low-grade glioma patients,93,94 a challenge

remains to identify treatment strategies that improve

survival of patients with low-grade gliomas without

impacting quality of life or neurocognitive function.

Despite recent success in single-target cancer therapies

focusing on unique “driver” genetic aberrations, this

has not translated into clinical benefit in gliomas.95 The

research presented here was driven by the view that

tumorigenesis and anaplastic transformation of gliomas

is likely to be determined by perturbed biological pro-

cesses that converge on a common, signal-independent

proliferation characteristic that could be targeted for

therapy discovery.

In this study, we took advantage of publicly available

glioma data from TCGA database. In order to reduce

inter-patient variability, a paired study design, that is,

analysis of tumor samples from the same patient before

and after progression would be desirable. However, cur-

rently available paired studies19,96 lack a sufficient sample

size to perform differential co-expression analysis. Using

the TCGA dataset, we uncovered two modules of differ-

entially co-expressed genes between low and high-grade

IDH1-mutated and 1p/19q euploid astrocytomas (M1 and

M2). Functionally, the modules are enriched for neuronal

and cell cycle genes, respectively. M2 had higher

intramodular gene correlation in AA compared to LGA

and the average expression of M2 module was signifi-

cantly increased in samples with loss of chromosome 10q

- an event previously identified as prognostically unfavor-

able in 1p/19q euploid low-grade gliomas.64 In addition

to loss of TSG on 10q such as PTEN, M2 expression was

higher in individuals with oncogene PDGFRA locus

amplification and deletion of TSG CIC.

For module M2, we also observed an overrepresenta-

tion of cancer predisposition genes including for genes

functionally related to DNA repair and chromosomal seg-

regation, which are central to tumor development. In

contrast to M2, M1 had stronger co-expression in LGA

compared to AA, was not enriched for cancer predisposi-

tion genes and was functionally enriched for neuronal

processes. With grade II astrocytomas containing less

tumor cells, it is plausible that the emergence of the M1

network differential co-expression signature is due to the

samples containing variable amounts of normal brain par-

enchyma and lack of association between M1 expression

and genomic cancer events as well as conservation of its

co-expression in neural tissue further supports this line of

reasoning. Collectively, these integrative analyses point to

an association between module M2 and astrocytoma pro-

gression. We therefore posited that targeting expression

could represent a novel therapeutic approach to delaying

glioma progression.

Using a reverse engineering approach, we first

attempted to identify MRs of M2 as candidate drug tar-

gets. Utilizing gene–gene and DNA–protein interaction

data, we predicted E2F2, MYBL2, and FOXM1 as candi-

date MRs of M2 expression. Consistent with this, E2F-

family and Myb-like TFBS were overrepresented in mod-

ule M2 gene promoters, but not of FoxM1 most likely

because FoxM1 acts on cell cycle regulation via B-Myb-

MuVB complex rather than its canonical binding

motif.43,45 E2F2 is one of the E2F-family TFs responsible

for the regulation of early cell cycle genes.97 The E2F-fam-

ily TFs govern the transition from G1 to S phase of the

cell cycle, and are strongly inhibited by Retinoblastoma

Protein (coded by the RB1), which was altered in ~30%
in this IDH1-mutant and 1p/19q euploid astrocytoma

cohort. Additionally, E2F2, MYBL2, and FOXM1 are con-

sistently up-regulated in other TP53-mutated tumors, and

FoxM1- and E2F2-mediated cell division cycle has been

previously linked to progression of IDH1-mutated glio-

mas and atypical meningiomas.19,98,99 While collectively

these systems-level analyses highlight M2 as a gene-regula-

tory network governed by FoxM1, B-Myb, and E2F2 that

captures the context relevant targets of these TFs better

than existing gene signatures, neither E2F2, B-Myb or

FoxM1 represents easily “druggable” targets. We therefore

took an alternative approach to “drugging” the M2 net-

work as a whole using a strategy that leverages gene

expression changes that occur in neoplastic cells in

response to drug exposures.14,82 Using module M2 as a

“multitarget” gene network, we computationally screened

for drugs that induce a cellular transcriptional response

that shifts M2 expression from its profile in anaplastic

astrocytoma in a low-grade (i.e., down-regulated) direc-

tion. Taking this approach, we identified the health food

supplement resveratrol among the known anticancer

drugs etoposide and methotrexate as candidate

Table 4. Gene sets significantly (FDR < 0.1) enriched among genes

down-regulated by resveratrol in at least two experiments.

