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Abstract: The development of mechanochromic fluorophors with high-brightness, solid-state fluores-
cence is very significant and challenging. Herein, highly solid-state emissive triphenylamine, car-
bazole and tetraphenylethylene-functionalized benzothiadiazole derivatives were developed. These
compounds showed remarkable aggregation-induced emission and solvatochromic fluorescence
characteristics. Furthermore, these fluorogenic compounds also displayed different mechanically
triggering fluorescence responses.

Keywords: triphenylamine; carbazole; tetraphenylethylene; mechanochromic; aggregation-induced
emission

1. Introduction

Organic materials with high-brightness, solid-state emission characteristics have at-
tracted much attention due to their application prospects in mechanical sensors, deforma-
tion detectors, security systems, memory devices, data storage, fluorescent probes, and
various optoelectronic devices [1–11]. In the past decade, smart materials have aroused
extensive research enthusiasm in the fields of mechanical sensors, organic light-emitting
diodes, and optical storage [12–18]. In recent years, several strategies have been used
to dynamically modulate fluorescence emissions [19–22]. The Tian group achieved color
switchable fluorescence emissions from a single fluorophore in different assembly states [23].
Fluorescence emissions can also be modulated by external stimuli. The type of stimula-
tion can be divided into photochromic, electrochromic, thermochromic, mechanochromic,
and so on [24–35]. The emission properties of mechanochromic fluorescence materials
can be controlled by physical channels, such as anisotropic grinding, shearing, or rub-
bing [36–40]. These approaches only change molecular stacking patterns or conformations,
but do not alter the native chemical structures. However, it is difficult to develop and
apply conventional fluorophores due to the aggregation caused by quenching (ACQ).
Recently, aggregation-induced emission (AIE) and aggregation-induced emission enhance-
ment (AIEE) have been proposed as fundamental solutions to tackle the challenge of
ACQ [41,42]. These approaches open a new path in the creation of robust, solid-state
luminescent materials. According to the restriction of intramolecular motions (RIM) mech-
anism, the steric resistance of aggregated states in luminescent groups with AIE properties
interferes with non-radioactive decay channels, allowing the energy of excited states to
be dissipated through radiative relaxation [43–45]. Thus, luminogenic materials with AIE

Molecules 2022, 27, 4740. https://doi.org/10.3390/molecules27154740 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27154740
https://doi.org/10.3390/molecules27154740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-2256-4830
https://doi.org/10.3390/molecules27154740
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27154740?type=check_update&version=1


Molecules 2022, 27, 4740 2 of 10

or AIEE properties show a remarkable emission enhancement when they are aggregated
in solids.

Recently, the development of organic stimuli-responsive materials has gained signifi-
cant attention. Mechanochromic luminescence (MCL) and AIE are promising strategies for
the design of novel, robust luminescent materials. On the one hand, benzothiadiazoles are
widely used in the construction of fluorescent compounds due to their π-extended structure
and electron-withdrawing properties [46,47]. On the other hand, phenanthroimidazoles
are rigid, planar, aromatic heterocyclic compounds formed by the fusion of phenanthrene
and imidazole rings, with high thermal stability, excellent charge carrier mobility, wide
band gap, and excellent fluorescence quantum yields [48–51]. Simple functional modifi-
cations at the N1 and C2 positions of the imidazole ring and the presence of two nitro-
gen atoms make them bipolar, making phenanthromizole derivatives suitable for use as
mechanochromic materials [52].

Herein, we describe the synthesis of benzothiadiazoles 1–3 incorporated with tripheny-
lamine, carbazole, tetraphenylethylene-functionalized phenanthroimidazole unit. These
compounds showed solvatochromic fluorescence characteristics and diverse aggregate
emission (Scheme 1). More specifically, compound 1 exhibited excellent AIE behavior, com-
pound 2 exhibited remarkable AIEE behavior, and compound 3 exhibited rare aggregation-
induced fluorescence discoloration behavior. Furthermore, fluorogenic compounds 1 and 3
also displayed reversible mechanically triggering fluorescence responses.
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Scheme 1. The molecular structures of compounds 1–3.

2. Results and Discussion
2.1. Aggregation-Inducing Characteristics of Compounds 1–3

After obtaining compounds 1–3, a preliminary study of their aggregation-inducing
properties was carried out. The UV-vis absorption and fluorescence (FL) spectra were
measured in DMF-H2O mixtures with different volume fractions of water (f w). Absorption
bands around 350 nm were assigned to the π-π* and n-π* transitions of the conjugated
aromatic skeleton, while the peaks at 400–450 nm were attributed to the intramolecular
charge transfer (ICT) from the donor to acceptor (Figure S1). With the increase of water
content (f w), leveled-off tails appeared in the long wave band. This demonstrated the
formation of nano-aggregates [53,54].

