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An information theoretic approach 
to link prediction in multiplex 
networks
Seyed Hossein Jafari*, Amir Mahdi Abdolhosseini‑Qomi, Masoud Asadpour, 
Maseud Rahgozar & Naser Yazdani

The entities of real‑world networks are connected via different types of connections (i.e., layers). 
The task of link prediction in multiplex networks is about finding missing connections based on both 
intra‑layer and inter‑layer correlations. Our observations confirm that in a wide range of real‑world 
multiplex networks, from social to biological and technological, a positive correlation exists between 
connection probability in one layer and similarity in other layers. Accordingly, a similarity‑based 
automatic general‑purpose multiplex link prediction method—SimBins—is devised that quantifies 
the amount of connection uncertainty based on observed inter‑layer correlations in a multiplex 
network. Moreover, SimBins enhances the prediction quality in the target layer by incorporating the 
effect of link overlap across layers. Applying SimBins to various datasets from diverse domains, our 
findings indicate that SimBins outperforms the compared methods (both baseline and state‑of‑the‑art 
methods) in most instances when predicting links. Furthermore, it is discussed that SimBins imposes 
minor computational overhead to the base similarity measures making it a potentially fast method, 
suitable for large‑scale multiplex networks.

Link prediction has been an area of interest in the research of complex networks for over two  decades1, studying 
the relationships between entities (nodes) in data represented as graphs. The main goal is to reveal the underlying 
truth behind emerging or missing connections between node pairs of a network. Link prediction methods have 
a wide range of applications, from discovery of latent and spurious interactions in biological networks (which 
is basically quite costly if performed in traditional methods)2,3 to recommender  systems4,5 and better routing in 
wireless mobile  networks6. Numerous perspectives have been adopted to attack the problem of link prediction.

According to similarity-based methods, similarity between nodes determines their likelihood of linkage. This 
approach is a result of assuming that two nodes are similar if they share many common  features7. A whole lot of 
nodes’ features stay hidden (or are kept hidden intentionally) in real networks. Further, an interesting question 
is, despite the fact that a considerable amount of information is hidden in a network, what fraction of the truth 
can still be extracted by merely including structural features? That is one of the main drives to utilize structural 
similarity indices for link prediction. Several different classifications of similarity measures have been proposed, 
among all, classifying based on locality of indices is of great importance. To name a few, Common Neighbors 
(CN)1, Preferential Attachment (PA)8, Adamic-Adar (AA)9 and Resource Allocation (RA)10 are popular indices 
focusing mostly on nodes’ structural features, each with unique characteristics. Even though these indexes are 
simple, they are popular because of their low computational cost and reasonable prediction performance. On 
the other hand, global indices take features of the whole network structure into account, tolerating higher cost 
of computation, usually in favor of more accurate information. Take length of paths between pairs of nodes for 
instance, which the well-known  Katz11 index operates on. Average Commute Time (ACT)1 and  PageRank12 are 
some other notable global indices. In between lie the quasi-local methods which are able to combine properties 
from both local and global indices, meaning they include global information, but their computational complexity 
is similar to that of local methods, such as the Local Path (LP)13 index and Local Random Walk (LRW)14. For 
more detailed information on these similarity indices (also described as unsupervised methods in the  literature15), 
readers are advised to refer  to16.

Some researchers have tackled the link prediction problem using the ideas of information theory. These works 
are based on the fact that similarity of node pairs can be written in term of the uncertainty of their connectivity. 
At the beginning, the uncertainty of connectivity can be estimated based on priors. Later, all structures around 
the unconnected node pairs can be considered as evidences to reduce the level of uncertainty in connectedness 
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of node pairs.  In17 mutual information (MI) of common neighbors is incorporated to estimate the connection 
likelihood of a node pair. In addition, Path Entropy (PE)18 similarity index takes quantity and length of paths as 
well as theirentropy into account. This results in a better assessment of connection likelihood for node pairs.  In19, 
authors proposed an information theoretic method to benefit from several structural features at the same time. 
By using information theory, they score each structural feature separately and then combine them by weighted 
summation. Then they apply the idea on common neighbors and connectivity of neighbor sets as two structural 
features. Although, most of literature about link prediction is devoted to unweighted networks but a few works 
have targeted the weighted networks.  In20, authors use a weighted mutual information to predict weighted links 
which benefits from both structural properties and link weights. The results are promising when compared to 
both weighted and unweighted methods.

In a coarse-grained sense, learning-based link prediction models reside in a different class than aforemen-
tioned similarity-based ones. They learn a group of parameters by processing input graph and use certain models, 
such as feature-based prediction  (HPLP21) and latent feature extraction (Matrix  Factorization15). Representation 
learning has helped automating the entire process of link prediction, especially feature selection;  node2vec22 and 
 DGI23, for instance. Recently, an interesting multiplex embedding model has also been proposed called  DMGI24 
which is basically an extension of DGI. Learning-based methods often yield better results than their similarity-
based counterparts, but that does not mean these models are obsolete. On the one hand, similarity-based models 
provide a better understanding of the underlying characteristics of networks. Take common neighbors (CN) for 
example, which indicates the high clustering property of  networks18 or Adamic-Adar index which is based on the 
size of common nodes’  neighborhoods9. On the other hand, similarity-based methods often take less computation 
effort, making them suitable for online prediction without costly training procedures or feature selection  stages25.

Related works
Complex networks research was focused on single-layer networks (simplex or mono-plex) for many years. The 
study of multi-layer (multiplex or heterogeneous) networks has gained the attention of researchers in the past 
few years. Refs.26,27 provide noteworthy reviews on history of multi-layer networks. The attempts to predict 
multi-layer links are not abundant and some are discussed here.

Hidden geometric correlation in real multiplex  networks28 is an interesting work which depicts how multiplex 
networks are not just random combinations of single-layer networks. They employ these geometric correlations 
for trans-layer link prediction i.e., incorporating observations of other layers for predicting connections in a 
specific layer. This work is followed by a study that argues the requirement of a link persistence factor to explain 
high edge overlap in real multiplex  systems29. In heterogeneous networks (i.e., networks with different types 
of nodes and relations), several similarity-search approaches have been proposed.  PathSim30 is a meta path-
based similarity measure that can find similar peers in heterogeneous networks (e.g. authors in similar fields 
in a bibliographic network). The intuition behind PathSim is that two peer objects are similar if they are not 
only strongly connected, but also share comparable visibility (number of path instances from a node to itself). 
 HeteSim31 is another method of the same kind which can measure similarity of objects of different type, inspired 
by the intuition that two objects are related if they are referenced by related objects. Their drawback, however, is 
their dependence on connectivity degrees of node-pairs (neglecting further information provided by meta paths 
themselves) and their necessity of using one and usually symmetric meta-path.  In32, a mutual information model 
has been employed to tackle these problems. Most meta path-based models suffer from lack of an automated 
meta-path selection mechanism, in other words, pre-defined meta paths (mostly specific to the dataset under 
study) are utilized for prediction. In the previously discussed methods, including longer meta paths required 
much more computation to analyze them and determine their effects.

Link prediction for multiplex networks has been addressed by researchers using features and machine learn-
ing. A study of a multiplex online social network, demonstrates the importance of multiplex links (link overlap) 
in significantly higher interaction of users based on available side  information33. The authors consider Jaccard 
similarity of extended neighborhood of nodes in the multiplex network as a feature for training a classifier for link 
prediction task. A similar work on the same dataset benefits from node-based and meta-path-based  features34. 
A specialized type of these meta-paths is tailored to be originated from and ending at communities. The effec-
tiveness of the features has been examined by a binary classification for link predication task. Recently, other 
interlayer similarity features, based on degree, betweenness, clustering coefficient and similarity of neighbors 
has been  used35.

Furthermore, the issue of link prediction has been investigated in a scientific collaboration multiplex 
 network36. The authors have proposed a supervised rank aggregation paradigm to benefit from the node pairs 
ranking information which is available in other layers of the network. Another study uses rank aggregation 
method on a time-varying multiplex  network37.

Yao et al.  in38 discuss the issue of layer relevance and its effect on link prediction task. The authors use global 
link overlap rate (GOR) and Pearson correlation coefficient (PCC) of node features as measures of layer relevance 
and later they use it to combine the basic similarity measures of each layer. The results support that the more 
layers are relevant, the better performance of link prediction is attained. In this work, well-known single-layer 
similarity measures like CN, RA, and LPI are used. We compare our work with their best performing methods. 
They show that LPI as a quasi-local metric is the best choice of base similarity measure. For interlayer relevance 
both GOR and PCC perform well and we refer to them as YaoGL and YaoPL, respectively. Samei et al. have stud-
ied the effect of other layers on the target layer using global link overlap  rate39. Two features based on hyperbolic 
distance are used, WCN and HP. WCN uses embedded network in geometric space and calculates hyperbolic 
distance of nodes to weigh the importance of common neighbors. HP considers the hyperbolic distance of nodes 
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as a dissimilarity measure. Similar to Yao et al., they use GOR to aggregate the score of the two layers. Our results 
are also compared with this work.

