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Simple Summary: Cervical cancer is the most common gynecological cancer caused by persistent
infections with human papilloma viruses. Over time, this infection leads to secretion of inflammatory
proteins in the cervix, which exacerbates the neoplastic and senescent changes to the cervical epithelial
lining. We measured nineteen serum proteins in retrospectively collected samples from cervical
cancer patients. We show here that 10 out of 19 proteins are associated with senescence phenotype in
cervical cancer patients. This senescence associated protein signature influences how cervical cancer
patients responds to therapy.

Abstract: Molecular biomarkers that can predict survival and therapeutic outcome are still lacking for
cervical cancer. Here we measured a panel of 19 serum proteins in sera from 565 patients with stage II
or III cervical cancer and identified 10 proteins that have an impact on disease specific survival (DSS)
(Hazzard’s ratio; HR = 1.51–2.1). Surprisingly, all ten proteins are implicated in senescence-associated
secreted phenotype (SASP), a hallmark of cellular senescence. Machine learning using Ridge regression
of these SASP proteins can robustly stratify patients with high SASP, which is associated with poor
survival, and patients with low SASP associated with good survival (HR = 3.09–4.52). Furthermore,
brachytherapy, an effective therapy for cervical cancer, greatly improves survival in SASP-high
patients (HR = 3.3, p < 5 × 10−5) but has little impact on survival of SASP-low patients (HR = 1.5,
p = 0.31). These results demonstrate that cellular senescence is a major determining factor for survival
and therapeutic response in cervical cancer and suggest that senescence reduction therapy may be an
efficacious strategy to improve the therapeutic outcome of cervical cancer.
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therapy; prognosis
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1. Introduction

Cervical cancer is the most common gynecological cancer, responsible for an estimated 311,365 deaths
worldwide [1]. In 99% of cervical cancer cases, infections by human papilloma viruses (HPV) [2] is the
causative agent; however, the majority of the infections do not progress to cancer. Persistent infections
with high-risk HPV leads to integration of E6 and E7 oncogenes into the host genome [3]. In the early
phase, the E6 and E7 oncogenes-encoded proteins target the tumor suppressor genes such as p53 and
Rb [4], and also play a role in altering immune response by deregulating the JAK-STAT pathway [3].

Once established the HPV promotes alterations in the immune system by secretion of inflammatory
cytokines and immune cell infiltrations in cervix [5]. In a recent study increased levels of inflammatory
cytokines were observed in women <50 years of age with cervical intraepithelial neoplasia (CIN) and
invasive cervical carcinoma (ICC) [6]. Sustained release of the cytokines and inflammatory mediators by
the neoplastic cells of the cervix leads to migration of immune cells into the cervical microenvironment,
which has been shown to exacerbate the neoplastic changes [7]. Increased infiltration of immune
cells have been observed in women <50 years of age reported to clinic with high-grade squamous
intra-epithelial lesions and ICC [8]. Elevated levels of circulating cytokines can distinguish low-
and high-grade lesions from ICC [6,8]. The sustained elevation in inflammation contributes to
the HPV-mediated tumorigenesis by production of reactive oxygen species (ROS), activation of
inflammatory pathways leading to increased cell proliferation and senescence [5,7,9]. The continuous
proliferation and senescence lead to DNA damage that leads to neoplastic changes in the cervix [10].

In this study, we measured serum levels of 19 proteins using Luminex multiple protein array
to assess their potential role in determining the therapeutic outcome in a large cohort of Peruvian
cervical cancer patients. We report that nine serum proteins have a substantial impact on the survival
of squamous cell cancer of the cervix (SCCC). All nine proteins are part of the senescence-associated
secreted phenotype (SASP), suggesting that cellular senescence is a key determining factor for
therapeutic response and survival for SCCC.

2. Results

2.1. Patient Characteristics

The clinical and demographic data on squamous cell carcinoma of cervix patients (SCCC, n = 565)
with survival data is present in Table 1.