The drastic differences in AIE properties of compounds 1–3 are very interesting. As
shown in Figure 1a, Compound 1 showed almost no fluorescence when its diluted DMF
solution was excited by light. The most likely explanation for this phenomenon is that the
rotational motions of molecular rotors consumed exciton energy and increased nonradiative
decay rates, resulting in non-emission [55]. The intensity of the fluorescence emission at
around 600 nm increased gradually upon increasing the fraction of water. The maximum
PL intensity was observed at 70% water content upon aggregation. As depicted in Figure 1,
a dramatic increase of emission intensity revealed the AIE properties of compound 1.
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Figure 1. Fluorescence spectra of the dilute solutions of luminogens 1–3 (a–c) in DMF-H2O mixtures
with various water contents. Inset: fluorescence images (f w; excited wavelength: 365 nm, 20 mm).

In addition, the DMF solution of 2 emitted a weak luminescence, and when a little wa-
ter (<20 vol%) was added to the solution, the fluorescence was further quenched, which can
be attributed to the polarity change of the solvent (Figure 1b). The twisted Intramolecular
charge transfer (TICT) process may have reduced the emission intensity in this mixed polar
solvent. When the water content was increased to above 30 vol%, remarkable fluorescence
was observed at about 539 nm, the intensity of which was further increased upon repeated
addition of water, demonstrating typical AIEE characteristics.

The most interesting finding, however, is that compound 3 showed a fairly rare
changing aggregate fluorescence behavior (Figure 1c). In pure DMF, the emission spectrum
of luminogen 3 had a peak at 583 nm and emitted orange fluorescence under UV irradiation.
With increasing water content in the DMF solution (<30 vol%), compound 3 displayed
a red shift of 24 nm and the emission was quenched gradually. The emission intensity
increased gradually as the water fraction increased from 30 to 40%. Then, a sharp intensity
increase was noted as the water fraction went up from 40% to 50% and blue shift occurred.
With higher water fractions (=90 vol%), the emission was characterized by blue-shift with
a maximum at 541 nm.

Dynamic light scattering (DLS) experiments clearly revealed the generation of nanoag-
gregates of luminogens 1–3 with average particle sizes of 82 nm, 98 nm, and 76 nm,
respectively (Figure 2). The remarkably increased emissions of compounds 1–3 from the
aggregates may be due to radiative decay activated by restricted rotor motions. Simultane-
ously, the twisted conformations of triphenylamine, tetraphenylethylene, and carbazole
segments could prolong the intermolecular distance and prevent emission quenching by
the reduction of intermolecular π-π interactions, resulting in a new form of luminescence in
the aggregate. According to the above analysis, the triphenylamine-, tetraphenylethylene-,
and carbazole-functionalized luminogens exhibited AIE, AIEE, and changing aggregate
fluorescence, respectively.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 10 
 

 

 

Figure 2. Size distribution curves of 1–3 (a–c) in DMF-H2O mixtures with fw = 90%. Concentration: 

20 μM. 

2.2. Solvatochromic Effect of Compounds 1–3 

Compounds 1–3 possessed typical push-pull substituents, in which the benzothi-

adiazole unit played the role of electron-acceptor against the electron-donating tri-

phenylamine-, tetraphenylethylene-, and carbazole-functionalized phenanthroimidazole 

derivatives. The formation of a D-A structure strongly affects the photophysics proper-

ties of luminogen in solution, which is strongly dependent on the solvent polarity. Fig-

ure 3 shows the fluorescence spectra of compounds 1–3 in solvents varying in polarity. 

Detailed optical data are summarized in Table S1. From non-polar solvents (e.g., petro-

leum ether) to polar solvents (e.g., tetrahydrofuran), strong solvent-dependent emissions 

of compound 1, ranging from 516 nm to 617 nm, were demonstrated, exhibiting a re-

markable bathochromic effect. This remarkable solvatochromic phenomenon can be ob-

served in the fluorescence photos. Similarly, with the increase of solvent polarity, com-

pounds 2 and 3 showed the maximum emission wavelength bathochromic shift, i.e., 

from 515 nm to 564 nm for 2, and from 510 nm to 554 m for 3. In a word, these results 

indicate that the fluorescence behavior of luminogens 1–3 was sensitive to solvent polar-

ity, exhibiting strong solvatochromism. 