Recently, link prediction problem is studied with the focus of community structure of the  layers40. This 
study reveals the importance of similarity of community structure of different layers in link prediction.  In41, it is 
shown that similarity of eigenvectors of the layers’ adjacency matrices is an important source of information for 
multiplex link prediction. Authors propose reconstruction of one layer with eigenvectors of another layer that 
proves to be very helpful even if a large portion of links is missing in the target layer.

A systematic approach is extending the basic similarity measures to multiplex networks. However, when it 
comes to multiplex networks, it’s hard to extend the notion of  similarity42. In a recent work, MAA is presented 
which extends AA similarity measure to encode diverse forms of  interactions43. It is suggested that this approach 
can improve the results of link prediction in certain circumstances compared to the single-layer counterpart.

In this paper, an information-theoretic model is devised that employs other layers’ structural information 
for better link prediction in some arbitrary (target) layer of the network. Through the incorporation of various 
similarity indices (RA, CN, ACT and LPI) as the base proximity measures, we demonstrate that the proposed 
method -SimBins- can be used to predict multiplex links without degrading the time complexity significantly. 
Finally, it is shown that SimBins improves prediction performance on several different real-world social, biologi-
cal and technological multiplex networks.

Methods
Link prediction in multiplex networks. Consider a multiplex network 
G
(

V ,E[1], . . . ,E[M]; E[α] ⊆ V × V ∀ α ∈ {1, 2, . . . ,M}
)

[1] where M , V  and Eα are the number of layers, the 
set of all nodes and existing edges in layer α of the multiplex network, respectively. Let U = V × V  be the set of 
all possible node pairs. Current research aims to study undirected multiplex networks; therefore, it is assumed 
that G(V ,Eα) for any arbitrary layer α is an undirected simple graph. The link prediction in multiplex networks is 
concerned with the issue of predicting missing links in an arbitrary target layer T ∈ {1, 2, . . . ,M} with the help of 
other auxiliary layers. To be able to evaluate the proposed method, ET i.e. the edges in target layer is divided into 
a training set ETtrain (90% of ET ) and a test set ETtest (10% of ET ) so that ETtrain ∪ ETtest = ET and ETtrain ∩ ETtest = ∅ . 
Only the information provided by the training set is used in the prediction task and eventually, ETtest is compared 
to the output of the proposed algorithm (link-existence likelihood scores for a subset of U − ETtrain , including 
ETtest ), determining the performance of the method. To be more specific, link likelihood scores are calculated for 
node pairs of ETtest and a random subset ZT

test of U − ET where |ZT
test| = 2|ETtest| for which all of them are discon-

nected in ETtrain . To put it in a few words; only a subset of non-observed links in training set are scored for the 
sake of complexity which will be discussed in detail later. Notice coefficient 2, a ratio incorporated to implement 
the link imbalance assumption in real networks (that are mostly sparse by  nature44).

In the present study, the issue under scrutiny is how employing one layer of the multiplex network such as 
A , facilitates the task of link prediction in another layer T where T ,A ∈ {1, . . . ,M}; T �= Ai.e., a duplex subset 
of the multiplex network. In ‘Discussion’ section, it is argued that how one can extend the proposed method to 
utilize the structural information of multiple layers for link prediction.

Evaluation methods. In their ideal form, link prediction algorithms tend to rank non-observed links in 
a network so that all latent links are situated on top of the ranking and all other non-existent links underneath. 
This ranking is based on a link-likelihood score that is dedicated to node pairs corresponding to non-observed 
links in the network. For imperfect rankings a metric is required to assess the quality of the ranking. Here, we 
describe two evaluation metrics used in this research.

AUC : Using of Area Under Receiver Operating Characteristic Curve (AUC or AUROC)45 is prominent in 
the literature for evaluating link prediction  methods16. AUC indicates the probability that a randomly chosen 
missing link is scored higher than a randomly chosen non-existent link, denoted as:

where by performing n times of independent comparisons ( n = 10000 in our experiments), a randomly chosen 
latent link has a higher score compared to a randomly chosen non-existent link in n′ times and are equally scored 
in n′′ times. AUC will be 1 if the node pairs are flawlessly ranked and 0.5 if the scores follow an identical and 
independent distribution i.e., the higher the AUC, the better the scoring scheme is.

Precision: Given the ranked (by score) list of the non-observed links, the precision is defined as the ratio of 
the missing links to the number of selected items from the top of the list. That is to say, if we take the top-L links 
as the predicted ones, among which Lr links are known missing links; Precision is defined as:

Here, we consider L =
∣

∣ETtest
∣

∣ . Clearly, higher precision indicates higher prediction accuracy.

Data. Various real-world multiplex network datasets from different domains are selected for investigation; 
from social (Physicians, NTN and CS-Aarhus) to technological (Air/Train and London Transport) and biologi-
cal systems (C. Elegans, Drosophila and Human Brain). They also have diverse characteristics that are briefly 
introduced in Table 1.

(1)AUC =
n′ + 0.5n′′

n

(2)Precision =
Lr

L
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Air/Train (AT). This dataset consists of Indian airports network and train stations network and their geo-
graphical  distances46. To relate the train stations to the geographically nearby airports,  in28 they have aggregated 
all train stations within 50 km from an airport into a super-node. Then, the super-nodes are considered as 
connected if they share a common train station, or if one train station of one super-node is directly connected 
to a station of the other super-node. Air is the network of airports and Train is the network of aggregated train 
station super-nodes.

C. Elegans. The network of neurons of the nematode Caenorhabditis Elegans that are connected through 
miscellaneous synaptic connection types: Electric, Chemical Monadic and Chemical Polyadic47.

Drosophila Melanogaster (DM). Layers of this network represent different types of protein–protein interac-
tions belonged to the fly Drosophila Melanogaster, namely suppressive genetic interaction and additive genetic 
interaction. More details can be found  in48,49.

Human Brain (HB). The human brain multiplex network is taken  from28,50. It consists of a structural or 
anatomical layer and a functional layer that connect 90 different regions of the human brain (nodes) to each 
other. The structural network is gathered by dMRI and the functional network by BOLD  fMRI50. In this multi-
plex network, the structural connections are obtained by setting a threshold on connection probability of brain 
regions (which is proportional to density of axonal fibers in between)28. The functional interactions are derived 
in a similar manner, by putting a threshold on the connection probability of regions which is proportional to a 
correlation coefficient measured for activity of brain region  pairs28.

Physicians. Taken  from51, the Physicians multiplex dataset contains 3 layers which relate physicians in four 
US towns by different types of relationships; to be specific, advice, discuss and friendship connections.

Noordin Top Terrorist Network (NTN). Taken  from52, this multiplex dataset is made of information among 
78 individuals i.e. Indonesian terrorists that depicts their relationships with respect to exchanged communica-
tions, financial businesses, common operations and mutual trust.

London Transport. For the purpose of studying navigability performance under network failures, De 
Domenico et al.53 gathered a dataset for public transport of London consisting of 3 different layers; the tube, the 
overground, and the docklands light railway (DLR). Nodes are stations which are linked to each other if a real 
connection exists between them in the corresponding layer.

CS-Aarhus. This dataset is collected  from54 which is conducted at the Department of Computer Science 
at Aarhus University in Denmark among the employees. The network consists of 5 different interactions 

Table 1.  Basic characteristics of multiplex networks used in experiments.

Multiplex name No. of layers No. of nodes Node multiplexity Layer name No. of active nodes No. of links

Air/train 2 69 1
Air 69 180

Train 69 322

C. Elegans 3 280 0.98

Electric 253 515

Chem-mono 260 888

Chem-poly 278 1703

Drosophila 2 839 0.89
Suppress 838 1858

Additive 755 1424

Brain 2 90 0.85
Structure 85 230

Function 80 219

Physicians 3 246 0.93

Advice 215 449

Discuss 231 498

Friend 228 423

NTN 4 78 0.94

Communication 74 200

Financial 13 15

Operational 68 437

Trust 70 259

London 3 368 0.13

Tube 271 312

Overground 83 83

DLR 45 46

CS-Aarhus 5 61 0.96

Lunch 60 193

Facebook 32 124

Co-author 25 21

Leisure 47 88

Work 60 194

SacchPomb 5 4092 0.28

Direct 936 1332

Colocalization 346 370

Physical 2400 6973

Synthetic 897 2540

Association 181 218
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corresponding to current work relationships, repeated leisure activities, regularly eating lunch together, co-
authorship of publications and friendship on Facebook.

SacchPomb. The SacchPomb dataset is taken  from28,48 and represents the multiplex genetic and protein inter-
action network of the Saccharomyces Pombe (fission yeast). The multiplex consists of 5 layers corresponding to 
5 different types of interactions. Layer 1 corresponds to direct interaction, Layer 2 to colocalization, Layer 3 
to physical association, Layer 4 to synthetic genetic interaction, and Layer 5 to association. More details on 
the data can be found  in48.

Node multiplexity in Table 1 shows the fraction of nodes in a multiplex network that are active (have at least 
one link attached) in more than one layer.

Information theory background. This sub-section is concerned with the issue of introducing necessary 
concepts of information theory, as it lays out the main mathematical background of the proposed method. What 
follows is the definition of self-information and mutual information.