The median age of all study subjects was 49 years (range 26 to 82 years). The study subjects were
grouped into three datasets based on the stage and treatment regimen. All stage II patients (n = 276)
received external beam radiation therapy (EBRT) plus brachytherapy (BT) and will be referred to as
RTBT2 group/dataset. Most stage III patients (n = 203) also received EBRT plus BT and will be referred
to as RTBT3 group, while 86 stage III patients only received EBRT and did not receive brachytherapy
(referred to as RT3 group). As we have shown previously [11], RTBT2 patients have better disease
specific survival (DSS) than RTBT3 patients (hazards ratio; HR = 2.3), indicating a significant influence
of stage on DSS. Furthermore, RTBT3 patients have much better survival than RT3 patients (HR = 6.7),
suggesting that brachytherapy may be associated with substantially better outcome (Table 1).

2.2. Individual Proteins Associated with SCCC Survival

We tested 19 proteins using Luminex multiplex bead array. The dataset was divided into 4 quartiles
containing 25% of the study subjects. We used serum levels in Quartile 1 as a reference to compare
levels in quartile 2–4 (Q2–Q4). The hazard ratios (HR) observed for individual proteins in 3rd quartile
showed elevated protein levels compared to Q1 subjects but there is no statistically significant difference.
Seven proteins showed significant associations between serum levels in 4th quartile (Q4) and poor DSS
were, CRP (Quartile 4 (Q4) HR: 1.89; 95% CI: 1.27–2.81; p = 0.00162), GRO-α (HR: 2.07; 95% CI: 1.4–3.07;
p = 0.00027), HGF (HR: 1.78; 95% CI: 1.18–2.69; p = 0063), MIG (HR: 1.85; 95% CI: 1.23–2.77; p = 0.0028),
MMP1 (HR: 1.69; 95% CI: 1.28–2.26; p = 2.6 × 10−4), SAA (HR: 1.6; 95% CI: 1.19–2.16; p = 0.0021),
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and PAI-1 (HR: 1.79; 95% CI: 1.22–2.62; p = 0.0026) (Table 2). While higher leptin levels (Q4 HR: 0.61;
95% CI: 0.41–0.90; p = 0.014) were found to be associated with better DSS. Statistical evidence for
six proteins including GRO, CRP, HGF, MIG, MMP1 and PAI-1 is strong and still significant after
correcting for multiple testing.

2.3. Subgroup Analysis for Individual Proteins

Since DSS differs significantly by stage and treatment type and significant interactions between
treatment and protein were seen for some proteins such as PAI-1, group-specific analyses were
conducted in the three patient groups that are homogeneous for stage and treatment. In general,
the significant proteins identified in the entire dataset are also significantly associated with survival in
the RTBT2 and RT3 datasets; however, fewer significant proteins were observed in the RTBT3 dataset
(Table 3). Notable exceptions include SCCA, sIL2Rα, and PAI-1. Elevated SCCA (Q4) is associated with
poor survival in RTBT2 (HR = 3.55, p = 0.0018) but not in RTBT3 and RT3. Similarly, increased sIL2Rα
(both Q4 and Q3) is marginally associated with poor survival in RTBT2 patients but not in RTBT3 and
RT3 datasets. These associations were not revealed in the analyses of the entire cohort, probably due
to differences between the datasets. In contrast, elevated PAI-1 (Q4) is strongly associated with poor
survival (HR = 3.98, p = 0.0007) in the RT3 dataset but not in the RTBT2 and RTBT3 datasets, probably
reflecting a difference related to treatment modalities. Kaplan-Meir survival curves for the selective
proteins are shown in Figure 1.

Table 1. Clinical and demographic variables for subjects with squamous cell carcinoma of cervix (n = 565)
recruited in Cervicusco study.

Variable Stage IIB (n = 276) Stage IIIB (n = 289) p-Value

Age at Diagnosis (Years) 48.67 51.14 0.0025

Range (Years) 26–76 27–82
<50 Years (n) 171 140
>50 Years (n) 105 149

Median age (Years) 48 51 0.0015 1

Median DSS (Years)

EBRT NA 0.99 2.3 × 10−26

EBRT +BT NYR 2 4.8

Treatment type (n)

EBRT 86 2.3 × 10−22

EBRT +BT 276 203

Reccurence Sites

No information 223 241
Other Organs 25 12

Pelvis 12 21
1 Kruskall-Wallis test, 2 NYR: not yet reached, EBRT: External beam radiotherapy, BT: Brachytherapy, significance
for differences in median DSS was computed by chi-square test.
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Table 2. Cox proportional hazards ratio (95% CI) for individual proteins after adjusting for stage and
treatment as co-variates.