 

Figure 3. Normalized fluorescence spectra (Excitation wavelength = 365 nm) of compounds 1–3 (a–

c) in different solvents. FL images of compounds 1–3 (d–f) in different solvents under 365-nm UV 

illumination. Concentration: 20 μM. 

Figure 2. Size distribution curves of 1–3 (a–c) in DMF-H2O mixtures with f w = 90%. Concentration:
20 µM.



Molecules 2022, 27, 4740 4 of 10

2.2. Solvatochromic Effect of Compounds 1–3

Compounds 1–3 possessed typical push-pull substituents, in which the benzothiadia-
zole unit played the role of electron-acceptor against the electron-donating triphenylamine-,
tetraphenylethylene-, and carbazole-functionalized phenanthroimidazole derivatives. The
formation of a D-A structure strongly affects the photophysics properties of luminogen
in solution, which is strongly dependent on the solvent polarity. Figure 3 shows the fluo-
rescence spectra of compounds 1–3 in solvents varying in polarity. Detailed optical data
are summarized in Table S1. From non-polar solvents (e.g., petroleum ether) to polar
solvents (e.g., tetrahydrofuran), strong solvent-dependent emissions of compound 1, rang-
ing from 516 nm to 617 nm, were demonstrated, exhibiting a remarkable bathochromic
effect. This remarkable solvatochromic phenomenon can be observed in the fluorescence
photos. Similarly, with the increase of solvent polarity, compounds 2 and 3 showed the
maximum emission wavelength bathochromic shift, i.e., from 515 nm to 564 nm for 2, and
from 510 nm to 554 m for 3. In a word, these results indicate that the fluorescence behavior
of luminogens 1–3 was sensitive to solvent polarity, exhibiting strong solvatochromism.
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2.3. Solid-State Fluorescence Characteristics of Compounds 1–3

We investigated all compounds in more detail due to their bright luminescence. Upon
excitation, compounds 1–3 exhibited bright yellowish-green emissions; their emission
maxima were determined to be 550 nm, 535 nm, and 532 nm, respectively (Figure 4). We
found that solid-state emissions were not regulated by modifying phenanthroimidazole;
on the contrary, their mechanochromic properties were changed to a great degree. Specifi-
cally, compounds 1 and 3 exhibited excellent reversible mechanochromic behavior, while
compound 2 had no mechanochromic properties.

As-prepared sample 1 exhibited an emission peak at 550 nm, with an associated
fluorescence quantum yield of 10.12%. However, gentle grinding induced a red-shift of the
emission to 583 nm (Φ = 10.35%), which could be ascribed to the amorphous form of the
sample (Figure 4a, Table S2). Such an amorphous state was further confirmed by the flat
signal in the powder XRD measurement (Figure 5). Meanwhile, the red-shifted emission
could be attributed to the collapse of the crystalline lattice by grinding, which resulted in the
molecules adopting a more planar conformation [31,56]. Such an amorphous solid can be
crystallized by either heating or fuming with an organic solvent vapor. While fuming with
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the dichloromethane vapor, the amorphous form of 1 was converted into the crystalline
form with the emission peak restored to 550 nm. Moreover, this process could be repeated
several times, indicating the reversible mechanochromic luminescence property of 1 in
response to external stimuli. A similar reversible emission behavior for 3 could be achieved
by a repeated grinding/solvent fuming process. Similarly, compound 2 also underwent
a process from lattice collapse to reconstruction. However, its maximum fluorescence
emission wavelength hardly changed. This suggests that the molecular morphological
change from a crystalline to an amorphous state does not necessarily lead to a change
in fluorescence.
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3. Materials and Methods
3.1. General Methods