Given a random variable X , the self-information or surprisal of occurrence of event x ∈ X with probability 
p(x) is defined  as55:

The self-information implies how much uncertainty or surprise there is in the occurrence of an event; the 
less probable the outcome is, the more the surprise it conveys. The base of the logarithmic functions is assumed 
to be 2 throughout the paper, as they measure uncertainty in bits of information.

Let’s proceed with the definition of mutual information between two random variables X and Y  with joint 
probability mass function p(x, y) and marginal probability mass functions p(x) and p(y) , respectively. The mutual 
information I(X;Y)  is56:

Consequently, the mutual information of two events x ∈ X and y ∈ Y  can be denoted  as17:

In fact, the mutual information indicates how much two variables are dependent to each other i.e., for a 
variable X , how much uncertainty is reduced due to observation of another variable Y  . The mutual information 
would be zero if and only if two variables are independent. In the following section, we will describe how these 
two measures play their roles in designation of our method.

Base similarity measures. There is extensive literature on similarity measures that determine how simi-
lar two nodes are in a single-layer network; as it was partially presented on introduction of this paper. In our 
proposed method, a subset of these similarity indices (both local and global) is used as base measures that the 
multiplex link prediction model is built on top of them.

CN1: Maybe, the most well-known and typical way to measure similarity of two nodes x and y is to count the 
number of their common neighbors:

where Ŵ(x) and Ŵ(y) are the set of neighbors of x and y , respectively.
RA10: In Resource Allocation, degree of a node is considered as a resource that is allocated to the neighbors 

of that node negatively proportional to its degree:

ACT 1: Random-walk based methods account for the steps required for reaching one node starting from some 
arbitrary node. Average Commute Time measures the average number of steps required for a random walker 
to reach node y starting from node x . For the sake of computational complexity, pseudo-inverse of Laplacian 
matrix is utilized to calculate the commute time:

(3)I(X = x) = − log p(x)

(4)

I(X;Y) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑

x,y

p(x, y) log
p(x|y)

p(x)

(5)
I(X = x;Y = y) = log

p(x|y)

p(x)
= − log p(x|y)− (− log p(x))

= I(x)− I(x|y)

(6)SCNxy = |Ŵ(x) ∩ Ŵ(y)|

(7)SRAxy =
∑

z∈Ŵ(x)∩Ŵ(y)

|Ŵ(z)|−1

(8)SACTxy =
1

l+xx + l+yy − 2l+xy
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where l+xy is the [x, y] entry in pseudo-inverse Laplacian matrix i.e., l+xy = [L+]xy . The pseudo-inverse of Lapla-
cian is calculated  as57:

where e is a column vector of 1’s ( e′ is its transpose) and n is the total number of the nodes.
LPI10,13: To provide a good tradeoff of accuracy and computational complexity, the Local Path Index (LPI) 

is introduced as an index that takes consideration of local paths, with wider horizon than CN. It is defined as:

where ε is a free parameter. Clearly, this measure degenerates to CN when ε = 0 . And if x and y are not directly 
connected, (A3)xy is equal to the number of different paths with length 3 connecting x and y . This index can be 
extended for higher order paths and considering paths of infinite length this similarity measure converges to 
Katz index. The LP index performs remarkably better than the neighborhood-based indices, such as RA and CN. 
Throughout the current work, ε is set to 10−4 wherever LPI is used. This is the same for the compared methods. 
 In16, it is stated that the value of can be directly set as a very small number instead of finding its optimum, which 
may take a long time. In particular, the essential advantage of using a second-order neighborhood is to improve 
the distinguishability of similarity scores.

For more details on base similarity measures, readers are encouraged to see surveys on link prediction 
 algorithms16,58.

Results
Does the structure of one layer of a multiplex, provide any information on the formation of links in some other 
layer of the same network? Take a social multiplex network, for example, in which one layer states people’s work 
relationships and the other layer represents their friendship. Intuitively it can be conjectured that in a real mul-
tiplex like our sample social network, structural changes in one layer can affect the other; if two people become 
colleagues, the conditions of them being friends will probably not be the same as it was before. More specifically, 
is there any correlation among the structure of layers of a multiplex network? This question has been positively 
answered in previous studies with different approaches.  In28 a null model is created for a multiplex network, by 
randomly reshuffling inter-layer node-to-node mappings. Subsequently, it is shown that geometric inter-layer 
correlations are destroyed in the null model compared to the original network.

Various structural features can be analyzed to uncover correlations between layers. Direct links, common 
neighbors,  paths1 and  eigenvectors59 are such examples. In the following sections we will develop a set of tools 
that assist in collection of evidences about inter-layer correlations in multiplex networks, as basic intuitions 
supporting the proposed link prediction framework.

Partitioning Node Pairs (Binning). Consider two layers T ,A ∈ {1, 2, . . . ,M};T �= A of a multiplex net-
work with Mlayers and V  nodes. T is the target layer, so it is intended to predict likelihood of presence of 
links in that layer, and A is the auxiliary layer assisting the prediction task. A subset U ′ of U = V × V  is con-
stituted so that U ′ = ETtrain ∪ ZT

train where ZT
train is a random sample of non-observed links from U − ET and 

|ZT
train| = 2|ETtrain| . The size of ZT

train is twice as large as ETtrain , so that U ′ would be a suitable representative of the 
target layer due to the link imbalance phenomenon in real complex systems. Two different partitions of U ′ is 
formed (using equal-depth binning, described in the following paragraph):

 (i) w.r.t the target layer T:

   {ST1 , S
T
2 , . . . , S

T
bT
} where 

bT
⋃

i=1
STi = U ′ and ∀i, j ∈ {1, 2, . . . , bT }, i �= j ⇒ STi ∩ STj = ∅.

 (ii) With respect to the auxiliary layer A:

{SA1 , S
A
2 , . . . , S

A
bA
} where 

bA
⋃

j=1
SAj = U ′ and ∀i, j ∈ {1, 2, . . . , bA}, i �= j ⇒ SAi ∩ SAj = ∅.

These partitions are introduced as bins of node pairs in current study. The number of bins w.r.t target and 
auxiliary layer are bT and bA , respectively. An equal-depth (frequency) binning strategy is applied to the target 
layer similarity scores of the node pairs in U ′ , in order that each partition STi ; i ∈ {1, 2, . . . , bT } contains approxi-
mately the same number of members (node pairs). The same strategy goes for similarity scores in auxiliary layer 
A , establishing SAj ; j ∈ {1, 2, . . . , bA} partitions. It should be noted that STi  andSAj  are two different partitions of 
the same set, namely U ′ . To make distinction between these two partitions, readers should pay attention to the 
superscript in the notation. Therefore, for i = j , STi  is not necessarily equal to SAj  because the former partitioning 
is based on similarity in the target layer while the latter is based on similarity in the auxiliary layer.

Aforementioned partitions (bins) form the building blocks of how the multiplex networks are scrutinized 
in this paper, as they put forward a coarse-grained view of the data; tolerating the insignificant fluctuations 
observed in particular regions of the networks. The setting denoted above will be used from now onwards, to 
avoid any further repetitions.

Intra‑layer and trans‑layer connection probabilities. The foregoing discussion introduces two key 
measures for target and auxiliary layer bins, namely STi  and SAj  : (1) intra-layer connection probability pintra(STi ) , 

(9)L+ =

(

L−
ee′

n

)−1

+
ee′

n

(10)SLPI = A2 + εA3
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and (2) trans-layer connection probability pTtrans(SAj ) . Intra-layer connection probability in STi  is the connection 
likelihood of pairs existing in that bin. This measure can also be expressed as conditional probability of connec-
tion of an arbitrary node pair x, y in layer T , given their similarity (bin) in the same layer:

Notice LT = 1 , which is the event that any randomly selected pair (x, y) are linked in layer T . Empirically, 
pintra(S

T
i ) is computed as proportion of linked node pairs in STi  to all of node pairs in the set:

Intra-layer connection probability for four different multiplex (duplex) networks is provided for each bin in 
(Fig. 1). In data-driven observations of this paper, wherever a similarity measure is involved, Resource Allocation 
(RA) index is used; otherwise specified. Additionally, it is assumed that the number of bins in both the target 
and auxiliary layers i.e., bT and bA are set to 10. Our experiments show that too small number of bins leads to 
significant decrement in prediction results.

In most of the cases, increasing the number of bins either has no effect on prediction results or degrades them 
(although not quite significantly). Additionally, large number of bins brings unnecessary computational complex-
ity to our algorithm. We have also tried a more adaptive approach for choosing the number of bins by maximizing 
the entropy of node-pairs distribution in bins which lead to no substantial improvement in prediction. A value 

(11)pintra(S
T
i ) = p(LT = 1|STi ); i ∈ {1, 2, . . . , bT }

(12)p̃intra(S
T
i ) =

|STi ∩E
T
train|

|STi |
; i ∈ {1, 2, . . . , bT }

Figure 1.  Intra-layer connection probability in target layer bins. Intra-layer connection probability or fraction 
of node pairs in a bin that are linked in layer (a) ‘Air’ of the network Air/Train, (b) ‘Structure’ of Human Brain, 
(c) ‘Advice’ of Physicians, (d) ‘Suppressive’ of Drosophila. Bars with dashed lines represent imputed probabilities.
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between 10 and 50 is recommended as SimBins shows no significant sensitivity in terms of accuracy within the 
mentioned range and the computational overhead is miniscule.