Protein Quartile (n) HR_Q2 p_
Q2 HR_Q3 p_

Q3 HR_Q4 p_
Q4

CRP 139/149/144/146 1.16
(0.77–1.76) 0.473 1.2 (0.78–1.84) 0.4 1.89

(1.27–2.81) 0.00162

GRO 139/140/131/168 0.879
(0.55–1.40) 0.585 1.52

(1.00–2.32) 0.0517 2.07
(1.40–3.07) 0.000273

HGF 132/148/146/152 1.29
(0.85–1.96) 0.23 0.979

(0.63–1.52) 0.925 1.78
(1.18–2.69) 0.00631

IGFBP2 145/144/144/145 1.12
(0.74–1.68) 0.594 1.19

(0.81–1.77) 0.378 1.22
(0.82–1.83) 0.327

LEPTIN 145/144/144/145 0.78
(0.53–1.14) 0.194 0.70

(0.48–1.02) 0.0601 0.61
(0.41–0.90) 0.014

MIG 146/144/144/144 1.34
(0.89–2.02) 0.16 1.32

(0.87–2.02) 0.193 1.85
(1.23–2.77) 0.00284

MMP1 146/144/144/144 0.891
(0.58–1.36) 0.593 1.36

(0.92–2.01) 0.122 1.69
(1.15–2.48) 0.00778

PDGFAA 145/144/144/145 1.02
(0.69–1.52) 0.914 0.86

(0.57–1.29) 0.47 1.35
(0.92–1.98) 0.127

PDGFAA/AB 145/144/144/145 0.77
(0.52–1.15) 0.199 1.03

(0.71–1.50) 0.881 1.03
(0.70–1.52) 0.876

SAA 146/144/144/144 0.889
(0.59–1.34) 0.573 1.12

(0.75–1.68) 0.577 1.59
(1.08–2.36) 0.02

SCCA 145/144/144/145 1.26
(0.82–1.93) 0.292 1.36

(0.89–2.07) 0.156 1.38
(0.90–2.11) 0.139

sE.Selectin 146/144/144/144 0.757
(0.51–1.13) 0.171 0.974

(0.66–1.43) 0.891 1.09
(0.75–1.58) 0.642

sEGFR 145/144/144/145 0.727
(0.50–1.06) 0.101 0.93

(0.64–1.36) 0.707 0.696
(0.48–1.02) 0.0602

sIL1RII 145/144/144/145 0.774
(0.53–1.13) 0.183 0.734

(0.50–1.07) 0.105 0.737
(0.50–1.08) 0.118

sIL2Rα 145/144/144/145 0.947
(0.62–1.44) 0.8 1.32

(0.89–1.96) 0.169 1.43
(0.96–2.13) 0.0795

sIL6R 146/144/144/144 1.1 (0.75–1.60) 0.624 1 (0.68–1.47) 0.985 0.822
(0.55–1.23) 0.336

sTNFRI 146/144/144/144 0.913
(0.61–1.37) 0.66 1.25

(0.85–1.83) 0.258 1.04
(0.70–1.55) 0.84

sTNFRII 145/144/144/145 0.717
(0.47–1.08) 0.113 0.87

(0.59–1.28) 0.479 1.15
(0.78–1.69) 0.489

tPAI1 145/144/144/145 1.23
(0.82–1.86) 0.316 1.07

(0.71–1.62) 0.74 1.79
(1.22–2.62) 0.00269

Protein levels were divided into 4 quartiles containing 25% subjects. Quartile 1 was compared to quartile 2–4.
p < 0.05 was considered significant. n: number of individuals in each quartile.