All reactions were performed under an argon atmosphere using standard Schlenk
techniques. Unless otherwise stated, all raw materials and solvents were obtained from com-
mercial sources and used without further purification. [4-(1,2,2-triphenylethenyl)phenyl]
boronic acid was prepared using published procedure [57]. All of the anhydrous solvents,
HPLC grade solvents, and other common organic solvents were purchased from com-
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mercial suppliers and used without further purification. The N,N-dimethyl formamide
(DMF)/water mixtures with various water fractions were prepared by slowly adding dis-
tilled water into the DMF solution of samples. NMR spectra were recorded on a Bruker
AV-400 spectrometer at 400 MHz. Coupling constants (J) are expressed in hertz (Hz). Chem-
ical shifts (δ) of NMR are reported in parts per million (ppm) units relative to internal
control (TMS). Mass spectra (MS) were taken in ESI mode on Agilent 1100LCMS (Agilent,
Palo Alto, CA, USA). Ultraviolet-visible absorption spectra were measured by an Agilent
8454 UV/Vis spectrophotometer. Fluorescence spectra were recorded on a Hitachi-F-4600
fluorescence spectrophotometer or Edinburgh Instruments FLS 1000 spectrophotometer.
Absolute fluorescence quantum yields were measured on an Edinburgh FLS1000 spec-
trometer. The X-ray diffraction (XRD) patterns of compounds 1–3 in different solid states
were obtained using a Shimadzu XRD-6000 diffractometer with Ni-filtered and graphite-
monochromated Cu Kα radiation (λ = 1.54 Å, 40 kV, 30 mA). Dynamic light scattering (DLS)
data were obtained by NanoBrook 90 plus. All reactions were monitored using precoated
TLC plates under 254 nm UV light. Silica column chromatography was carried out on silica
gel (300–400 mesh). Grinding experiment: The as-prepared solid powders of compounds
1–3 were put into a mortar and ground with a pestle at room temperature. Solvent-fuming
experiment: the ground samples were suspended above the solvent in a sealed DCM-
containing beaker and then exposed to the vapor for 30 s at room temperature. A general
synthetic route for compounds 1-3 is shown in Scheme 2.
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Scheme 2. Synthesis of benzothiadiazole-containing dibenzobenzimidazole derivatives 1–3.

3.2. General Synthetic Procedure of Intermediate I

To 3,6-Dibromophenanthrene-9,10-dione (3 mmol, 1.0 eq.) were added R-B(OH)2
(7.2 mmol, 2.4 eq.) and Pd (PPh3)4 (0.1 mmol, 3%) in a 100 mL three-necked round-bottom
flask. Then, moderate tetrahydrofuran and sodium carbonate solution (20 mmol L−1) were
added, and the mixture was heated to reflux and stirred for 16 h. After cooling to room
temperature, the reaction mixture was extracted with copious DCM (3 × 50 mL), dried
(Na2SO4), and concentrated in vacuo. The combined organic layers were concentrated and
subjected to flash column chromatography on silica-gel column.

3.3. General Synthetic Procedure and Characterization of Dibenzobenzimidazole Derivatives 1–3

Into a 100 mL three-necked round-bottom were added intermediate I (0.3 mmol,
1.0 eq.), 2,1,3-Benzothiadiazole-4-carboxaldehyde (0.3 mmol, 1.0 eq.), aniline (0.45 mmol,
1.5 eq.), ammonium acetate (1.5 mmol, 5 eq.), and acetic acid (30 mL). The mixture was
refluxed overnight under an argon atmosphere. After that, the mixture was cooled and
filtered, and the solid product was washed in sequence using 15 mL acetic acid/water
mixture (volume ratio: 1:1) and 15 mL water. Finally, the crude product was purified by
column chromatography.

4,4′-(2-(benzo[c][1,2,5]thiadiazol-4-yl)-1-phenyl-1H-phenanthro [9,10-d]imidazole-6,9-
diyl)bis(N,N-diphenylaniline) (1): a yellow solid, yield: 78%. 1H NMR (400 MHz, CDCl3):
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δ 8.99 (s, 1H), 8.71–8.64 (m, 2H), 7.95 (d, J = 8 Hz, 1H), 7.84 (d, J = 12 Hz, 1H), 7.74–7.67 (m,
4H), 7.52–7.46 (m, 3H), 7.42 (s, 1H), 7.34–7.32 (m, 3H), 7.21–7.17 (m, 7H), 7.14–7.09 (m, 8H),
7.04 (t, J = 8, 5H), 6.99–6.94 (m, 6H); 13C NMR (100 MHz, CDCl3): δ 154.8, 153.7, 147.8, 147.8,
147.6, 147.4, 139.3, 138.1, 137.4, 134.8, 133.8, 132.1, 129.5, 129.4, 129.3, 129.0, 128.8, 128.6,
128.2, 127.6, 127.3, 127.1, 124.6, 124.5, 124.4, 123.9, 123.7, 123.6, 123.4, 123.1, 123.1, 122.9,
122.9, 120.3, 118.4; MS-ESI (m/z): Found: [M + H]+ 915.3206, molecular formula C63H48N6S,
requires [M + H]+ 915.3270.