The bars with dashed lines in (Fig. 1) represent imputed values. Because of high frequency of some certain 
similarity values (such as 0 scores in RA for node pairs with no common neighbors), a perfect equal-depth bin-
ning may not be feasible; as a result, a number of bins will contain no sample node pairs. The value of intra-layer 
connection probability for these bins has been imputed using a penalized least squares method which allows 
fast smoothing of gridded (missing)  data60. In addition to more clear observations, this imputation will let us 
fix the number of bins and handle missing data in a systematic way. The results indicate that by the increment 
of similarity (higher bin numbers) intra-layer connection probability increases respectively, depicting a positive 
correlation between similarity (bin number) and intra-layer connection probability; as stated in seminal work 
of Liben-nowell and  Kleinberg1.

Trans-layer connection probability is defined analogously except that although connection in target layer T 
is concerned, the similarity scores of node pairs are given in auxiliary layer A . Similar to formula (11), pTtrans(SAj ) 
can be defined as follows:

Empirical value of trans-layer connection probability is calculated likewise:

In other words, pTtrans w.r.t A relates the similarity of node pairs in layer A to their probability of connection in 
layer T . Trans-layer connection probability of four duplexes is depicted in the left column of (Fig. 2). Moreover, 
the node pairs in SAj  can be divided into two disjoint sets based on their connectivity in the auxiliary layer. Then 
the trans-layer connection probability for connected node pairs in auxiliary layer SAj ∩ EA and unconnected 
ones SAj ∩ (U − EA) will be:

and:

as shown in the middle and right columns of (Fig. 2), respectively.
The bars with dotted lines represent imputed trans-layer connection probabilities, similar to intra-layer 

connection probabilities in (Fig. 1). By inspecting the values of trans-layer connection probabilities for the 
datasets under study, a rising pattern is prominent by moving to bins corresponding to higher similarity ranges. 
Drosophila in (Fig. 2d1-3) brings up an exceptional case, where similarity in the auxiliary (Additive) layer shows 
no correlation with connection in the target (Suppressive) layer. Except these kind of irregularities in data, the 
available evidence appears to suggest that in most of the real multiplex networks, probability of connection in 
one (target) layer of the network does have positive correlation with similarity in some other (auxiliary) layer i.e., 
as similarity grows higher in the auxiliary layer, it can be a signal of higher connection probability in target layer. 
This observation develops the claim that for link prediction in target layer, not only the similarity of nodes in that 
same layer, but also their similarity in some other auxiliary layer can be utilized. Notice that this rising pattern 
in ptrans is observed in almost all datasets under scrutiny, independent from the choice of similarity measure.

The previously described property of trans-layer connection probability lies at the heart of the current study, 
shaping the main idea of the proposed multiplex link prediction method. In addition, the connectedness of 
the node pairs in the auxiliary layer leads to significant increase in the trans-layer connection probabilities. In 
Human Brain and Physicians networks the presence of link in the auxiliary is a strong evidence of connectivity 
in the target layer. The case is similar for AirTrain network but with lower certainty. The Drosophila network 
is an exception as before. These findings are in consistence with the link persistence phenomenon as reported 
 in29. Here, we propose a consolidated method which considers the similarity of node pairs in the target and 
auxiliary layers, and also their connectedness in the auxiliary layer as the underlying evidences for calculating 
the uncertainty of linkage in the target layer.

Furthermore, by simultaneously partitioning U ′ based on their similarity in both target and auxiliary layers, 
we obtain bT × bA partitions or 2d-bins. Within each 2d-bin, the fraction of target layer links to total node pairs 
is included i.e., the empirical connection probability in target layer is computed. In (Fig. 3), empirical probability 
of connection in 2d-bins is presented for the same duplexes as in (Fig. 2).

Several results can be inferred by scrutinizing (Fig. 3). Increment of the empirical probability of connection in 
the horizontal axis expresses the effectiveness of the similarity measure in target layer; the higher the bin number, 
the larger the fraction of node pairs that have formed links. Another aspect of the above figure is the ascension 
of the empirical probability of connection by moving to higher bin number in the auxiliary layer i.e., the vertical 
axis (except Drosophila in Fig. 3. d1-3), which is a sign of positive correlation between the probability of con-
nection in target layer and similarity in the auxiliary layer; so far totally consistent with Figs. 1 and Fig. 2. This 
cross-layer connection and similarity correlation are observed in the majority of datasets under study, in which 
a subset of them is presented above. It is interesting that when similarity of a node-pair is very low in the target 
layer, high similarity in the auxiliary layer leads to stronger connection probability between them.

(13)pTtrans(S
A
j ) = p(LT = 1|SAj ); j ∈ {1, 2, . . . , bA}

(14)p̃Ttrans(S
A
j ) =

|SAj ∩E
T
train|

|SAj |
; j ∈ {1, 2, . . . , bA}

(15)p̃Ttrans(S
A
j ∩ EA)

(16)p̃Ttrans

(

SAj ∩ (U − EA)
)
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The following sub-sections are concerned with the issue of how to estimate probability of connection in 
the target layer of a multiplex network by incorporating other layers’ structural information with a systematic 
approach that generalizes beyond specific data.

Figure 2.  Empirical trans-layer connection probability in auxiliary layer bins. (a1–d1) Trans-layer connection 
probability of all node pairs, (a2–d2) Trans-layer connection probability of node-pairs connected in auxiliary 
layer, (a3–d3) Trans-layer connection probability of node-pairs unconnected in auxiliary layer, for sample 
duplexes of 4 datasets.
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Fusion of decisions. Consider two independent decision makers that determine the probability of occur-
rence of a certain event corresponding to a binary random variable. Each of them declares a probability p and 
q (where 0 ≤ p, q ≤ 1 ) for the same event, respectively. One would want to reach to a consensus based on these 
two different opinions. This goal can be achieved by incorporating various functions that operate on input prob-
abilities. The AND operator is one such function:

Another option could be the OR operator, defined as:

The more interesting function in the context of current research is the OR operator because it fits much better 
in the problem of link prediction as it is less prone to variations of only one of the input probabilities. We will 
return to the issue of fusion of decisions in the following sub-section when characterizing the link prediction 
model.

The multiplex link prediction model. On these grounds, a model is suggested to predict probability of 
connection between node pairs in a layer of the multiplex network such as T which incorporates information 
both from the layer itself and from some other auxiliary layer A . The similarity between two distinct nodes x 
and y is defined as:

(17)AND(p, q) = pq

(18)OR(p, q) = p+ q− pq

Figure 3.  Empirical probability of connection in 2d-bins. The fraction of node pairs in the 2d-bins that are 
connected in the target layer(a) ‘Train’ of the network Air/Train w.r.t ‘Air’, (b) ‘Function’ of Human Brain w.r.t 
‘Structure’, (c) ‘Discuss’ of Physicians w.r.t ‘Advice’, (d) ‘Additive’ of Drosophila w.r.t ‘Suppressive’ layer. NaN (Not 
a Number) values represent 2d-bins that contain no sample pairs.
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where I(LTxy = 1|STi , S
A
j ) is the uncertainty of existence of a link between (x, y) in the target layer when their target 

and auxiliary bin numbers are known. According to Eq. (5), we can write:

The first term in Eq. (20) can be derived by incorporating Eq. (3):

where S̃Txy is the min–max normalized similarity score of the pair (x, y) in target layer T i.e., the probability of 
connection in target layer (without any knowledge on bins partitioning) is estimated with similarity in that same 
layer, intuitively. The second term in Eq. (20) is the mutual information of (x, y) being connected in the target 
layer and belonging to STi  and SAj  bins; which is estimated as follows:

Equation (22) propounds the view that a group of node pairs dwelling in known target and auxiliary bins can 
be looked at similarly. To be more specific, if the goal is to obtain the mutual information between the event that 
(x, y) are connected and the event that it resides in both STi  and SAj  , a possible workaround is to estimate it with 
the reduction in uncertainty of connection of any node pair due to which bins (target and auxiliary) it belongs 
to. Thus, according to Eq. (5), we proceed by expanding the right-hand side of Eq. (22):

The term I(LT = 1) in Eq. (23) is the self-information of that a randomly chosen node pair is linked in target 
layer T . Clearly, I(LT = 1) is the same for every node pair in the multiplex network; therefore, it does not affect 
the scoring (node pairs ranking), and it can be safely neglected. Thus, to carry out the model specification, 
I(LT = 1|STi , S

A
j ) needs to be calculated; which is the conditional self-information of that a randomly chosen node 

pair is linked in layer T when the pair’s state of binning in target and auxiliary layer is known. Using Eq. (3) we 
have I(LT = 1|STi , S

A
j ) = log p(LT = 1|STi , S

A
j ) . On the basis of our discussion on fusion of decisions, the prob-

ability p(LT = 1|STi , S
A
j ) for any randomly selected node pair (x, y) which is a member of STi ∩ SAj  is estimated 

by incorporating pintra(STi ) i.e. intra-layer connection probability in target layer T and pTtrans(SAj ) i.e. trans-layer 
connection probability in T w.r.t auxiliary layer A . Therefore, similar to Eq. (18), the OR operation on intra and 
trans-layer connection probabilities concludes in:

It should be noticed that the trans-layer connection probability can be divided for connected and uncon-
nected node pairs in the auxiliary layer according to Eqs. (15) and (16), respectively. To put it altogether, we 
incorporate Eqs. (15) and (16) into (24). Then, plugging Eq. (24) into Eq. (19) results in the final scoring scheme. 
Thus, SimBins similarity score of a node pair (x, y) in target layer T  with the aid of auxiliary layer A where 
(x, y) ∈ STi ∩ SAj ; i ∈ {1, . . . , bT }, j ∈ {1, . . . , bA} and T ,A ∈ {1, . . . ,M};T �= A is (empirical values of intra and 
trans-layer connection probabilities are used):

(19)SBT ,Axy = −I(LTxy = 1|STi , S
A
j ); (x, y) ∈ STi ∩ SAj

(20)−I(LTxy = 1|STi , S
A
j ) = −I(LTxy = 1)+ I(LTxy = 1; STi , S

A
j )

(21)−I(LTxy = 1) = log p(LTxy = 1) ≈ log(S̃Txy)

(22)I(LTxy = 1; STi , S
A
j ) ≈ I(LT = 1; STi , S

A
j )

(23)I(LT = 1; STi , S
A
j ) = I(LT = 1)− I(LT = 1|STi , S

A
j )

(24)
p(LT = 1|STi , S

A
j ) = pintra(S

T
i )+ pTtrans(S

A
j )− pintra(S

T
i )p

T
trans(S

A
j )

=
[

PT ,Aest

]

ij

(25)SBT ,Axy =
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Algorithm 1 outlines the entire scheme. Now that our multiplex scoring model is complete, we will proceed 
by evaluating the method on the datasets section introduced earlier.

The diagram in Fig. 4 illustrates the process of node-pairs similarity calculation in SimBins. The main source 
of information are the structure of the target and auxiliary layers. The train and test sets are derived from the 
target layer including both links and non-existent link (the test set is later used for evaluation). The rest of the 
process includes partitioning of the train set ( U ′ ) according to the base similarity scores in T , A and connected-
ness in A . Accordingly, intra-layer and trans-layer connection probabilities of each partition (bin) is calculated 
and fed to the final SimBins scoring Eq. (25).

Experimental results. The link prediction performance on9 different datasets, a total of 29 network layers 
forming 52 layer-pairs has been reported based on both AUC (Table 2) and Precision (3) evaluation metrics. 
The evaluation metrics are the mean over 100 iterations with train ratio set to 90% as described in ‘Evaluation 
Method’ section. Four base measures comprising local, global and quasi-local indices have been incorporated 
i.e., RA, CN, ACT and LPI that were introduced in ‘Base Similarity Measures’ section. SimBins ( SBAT ≡ SBT ,A ) is 



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13242  | https://doi.org/10.1038/s41598-021-92427-1

www.nature.com/scientificreports/

compared with baseline methods including scoring based on similarity in the target layer ( ST ) and simple addi-
tion of similarity scores of the target and auxiliary layers ( ST + SA).

In Table 2, for each base measure, the highest mean AUC is shown in bold and, for each duplex (all 52 
rows), the highest AUC among all of the methods (independent from the base measure) is highlighted with an 
underscore. SimBins dominates other baseline methods and proves to be an effective multiplex link prediction 
method due to several reasons: (i) Most of the time, SimBins is superior to the other baseline methods (i.e., bold 
entries). This can be further verified with the fact that SimBins achieves higher average of all mean AUCs (the 
last row of the table) (ii) In a large fraction of duplexes (37 of 52), the overall best mean AUC belongs exclu-
sively to SimBins (in 6 other duplexes, SimBins achieves the best performance alongside another method, non-
exclusively) (iii) SimBins performs better than the single-layer method (or ST ) in most of the cases whereas for 
similarities addition method ( ST + SA ) this is less frequently observed; meaning our method is capable of using 
other layer’s information effectively. And, SBT ,A is more robust against deceptive signals compared to ST + SA . 
Consider Drosophila for example. The slightly negative correlation between similarity in the auxiliary layer 
(Suppressive) and connection probability in the target layer (Additive), as previously discussed on (Fig. 2-d), has 
caused performance reduction for ST + SA whereas SimBins still performs as good as—if not better than—ST . 
A similar outcome can be observed for NTN and London Transport, more clearly when ACT is used as the base 
similarity measure. In CS-Aarhus, where Facebook is the target layer, both ST and ST + SA perform even worse 
than random scoring (expected 50% AUC) while SimBins keeps the performance up about 70− 80% . As the 
last row indicates, the average mean AUC of SimBins is higher than both other baseline methods, no matter the 
choice of base measure.

There exist occasions in which SimBins cannot improve the link prediction performance compared to the 
base similarity measure. Specifically, Drosophila which the absence of inter-layer correlation as discussed ear-
lier is the underlying reason. And, in London Transport, node multiplexity is far too low as shown in Table 1. 
Consequently, very few nodes are shared among different layers that makes utilization of structural similarities 
between layers a hard task.

The above discussion holds true for Adamic-Adar9, Preferential  Attachment8, and  LRW15 similarity measures, 
as we have performed similar experiments which led to resembling results, but we have avoided bringing the 
corresponding details for the sake of brevity.

Interestingly, the results appear to suggest that choosing LPI as the base similarity measure, leads to the best 
overall performance in most of the multiplex networks. Using LPI as the base similarity measure for SimBins 
gives the best performance with average mean AUC of 85.0% for all 52 duplexes under study.

The evaluation of methods based on Precision metric as reported in 3, confirms our earlier discussions. This 
metric measure quantifies the quality of top entries of the sorted list of unobserved links while AUC consid-
ers the quality of the ranking in the whole list. Here, also SimBins is superior compared to other two baseline 
methods. Specifically, in 38 duplexes out of 52 the best performance based on Precision metric is for SimBins 
while in 2 duplexes it shares the best performance with another baseline method. So, the results of Tables 2 and 
3 confirm the superiority of SimBins over baseline methods regardless of the choice of base similarity measure 
and evaluation metric and also suggest that using SimBins along with LPI as the base similarity measure leads 
to the best performance.

Finally, we compare SimBins with three state-of-the-art methods, namely, YaoPL,  YaoGL38, and  SameiHP39. 
An introduction to these methods is given in ‘Related Works’ section. The scoring schema of these methods can 
be summarized as Eq. (26). The base similarity measure used in these methods ( ST and SA for the target and 
auxiliary layers T and A respectively) is LPI for the two former methods and HP for the latter. Moreover, the layer 
relevance measure ( µT ,A)is PCC for YaoPL and GOR for YaoGL and SameiHP. Based on the recommendation of 
the authors, the parameter ϕ = 0.5 is considered. The results of the experiments are shown in Table 4.

Figure 4.  An overview of simbins method.
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Target 
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layer RA CN ACT LPI

ST ST + SA SB
A

T
ST ST + SA SB

A

T
ST ST + SA SB

A

T
ST ST + SA SB

A

T

AT
Air Train 83.9 89.9 90.6 79.8 85.0 84.9 87.7 85.9 89.2 80.1 86.1 82.8

Train Air 83.3 84.0 83.8 83.1 83.3 84.2 79.6 80.3 80.9 84.1 84.0 84.8

C. 
ELEGANS

Electric
Chem-
Mono 70.6 79.0 80.3 70.6 78.5 80.3 64.7 65.8 69.6 76.6 82.4 83.0

Chem-Poly 70.6 84.0 85.6 71.0 83.3 85.9 65.5 68.7 72.5 76.4 84.2 85.9

Chem-
Mono

Electric 76.2 77.0 78.2 75.8 76.3 77.8 67.3 67.8 70.5 84.3 83.9 84.8

Chem-Poly 76.2 87.3 90.8 75.7 85.4 91.7 68.4 73.4 89.0 84.1 88.3 89.9

Chem-
Poly

Electric 85.8 85.9 86.5 84.0 83.9 84.5 72.3 72.0 73.9 86.3 86.1 86.3

Chem-
Mono 85.6 86.9 88.7 84.1 85.3 87.6 72.3 73.1 81.9 86.3 87.5 87.6

DM
Suppres-
sive Additive 76.5 75.9 76.7 76.6 75.7 76.6 80.9 74.3 77.2 82.3 81.2 82.3

Additive Suppressive 74.2 73.8 74.2 73.9 73.1 73.7 73.6 70.2 69.4 79.5 77.7 79.2

HB
Structure Function 91.2 91.3 92.9 89.9 88.9 91.9 75.4 69.2 78.6 92.1 90.8 94.2