2.4. Multi-Protein Models Have Greater Prognostic Potential for RTBT2 Patients

Surprisingly, all proteins significantly associated with SCCC survival are implicated in cellular
senescence and are either senescence-associated secretory phenotype (SASP) proteins or are involved
in the regulation of SASP (see discussion). Therefore, we attempted to develop SASP models/scores
and evaluated their potential utility as SCCC prognosis biomarkers. Our analytical pipeline includes:
(1) computation of linear predictor values for each patient using Ridge regression for multiple proteins,
(2) assign each patient into two or more subgroups using the linear predictor values, and (3) evaluation
of survival of the subgroups using Cox proportional analysis. In contrast to the conventional approach
that develops one Ridge model using all patients in the dataset, we sampled 3000 training and test
pairs, each containing 50% of the patients in the dataset. This procedure allowed us to generate and test
1000 different models. Additional models may be generated and tested if desired. This analytical pipeline
was first applied to the RTBT2 dataset with a panel of 8 proteins (CRP, GRO, LEPTIN, MIG, MMP1,
SCCA SAA, and sIL2Rα) that showed significant association with survival at the individual protein level.
The sampled training and testing datasets were divided into SASP-low and SASP-high subset using
40th percentile as cutoff value. The analyses generated a number of models with consistent results in
the training and testing pairs (HR for high SASP > 3.5), suggesting that the multi-protein models have
much better prognostic value than any individual proteins. Data for the top 17 models are summarized in
Table 3.
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Table 3. Cox proportional hazards ratio (95% CI) for 10 indvidual proteins for three subgroups based on stage and treatment type.

Model Number
RTBT2 Training & Testing RTBT2 Bootstrapping (1000) RTBT3 Data Set

Train HR Train_p HR_Test Test_ p Mean HR p > 0.05 p = 0.05–0.001 p < 0.001 HR (95% CI) p Value

RTBT2: 8 Protein models

1395 3.07 (1.34–7.05) 0.00826 5.66 (1.73–18.51) 0.00417 4.05 (2.63–7.07) 1 496 503 2 (1.27–3.15) 0.00264
525 3.19 (1.47–6.92) 0.0034 3.26 (1.32–8.05) 0.0103 3.37 (2.31–5.24) 1 498 501 2.21 (1.42–3.45) 0.000478
1670 3.15 (1.37–7.28) 0.00703 3.04 (1.38–6.7) 0.00572 3.17 (2.22–4.74) 1 566 433 2.32 (1.49–3.61) 0.00018
33 3.21 (1.40–7.34) 0.00588 4.14 (1.45–11.77) 0.00777 3.71 (2.49–6.02) 2 583 415 2.02 (1.29–3.19) 0.00231
1390 3.06 (1.41–6.66) 0.00481 3.23 (1.31–7.93) 0.0106 3.25 (2.24–4.8) 1 593 406 2.33 (1.49–3.64) 0.000196
406 3.02 (1.31–6.94) 0.00923 3.30 (1.43–7.58) 0.00494 3.24 (2.26–4.81) 2 596 402 2.08 (1.34–3.24) 0.00109
1055 3.21 (1.40–7.35) 0.00584 3.56 (1.38–9.24) 0.00889 3.49 (2.35–5.45) 2 606 392 2.12 (1.35–3.32) 0.00103
152 3.27 (1.34–8.01) 0.00947 3.01 (1.32–6.83) 0.00854 3.27 (2.23–5.02) 1 661 338 2.52 (1.63–3.9) 3.59 × 10−5

1472 3.63 (1.38–9.55) 0.00902 3.22 (1.35–7.66) 0.00839 3.61 (2.44–5.76) 1 661 338 2.45 (1.58–3.8) 5.84 × 10−5

1241 3.11 (1.26–7.64) 0.0134 3.00 (1.38–6.53) 0.00559 3.15 (2.22–4.73) 2 675 323 2.08 (1.33–3.25) 0.00142
679 3.03 (1.38–6.64) 0.00559 3.13 (1.28–7.62) 0.0122 3.13 (2.19–4.84) 3 703 294 2.34 (1.51–3.63) 0.000139
636 3.21 (1.41–7.34) 0.00558 3.02 (1.24–7.34) 0.0148 3.17 (2.12–4.74) 7 726 267 2.32 (1.48–3.61) 0.000218
1574 3.98 (1.64–9.65) 0.00225 4.23 (1.49–11.98) 0.00668 4.36 (2.8–7.32) 6 994 8 2.04 (1.3–3.2) 0.00186
142 5.11 (1.98–13.19) 0.000741 3.09 (1.19–8.0) 0.0203 4.20 (2.82–6.88) 7 993 8 2.19 (1.4–3.42) 0.000553
804 4.22 (1.62–10.99) 0.00324 4.13 (1.46–11.66) 0.00742 4.52 (2.91–7.85) 7 993 8 2.33 (1.49–3.66) 0.000226
54 4.13 (1.72–9.92) 0.00154 3.24 (1.34–7.89) 0.00938 3.82 (2.56–5.96) 11 989 8 2.13 (1.36–3.34) 0.000962
599 4.64 (1.8–11.96) 0.00149 3.05 (1.26–7.4) 0.0135 3.90 (2.58–5.96) 15 985 8 2.1 (1.34–3.28) 0.00122