Hallmark Gene Set 20 µmol/L 10 nmol/L 2 nmol/L

G2M checkpoint U U U

E2F targets U U U

MYC targets U U U

Mitotic spindle U U
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antiproliferative agents acting via a transcriptional effect

on M2 network genes.

Resveratrol (3,4’,5-trihydroxy-trans-stilbene) is a natu-

ral polyphenol synthesized by seed producing plants such

as grapevines, in response to stress or fungal attack, and

is currently marketed as a health food supplement.100

Among the processes thought to be targeted by resveratrol

are cell cycle progression, apoptosis, and angiogenesis.101

The anticancer properties of resveratrol have been shown

in the clinical setting – it reduces cell proliferation in col-

orectal cancer patients and increases apoptosis in hepatic

metastasis of colorectal cancer.102,103 However, despite

peak plasma concentrations of resveratrol ranging from

117.0 ng/mL (0.51 µmol/L) to 538.8 ng/mL (2.36 µmol/

L) upon administration of 1 g or 5 g of resveratrol,

respectively,104 and evidence from animal105,106 and

human90 studies that resveratrol can penetrate the blood–
brain barrier, the low nanomolar concentrations of

resveratrol in human CSF in individuals taking up to

2 9 1 g of resveratrol daily90 have to date precluded its

consideration as an antineoplastic agent for low-grade

gliomas.

Advancing on these studies, here we found that resver-

atrol had an effect on transcription of M2-related cell

cycle division genes even at nanomolar concentrations

(2 nmol/L and 10 nmol/L), providing a novel insight in

the antiproliferative mechanism of resveratrol unrelated

to its known binding partners at µM concentrations.

Additionally, we observed that FoxM1 and B-Myb are

strongly down-regulated by resveratrol, suggesting that

the late cell cycle genes are most affected, and that genes

which peak in expression during G2 to M phase of the

cell cycle, such as TOP2A and PLK1, are consistently

down-regulated after resveratrol treatment, including at

nanomolar concentrations. Further support for a resvera-

trol effect on the second phase of the cell cycle can also

be found from previous studies showing the attenuation

of the G2 to M progression in response to resveratrol

in vitro.107–109 The results presented here suggest there-

fore that resveratrol down-regulates the M2 gene-regula-

tory network governing G2 to M progression. Resveratrol

is known to bind a wide spectrum of protein targets,

many of which play a key role in cell cycle regulation,

such as DNA polymerase a/b and mitogen-activated pro-

tein kinases ERK1 and JNK1. However, the inhibition of

given targets occurs in the concentrations exceeding what

is achievable in humans.110,111 Currently, the highest

known affinity of resveratrol is toward quinone reductase

NQO2 (Kd = 35 nmol/L). 110,112 Inhibition of NQO2 has

been shown to attenuate NF-jB activity, which promotes

tumor cell proliferation.113,114 Down-regulation of mod-

ule M2 genes and the subsequent decrease in cell division

could therefore be mediated by reduced NF-jB signaling.

We also propose a potentially novel mechanism, by which

the cellular effects of resveratrol may be mediated via

inhibiting a serine-threonine kinase MELK, which is

responsible for activation of M2 MR FoxM1.88 Further

studies investigating MELK inhibition and concomitant

reduction in FoxM1 phosphorylation upon treatment

with nanomolar concentrations of resveratrol are there-

fore warranted.

Besides confirming the feasibility and effectiveness of

network-based multitarget drug discovery for delaying

time to progression for low-grade gliomas, the well-

established safety and high tolerability of resveratrol

make resveratrol itself an ideal candidate for directly

repurposing to patients with inoperable low-grade glio-

mas. While resveratrol’s potential antineoplastic effect is

likely not unique to IDH1-mutated 1p/19q euploid astro-

cytomas, this drug would be of particular interest in

these tumors due to their less aggressive clinical course

compared to IDH1wt astrocytomas, and hence the unde-

sirable use strong chemotherapeutic drugs in this clinical

context.
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