Function Structure 86.0 88.8 89.9 85.6 88.5 89.9 68.9 72.5 79.9 89.0 90.0 91.0

PHYSI-
CIANS

Advice
Discuss 71.4 81.9 87.3 71.9 82.6 88.7 50.9 66.3 77.0 84.7 93.7 93.4

Friendship 71.6 78.0 81.3 72.1 78.4 81.8 50.0 58.0 62.2 84.6 89.5 89.6

Discuss
Advice 75.2 81.3 87.2 74.6 80.7 87.3 52.7 61.8 74.1 83.4 91.6 91.7

Friendship 74.6 81.2 84.6 74.0 80.1 84.8 51.9 62.1 67.9 83.9 90.5 90.3

Friend-
ship

Advice 69.9 77.6 80.9 69.8 77.5 81.2 56.3 57.3 66.9 77.9 86.6 87.1

Discuss 69.8 82.1 86.0 69.7 81.6 86.7 56.2 65.6 72.8 78.1 89.9 89.9

NTN

Com-
muni

Financial 84.2 83.8 83.0 82.7 82.6 82.7 74.8 63.6 71.8 82.0 81.7 82.8

Operation 84.3 84.3 87.2 82.6 82.9 87.9 75.0 68.0 84.8 82.4 82.1 87.4

Trust 84.0 84.1 89.4 83.3 81.2 88.9 73.6 71.3 82.6 82.0 81.3 86.8

Financial

Communi 91.5 92.1 90.7 90.5 78.6 90.0 52.7 40.6 68.7 89.7 77.8 87.9

Operation 89.5 83.8 90.2 90.0 67.4 92.1 54.1 54.1 67.5 92.0 66.1 92.6

Trust 91.7 92.7 96.9 90.2 79.3 93.3 50.6 41.0 77.6 93.0 83.4 96.2

Opera-
tion

Communi 98.0 98.0 98.8 97.3 97.5 98.2 66.9 68.3 81.4 96.7 97.3 97.8

Financial 98.2 97.9 98.2 97.3 97.3 97.2 67.1 58.8 73.9 96.7 96.7 96.8

Trust 98.3 95.6 98.7 97.2 94.6 97.7 67.6 65.5 78.7 97.0 94.2 97.7

Trust

Communi 88.5 92.4 94.8 87.7 91.6 94.7 78.2 80.3 90.5 88.6 92.9 92.6

Financial 88.5 88.3 88.5 87.5 87.4 87.5 77.9 67.4 80.6 88.5 88.4 88.7

Operation 88.6 88.3 91.6 88.1 86.9 92.1 78.3 71.3 84.1 88.3 85.5 91.0

LONDON 
TRANS

Tube
Over-
ground 53.2 53.2 55.0 53.4 53.4 55.0 53.3 47.1 61.0 58.0 59.6 59.9

DLR 53.5 53.4 53.5 53.7 53.7 53.7 54.7 50.4 50.1 57.7 57.6 57.8

Over-
ground

Tube 49.9 50.3 55.6 49.9 50.4 56.0 49.1 51.7 81.5 49.9 55.3 55.0

DLR 49.9 49.9 49.9 50.0 49.9 50.1 49.7 48.9 56.0 49.9 49.7 49.9

DLR
Tube 52.8 53.2 50.4 53.0 53.6 49.8 56.5 58.5 64.3 52.3 53.2 53.2

Over-
ground 52.2 52.2 49.8 52.8 52.7 50.4 57.9 57.4 50.6 53.0 52.8 53.0

CS-
AARHUS

Lunch

Facebook 94.7 93.3 94.8 94.7 91.0 94.7 83.5 61.5 84.0 93.9 89.5 94.5

Co-author 95.4 95.3 95.3 93.5 93.4 93.4 83.4 56.0 83.6 94.2 94.1 94.4

Leisure 94.5 94.2 94.9 94.0 93.9 94.4 82.8 68.7 85.8 93.5 93.2 93.9

Work 94.7 94.7 95.5 93.8 93.3 95.3 84.1 82.3 88.1 94.6 92.9 95.9

Facebook
Lunch 93.5 90.5 93.8 92.8 90.3 92.5 43.6 51.6 78.8 95.0 91.3 95.3

Co-author 92.5 92.1 92.9 93.2 93.1 93.6 42.7 47.3 74.7 94.7 94.6 94.8

Co-
author

Lunch 73.0 92.2 89.7 69.1 91.5 91.2 45.6 58.9 72.0 73.3 92.0 94.8

Facebook 72.9 70.5 79.6 69.8 66.2 73.6 43.1 62.2 68.6 73.3 71.9 81.2

Leisure Lunch 82.8 90.5 90.2 81.4 89.2 89.7 58.9 75.1 81.8 81.7 89.1 89.5

Work Lunch 88.1 91.0 91.3 86.2 89.9 89.9 71.6 83.2 82.0 85.4 89.4 89.4

Continued
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Clearly, SimBins achieves the best performance (85.0%) in term of average mean AUC over all 52 duplexes. 
Also, in 25 duplexes SimBins is the best performing method (the best in 18 cases and sharing the best perfor-
mance in 7 cases with another method) while the second best is SameiHP with the best performance in 13 
duplexes. It should be also noted that SameiHP method has large fluctuation across different networks and the 
lowest average mean AUC. So, using SimBins based on LPI is our choice that performs well across diverse set 
of multiplex networks.

Complexity analysis. Consider a duplex network G(V ,E[1],E[2];E[i] ⊆ V×V),mi = |E[i]|∀i ∈ {1, 2} 
where layer 1 is the target, and layer 2 is the auxiliary layer. Let O(θ) be a representative of computational com-
plexity for the base similarity measures. The similarity of node pairs in both layers is needed for subset U ′ of 
U = V × V  as formulated in ‘Partitioning Node Pairs (Binning)’ section. Therefore, the computing complexity 
of measuring similarities is O(

∑

i=1,2 θmi) . Partitioning U ′ into equal-depth bins requires sorting of similarities, 
consequently it would have complexity of O(

∑

i=1,2 mi logmi) . Total estimation complexity of intra-layer and 
trans-layer connection probabilities is O

(
∑

i=1,2 mibi
)

 where bi is the number of bins in corresponding layer. 
And, estimation of probability of connection in all 2d-bins according to Eq.  (24) would be of orderO(b1b2) 
which is negligible w.r.t bounded number of bins. Accordingly, the total computational complexity of scoring 
a node pair in SimBins would be O(m logm) where m is in the same order as m1,m2 if the sparsity of multiplex 
layers is comparable. This tolerable computing complexity indicates that SimBins can be scaled for usage in large 
networks.

Notice that for obtaining a full ranking of propensity of links, SimBins, like the majority of link prediction 
algorithms would need at least O(n2); n = |V | computations which is not easily scalable to very large networks 
without pruning the n2 space. To be specific, for a full ranking, SimBins would have a computing complexity 
of O(θn2 +m logm) in which O(θn2) is the dominating term in real-networks; meaning that SimBins imposes 
minor overhead to the base similarity measures. This makes SimBins appropriate for using with large networks 
like SaccPomb that we studied in this paper.

Discussion
In this manuscript, we explored the intra-layer and trans-layer connection probabilities in multiplex networks 
and verified that in many real multiplex networks, connection probability within an arbitrary layer is correlated 
with similarity in other layers of the same multiplex. We also observe that connectedness in one layer of the 
multiplex, increases the probability of linkage in other layers. Subsequently, we developed a consolidated link 
prediction model by incorporating information theory concepts for characterizing intuitions gathered from the 
observed evidences.

The proposed method works on a pair of multiplex’s layers i.e., a duplex. Different ideas can be conducted 
to extend it to use multiple layers’ topology for link prediction. Considering a target layer T and auxiliary lay-
ers A1, . . . ,AM , the simplest idea is to add up the SimBins scores for each possible layer pairs, symbolically 
SBT ,{A1,...,AM } =

∑M
i=1 SB

T ,Ai where SBT ,Ai is computed according to Eq. (25). The other—not as straightforward 
as previous– idea is to compose and study bins of more than two dimensions. This extension, although more 
systematic, might suffer from heavy sparsity of samples (imagine node pairs residing in 3d-bins).

Eventually, SimBins is compared with two baseline methods (base similarity measure in the target layer and 
simple addition of similarities in target and auxiliary layers) and three state-of-the-art methods (YaoPL, YaoGL 
and SameiHP) on 9 multiplexes. It is shown that SimBins outperforms the other two baseline methods in most 
cases. Besides, it rarely performs worse than target similarity and is more robust to deceptive signals compared 
to the simple addition of similarities. It is mentioned that in some networks, such as London Transport and 
Drosophila, SimBins seems to be unprofitable as a result of massively condensed node pairs similarity distribution 

(26)ST ,Ax,y = (1− ϕ)STx,y + ϕµT ,ASAx,ym

Target 
layer

Auxiliary 
layer RA CN ACT LPI

ST ST + SA SB
A

T
ST ST + SA SB

A

T
ST ST + SA SB

A

T
ST ST + SA SB

A

T

SACCH-
POMB

Direct

Colocaliza-
tion 62.9 64.3 65.8 62.9 64.3 65.7 51.7 50.1 68.2 73.1 75.9 75.9

Physical 62.9 71.8 76.8 63.0 70.1 76.5 51.8 52.6 75.9 74.0 82.2 85.5

Synthetic 62.8 69.8 70.9 62.8 69.6 70.9 50.9 50.2 69.3 73.3 80.4 80.4

Association 63.1 63.7 64.3 63.0 63.7 64.2 52.0 51.6 72.8 73.4 74.6 74.6

Physical Direct 77.8 78.4 79.4 77.4 78.0 79.0 69.4 57.8 76.3 88.4 89.5 88.6

Synthetic Direct 80.3 81.5 82.2 80.3 81.5 82.3 65.2 54.2 82.8 90.9 92.1 92.1

AVERAGE AUC 78.5 81.0 82.8 77.8 79.4 82.4 63.7 62.9 75.1 81.6 82.9 85.0

Table 2.  Average AUC over 100 iterations for the networks under study. Each row shows the performance 
of link prediction methods on a duplex subset of a multiplex network grouped by the corresponding base 
similarity measure in use. Columns show the average AUC over 100 iterations for the prediction methods 
ST (similarity score of only the target layer), ST + SA (addition of similarity scores of the target and auxiliary 
layer), SBA