4-(1-phenyl-6,9-bis(4-(1,2,2-triphenylvinyl)phenyl)-1H-phenanthro [9,10-d]imidazol-2-
yl)benzo[c][1,2,5]thiadiazole (2): a yellow solid, yield: 71%. 1H NMR (400 MHz, CDCl3): δ
8.94 (s, 1H), 8.67–8.60 (m, 2H), 7.95 (d, J = 8 Hz, 1H), 7.79 (d, J = 8 Hz, 1H), 7.68 (d, J = 8 Hz,
2H), 7.56 (d, J = 8 Hz, 2H), 7.51–7.42 (m, 4H), 7.31–7.26 (m, 5H), 7.17 (s, 1H), 7.06 (s, 8H),
7.03 (t, J = 4.0 Hz, 15H), 6.99 (t, J = 4.0 6H), 6.96 (s, 2H), 6.92 (d, J = 12 Hz, 2H); 13C NMR
(100 MHz, CDCl3): δ 154.8, 153.7, 147.7, 143.8, 143.8, 143.7, 143.6, 143.0, 142.9, 141.3, 141.2,
140.6, 140.4, 139.5, 138.6, 138.0, 137.9, 137.8, 137.5, 132.1, 131.7, 131.4, 131.3, 131.3, 129.5,
128.9, 128.7, 128.6, 128.3, 127.7, 127.2, 126.7, 126.6, 126.5, 126.43, 126.4, 125.7, 124.6, 124.6,
124.4, 123.7, 123.6, 123.0, 122.8, 120.7, 119.0; MS-ESI (m/z): Found: [M + H]+ 1089.3988,
molecular formula C79H52N4S, requires [M + H]+ 1089.3991.

4-(6,9-bis(4-(9H-carbazol-9-yl)phenyl)-1-phenyl-1H-phenanthro [9,10-d]imidazol-2-
yl)benzo[c][1,2,5]thiadiazole (3): a yellow solid, yield: 73%. 1H NMR (400 MHz, CDCl3):
δ 9.17 (s, 1H), 8.87 (d, J = 8 Hz, 1H), 8.82 (d, J = 12 Hz, 1H), 8.10 (d, J = 4 Hz, 4H), 8.05 (s,
1H), 7.99 (d, J = 8 Hz, 2H), 7.90 (d, J = 8 Hz, 1H), 7.75 (d, J = 8 Hz, 1H), 7.64 (d, J = 8 Hz,
2H), 7.56 (s, 3H), 7.49 (s, 4H), 7.46 (s, 1H), 7.43 (s, 2H), 7.40 (s, 3H), 7.37 (d, J = 4 Hz, 5H),
7.24 (t, J = 8 Hz, 5H), 7.03 (t, J = 8 Hz, 1H); 13C NMR (100 MHz, CDCl3): δ 154.8, 153.7,
141.0, 140.9, 139.9, 139.1, 138.1, 137.4, 137.2, 132.2, 129.7, 129.1, 128.9, 128.8, 128.0, 127.6,
127.3, 127.3, 126.0, 125.0, 124.8, 124.3, 124.1, 123.9, 123.5, 123.4, 123.1, 121.1, 120.4, 120.3,
120.1, 120.0, 119.4, 109.9, 109.8. Found: [M + H]+ 911.2906, molecular formula C63H38N6S,
requires [M + H]+ 911.2957.

4. Conclusions

In summary, novel benzothiadiazole-based triphenylamine-, carbazole-, and
tetraphenylethylene-containing luminogens were designed and synthesized to investi-
gate their AIE, solvatochromic, and mechanofluorochromic characteristics. Luminogen 1
showed a typical AIE effect, luminogen 2 displayed excellent AIEE properties, and lumino-
gen 3 exhibited unconventional changing aggregate fluorescence behavior. As expected,
all three compounds also revealed a remarkable solvatochromic effect. In addition, com-
pounds 1 and 3 exhibited reversible mechanofluorochromism phenomena. The PXRD
results indicated that the reversible conversion from a crystalline to an amorphous state
was responsible for the reversible mechanofluorochromic characteristics of these com-
pounds. This work will be beneficial for the development of mechanical-force sensors with
AIE features.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27154740/s1. Figure S1. UV-Vis absorption spectra of compounds 1–3. Table S1.
Photophysical properties of compounds 1–3. Table S2. Emission maxima of original, ground and
fumed compounds 1–3. Figures S2–S4. 1H NMR spectrum of 1–3 in CDCl3. Figures S5–S7. 13C NMR
spectrum of 1–3 in CDCl3. Figures S8–S10 Mass spectra of luminogens 1–3.
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