T
≡ SBT ,A (SimBins).
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Target 
layer

Auxiliary 
layer RA CN ACT LPI

ST ST + SA SB
A

T
ST ST + SA SB

A

T
ST ST + SA SB

A

T
ST ST + SA SB

A

T

AT
Air Train 71.8 74.3 73.8 61.4 65.3 68.8 72.1 71.7 73.5 68.8 69.9 69.1

Train Air 65.8 66.3 66.4 58.2 60.9 64.4 60.2 61.9 62.0 65.9 66.6 67.0

C. 
ELEGANS

Electric
Chem-
Mono 42.7 67.2 66.9 17.7 47.5 63.6 48.9 47.9 53.3 55.3 64.9 67.1

Chem-Poly 43.2 67.6 69.4 18.4 58.2 68.4 49.3 49.9 55.5 55.4 65.7 67.4

Chem-
Mono

Electric 60.7 64.4 66.1 31.4 38.7 63.4 48.8 49.7 51.1 68.3 65.0 68.7

Chem-Poly 60.5 72.8 75.6 31.7 64.0 80.7 50.0 56.5 77.5 67.9 72.0 69.6

Chem-
Poly

Electric 72.9 72.6 73.3 61.2 55.3 64.1 54.1 53.4 55.6 69.9 68.8 69.9

Chem-
Mono 72.4 73.3 74.0 60.7 62.7 68.1 54.5 55.0 64.7 70.1 71.2 72.1

DM
Suppres-
sive Additive 54.9 56.1 56.3 30.5 31.5 56.7 64.2 57.0 60.3 70.3 68.6 70.5

Additive Suppressive 48.6 53.0 50.8 24.6 26.8 50.5 57.3 53.4 53.5 60.6 63.5 66.2

HB
Structure Function 77.6 76.0 79.7 58.7 60.6 76.1 55.1 48.9 62.3 74.7 75.1 81.3

Function Structure 69.9 72.8 74.8 55.1 65.7 73.6 51.5 53.4 63.3 73.2 73.8 75.6

PHYSI-
CIANS

Advice
Discuss 44.2 67.0 78.2 14.6 43.3 78.7 32.3 45.9 63.4 66.0 80.4 81.4

Friendship 43.9 59.2 68.3 14.2 32.6 68.8 31.1 39.5 43.6 66.0 75.9 76.7

Discuss
Advice 51.8 66.2 78.3 15.3 42.0 77.1 34.3 43.4 58.4 64.5 79.3 79.8

Friendship 50.6 65.5 74.2 14.6 33.0 73.7 33.8 45.5 50.7 65.1 77.2 77.8

Friend-
ship

Advice 39.0 58.3 66.9 13.6 35.4 67.2 38.1 39.8 49.7 51.6 73.2 73.8

Discuss 38.7 66.7 76.0 12.6 37.0 75.5 38.2 46.0 56.8 51.9 77.8 77.6

NTN

Com-
muni

Financial 68.5 68.0 68.5 56.9 56.9 56.9 56.3 45.0 53.3 64.1 63.8 65.8

Operation 69.5 68.2 72.0 59.0 64.1 69.8 56.7 50.0 67.7 64.8 67.2 71.5

Trust 67.9 67.8 70.9 60.1 58.5 71.2 54.5 48.8 65.7 65.4 62.6 70.0

Financial

Communi 9.5 36.0 26.0 0.0 18.0 23.0 8.0 6.5 12.0 0.0 25.5 24.0

Operation 11.5 31.0 35.5 0.0 16.5 21.5 8.5 12.0 16.0 0.0 17.0 15.0

Trust 13.5 30.0 29.5 0.0 18.5 18.5 7.0 10.0 21.5 0.0 29.5 20.5

Opera-
tion

Communi 90.7 90.0 91.6 84.8 85.1 88.8 48.4 51.0 64.2 87.4 87.5 89.4

Financial 90.6 90.3 90.7 84.8 84.8 84.9 48.3 37.3 53.9 87.6 87.6 87.6

Trust 91.0 84.4 91.5 84.8 77.1 88.2 48.9 42.3 61.0 88.2 80.2 89.4

Trust

Communi 76.8 81.8 79.6 70.0 75.0 78.0 62.3 61.8 76.4 74.8 79.8 78.6

Financial 77.4 77.1 77.4 71.0 70.6 71.1 61.8 44.7 61.6 75.2 75.0 75.0

Operation 76.7 73.0 78.1 71.2 67.9 75.7 62.5 49.4 66.9 73.8 71.4 76.0

LONDON 
TRANS

Tube
Overground 4.3 4.3 10.8 0.3 0.3 10.7 33.4 31.5 16.1 8.1 11.6 21.0

DLR 4.3 4.4 7.7 0.1 0.1 8.0 34.3 31.3 12.8 7.3 7.3 16.7

Over-
ground

Tube 0.0 0.0 13.3 0.0 0.0 14.0 17.0 27.1 56.3 0.0 4.3 12.1

DLR 0.0 0.0 0.0 0.0 0.0 0.0 16.6 18.3 12.0 0.0 0.0 0.0

DLR
Tube 0.0 0.4 3.6 0.0 0.0 3.6 14.4 20.2 30.8 0.0 2.0 8.4

Overground 0.0 0.0 2.2 0.0 0.0 3.2 15.6 20.0 10.6 0.0 0.0 6.0

CS-
AARHUS

Lunch

Facebook 83.8 78.2 84.4 75.5 64.7 80.0 61.8 37.4 63.7 80.9 70.8 82.6

Co-author 85.1 84.6 85.0 74.9 74.5 75.7 61.6 38.5 62.5 81.2 81.0 81.5

Leisure 83.1 82.8 84.3 75.8 75.9 81.6 61.4 47.1 66.1 81.7 81.6 83.0

Work 83.7 82.6 85.0 75.6 72.3 84.0 62.7 62.4 71.7 82.0 78.5 84.7

Facebook
Lunch 79.2 71.1 80.3 71.0 66.6 77.4 12.7 23.6 58.1 77.5 71.6 79.9

Co-author 77.2 75.6 77.7 71.5 71.6 72.1 10.0 20.5 50.8 77.1 76.7 77.7

Co-
author

Lunch 14.7 56.3 53.3 2.0 46.0 51.3 17.3 27.3 35.3 13.7 54.7 58.3

Facebook 14.7 38.3 49.0 1.3 24.0 43.7 18.7 28.0 30.3 10.3 33.7 49.7

Leisure Lunch 60.4 73.9 72.2 36.2 67.9 70.0 33.9 54.8 66.7 61.7 71.6 70.0

Work Lunch 71.0 73.5 73.2 58.3 67.1 68.5 57.0 64.7 63.6 65.2 72.1 70.7

Continued
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and negative inter-layer correlations. On the other hand, when comparing with the state-of-the-art methods, 
it is observed that the overall best average AUC belongs to SimBins and it performs consistently well across 
various multiplex networks. This can be attributed to the design of the proposed method in which incorporates 
information both from connectedness and similarity of nodes in different layers.

It is shown that SimBins imposes negligible computation overhead to the base similarity measures (as we 
applied the method on a large network with a few thousand nodes and edges like SacchPomb, with minor com-
putational burden). The idea of using an equal-width strategy for partitioning node pairs leads to even more 
efficiency due to its O(m) complexity (instead of O(m logm) in equal-depth binning), although the accuracy of 
prediction might be affected.

Because our method falls under the structural similarity category, it may not beat learning-based approaches 
that are of higher computational complexity. As discussed earlier in this section, extending SimBins to use simi-
larities in multiple layers simultaneously can be further explored as a future direction. The proposed method 
integrates intra-layer structural similarities and connectedness in the auxiliary layers in a systematic way; it is 
proved to boost the performance of link prediction in multiplex networks while maintaining a low computa-
tional complexity.

Target 
layer

Auxiliary 
layer RA CN ACT LPI

ST ST + SA SB
A

T
ST ST + SA SB

A

T
ST ST + SA SB

A

T
ST ST + SA SB

A

T

SACCH-
POMB

Direct

Colocaliza-
tion 24.6 27.6 31.6 8.3 10.5 31.5 22.8 19.2 55.0 39.9 45.2 51.7

Physical 24.5 47.2 58.1 8.5 25.2 58.5 23.6 21.9 58.7 40.8 70.1 71.5

Synthetic 24.5 38.9 42.1 8.2 20.2 42.2 21.1 18.4 55.2 39.6 56.4 61.6

Association 25.1 26.4 28.5 9.0 9.8 28.4 23.1 23.7 51.5 40.1 42.0 49.5

Physical Direct 53.2 54.5 64.6 28.7 30.1 65.5 50.7 32.6 58.1 81.3 81.8 81.4

Synthetic Direct 60.2 62.5 64.6 38.3 41.1 64.7 40.7 22.0 63.7 78.3 80.8 84.5

AVERAGE PRECISION 50.5 57.3 60.6 36.2 44.6 58.1 40.5 39.8 52.4 52.1 58.8 62.0

Table 3.  Average Precision over 100 iterations for the networks under study. Each row shows the performance 
of link prediction methods on a duplex of a multiplex network grouped by the corresponding base similarity 
measure in use. Columns show the average Precision over 100 iterations for the prediction methods ST 
(similarity score of only the target layer), ST + SA (addition of similarity scores of the target and auxiliary 
layer), SBA

T
≡ SBT ,A (SimBins).
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Target layer Auxiliary layer

SIMBINS-LPI
STATE-OF-THE-ART 
( ϕ = 0.5)

SB
A

T
YaoPL YaoGL SameiHP

AT
Air Train 82.8 86.7 86.3 88.2

Train Air 84.8 82.6 84.1 79.2

C. ELEGANS

Electric
Chem-Mono 83.0 84.2 83.7 75.3

Chem-Poly 85.9 85.6 84.4 78.2

Chem-Mono
Electric 84.8 83.6 84.1 73.7

Chem-Poly 89.9 87.9 88.7 74.5

Chem-Poly
Electric 86.3 86.8 86.4 70.4

Chem-Mono 87.6 87.9 87.4 70.5

DM
Suppressive Additive 82.3 82.7 82.2 77.8

Additive Suppressive 79.2 78.6 79.0 77.9

HB
Structure Function 94.2 93.2 93.5 68.8

Function Structure 91.0 90.8 91.6 78.2

PHYSICIANS

Advice
Discuss 93.4 92.3 92.8 82.8

Friendship 89.6 89.1 88.5 81.9

Discuss
Advice 91.7 90.6 92.0 79.7

Friendship 90.3 90.1 90.3 80.7

Friendship
Advice 87.1 86.5 87.1 78.5

Discuss 89.9 90.1 89.9 81.1

NTN

Communi

Financial 82.8 79.5 82.4 72.4

Operation 87.4 85.9 84.1 71.4

Trust 86.8 84.4 82.4 71.5

Financial

Communi 87.9 93.3 87.5 80.8

Operation 92.6 87.6 95.0 85.4

Trust 96.2 93.3 94.3 81.2

Operation

Communi 97.8 97.3 97.5 64.3

Financial 96.8 96.4 96.8 63.1

Trust 97.7 97.0 97.0 62.4

Trust

Communi 92.6 92.1 92.6 64.2

Financial 88.7 87.8 88.7 65.1

Operation 91.0 91.6 89.1 66.6

LONDON TRANS

Tube
Overground 59.9 59.6 60.5 68.2

DLR 57.8 57.6 57.7 69.0

Overground
Tube 55.0 56.1 55.2 77.1

DLR 49.9 50.0 49.8 81.6

DLR
Tube 53.2 50.9 50.5 82.6

Overground 53.0 53.2 52.7 82.1

CS-AARHUS

Lunch

Facebook 94.5 95.0 93.4 80.4

Co-author 94.4 94.4 94.4 74.6

Leisure 93.9 94.0 94.2 77.2

Work 95.9 94.6 95.6 78.1

Facebook
Lunch 95.3 94.9 94.6 78.9

Co-author 94.8 94.8 94.1 75.7

Co-author
Lunch 94.8 92.0 91.7 76.4

Facebook 81.2 79.0 76.1 78.0

Leisure Lunch 89.5 89.9 86.8 81.0

Work Lunch 89.4 89.7 90.4 80.8

Continued



19

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13242  | https://doi.org/10.1038/s41598-021-92427-1

www.nature.com/scientificreports/

Received: 4 December 2020; Accepted: 10 June 2021

References
 1. Liben-Nowell, D., Kleinberg, J. The link prediction problem for social networks. Proceedings of the twelfth international confer-

ence on Information and knowledge management. ACM: New Orleans. p. 556–559 (2003).
 2. Clauset, A., Moore, C. & Newman, M. E. Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 

98–101. https:// doi. org/ 10. 1038/ natur e06830 (2008).
 3. Guimera, R. & Sales-Pardo, M. Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl. Acad. 

Sci. U S A. 106(52), 22073–22078. https:// doi. org/ 10. 1073/ pnas. 09083 66106 (2009).
 4. Li, X. & Chen, H. Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach. Decis. 

Support Syst. 54(2), 880–890. https:// doi. org/ 10. 1016/j. dss. 2012. 09. 019 (2013).
 5. Esslimani, I., Brun, A. & Boyer, A. Densifying a behavioral recommender system by social networks link prediction methods. Soc. 

Netw. Anal. Min. 1(3), 159–172. https:// doi. org/ 10. 1007/ s13278- 010- 0004-6 (2011).
 6. Yadav, A., Singh, Y. N. & Singh, R. R. Improving routing performance in AODV with link prediction in mobile adhoc networks. 

Wireless Pers. Commun. 83(1), 603–618. https:// doi. org/ 10. 1007/ s11277- 015- 2411-5 (2015).
 7. Lin, D. An Information-Theoretic Definition of Similarity. Proceedings of the Fifteenth International Conference on Machine 

Learning. 657297: Morgan Kaufmann Publishers Inc.; 1998. p. 296–304.
 8. Chen, H., Li, X., Huang, Z. (eds) Link prediction approach to collaborative filtering. Proceedings of the 5th ACM/IEEE-CS Joint 

Conference on Digital Libraries (JCDL ’05); 2005 7–11 June 2005.
 9. Adamic, L. A. & Adar, E. Friends and neighbors on the Web. Soc. Netw. 25(3), 211–230. https:// doi. org/ 10. 1016/ S0378- 8733(03) 

00009-1 (2003).
 10. Zhou, T., Lü, L. & Zhang, Y.-C. Predicting missing links via local information. Eur. Phys. J. B. 71(4), 623–630. https:// doi. org/ 10. 

1140/ epjb/ e2009- 00335-8 (2009).
 11. Katz, L. A new status index derived from sociometric analysis. Psychometrika 18, 39–43. https:// doi. org/ 10. 1007/ BF022 89026 

(1953).
 12. Brin, S., Page, L. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Seventh International World-Wide Web Confer-

ence (WWW 1998); Brisbane, Australia1998.
 13. Lü, L., Jin, C.-H. & Zhou, T. Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80(4), 

046122. https:// doi. org/ 10. 1103/ PhysR evE. 80. 046122 (2009).
 14. Liu, W. & Lü, L. Link prediction based on local random walk. EPL (Europhys. Lett.). 89(5), 58007. https:// doi. org/ 10. 1209/ 0295- 

5075/ 89/ 58007 (2010).
 15. Menon, A. K. & Elkan, C. (eds) Link Prediction via Matrix Factorization (Springer, 2011).
 16. Lü, L. & Zhou, T. Link prediction in complex networks: A survey. Phys. A 390(6), 1150–1170. https:// doi. org/ 10. 1016/j. physa. 2010. 

11. 027 (2011).
 17. Tan, F., Xia, Y. & Zhu, B. Link prediction in complex networks: A mutual information perspective. PLoS ONE 9(9), e107056. https:// 

doi. org/ 10. 1371/ journ al. pone. 01070 56 (2014).
 18. Xu, Z., Pu, C. & Yang, J. Link prediction based on path entropy. Phys. A 456, 294–301. https:// doi. org/ 10. 1016/j. physa. 2016. 03. 091 

(2016).
 19. Zhu, B. & Xia, Y. An information-theoretic model for link prediction in complex networks. Sci. Rep. 5(1), 13707. https:// doi. org/ 

10. 1038/ srep1 3707 (2015).
 20. Zhu, B. & Xia, Y. Link Prediction in Weighted Networks: A Weighted Mutual Information Model. PLoS ONE 11(2), e0148265. 

https:// doi. org/ 10. 1371/ journ al. pone. 01482 65 (2016).
 21. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V. New perspectives and methods in link prediction. Proceedings of the 16th ACM 

SIGKDD international conference on Knowledge discovery and data mining; Washington, DC, USA. 1835837: ACM; 2010. p. 
243–252.

 22. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks. KDD 2016, 855–864. https:// doi. org/ 10. 1145/ 29396 
72. 29397 54 (2016).

 23. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D. (eds) Deep Graph Infomax. ICLR (Poster); 2019.
 24. Park, C., Han, J. & Yu, H. Deep multiplex graph infomax: Attentive multiplex network embedding using global information. 

Knowl.-Based Syst. 197, 105861. https:// doi. org/ 10. 1016/j. knosys. 2020. 105861 (2020).

Target layer Auxiliary layer

SIMBINS-LPI
STATE-OF-THE-ART 
( ϕ = 0.5)

SB
A
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YaoPL YaoGL SameiHP
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Colocalization 75.9 75.6 76.6 93.0
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