RTBT2: 7 Protein models

894 3.39 (1.39–8.24) 0.00707 3.63 (1.59–8.29) 0.00222 3.67 (2.52–5.74) 1 356 643 2.55 (1.64–3.97) 3.23 × 10−5

242 3.73 (1.55–8.99) 0.00334 3.03 (1.37–6.72) 0.00638 3.49 (2.4–5.29) 2 403 595 2.3 (1.48–3.6) 0.000245
206 3.31 (1.45–7.57) 0.00447 3.55 (1.46–8.63) 0.00515 3.56 (2.41–5.65) 1 447 552 2.38 (1.52–3.72) 0.000138
1713 3.32 (1.36–8.07) 0.00814 3.02 (1.37–6.62) 0.00593 3.22 (2.24–4.74) 1 611 388 2.14 (1.37–3.34) 0.000791
871 3.11 (1.43–6.75) 0.00416 6.72 (1.59–28.33) 0.00943 3.85 (2.52–6.35) 2 636 362 2.15 (1.36–3.38) 0.000975
29 3.83 (1.68–8.72) 0.00136 3.18 (1.11–9.12) 0.0312 3.51 (2.28–5.66) 2 734 264 2.06 (1.32–3.24) 0.00155
1875 3.26 (1.42–7.49) 0.00548 3.64 (1.28–10.32) 0.0153 3.46 (2.29–5.46) 4 742 254 2.08 (1.32–3.3) 0.00174
897 3.02 (1.32–6.91) 0.00901 3.12 (1.29–7.55) 0.0118 3.14 (2.16–4.89) 4 754 242 2.33 (1.48–3.65) 0.000239
841 3.20 (1.4–7.31) 0.00571 3.30 (1.27–8.59) 0.0142 3.29 (2.21–5.23) 4 763 233 2.09 (1.33–3.27) 0.00129
599 3.00 (1.31–6.87) 0.00929 3.03 (1.25–7.34) 0.0141 3.09 (2.11–4.69) 2 805 193 2.09 (1.33–3.27) 0.00129
859 3.03 (1.32–6.94) 0.0088 3.23 (1.25–8.36) 0.0158 3.23 (2.13–5.33) 6 803 191 2.41 (1.54–3.76) 0.000111
1229 3.24 (1.33–7.87) 0.0095 3.67 (1.3–10.39) 0.0142 3.56 (2.33–5.85) 6 804 190 2.73 (1.76–4.23) 7.27 × 10−6

15 3.36 (1.38–8.18) 0.00743 4.64 (1.8–11.94) 0.00147 4.20 (2.83–6.8) 4 996 0 2.21 (1.4–3.48) 0.000615
1579 4.04 (1.68–9.72) 0.0018 3.64 (1.57–8.43) 0.00251 3.96 (2.66–6.25) 6 994 0 2.23 (1.43–3.48) 0.000414

Protein levels were divided into 4 quartiles containing 25% subjects. Quartile 1 was compared to quartile 2–4. p < 0.05 was considered significant, n: number of individuals in each quartile.
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Furthermore, we also generated and tested RTBT2 models in a similar way using seven proteins (CRP,
GRO, LEPTIN, MIG, MMP1, SCCA and HGF), of which six are also included in the 8-protein models.
This panel of seven proteins yielded 14 excellent models with consistent HRs in the training and test pairs
(Table 3). Kaplan-Meir survival curves for the selective models shown in Figure 2 confirm the excellent
prognostic potential for these multi-protein models.
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Figure 1. Kaplan-Meir curves curves for CPR (a–c), showing differences in survival in three groups
identified based on stage (II and III) and treatment type (EBRT and EBRT+BT). Group 1: Stage II treated
with EBRT+BT (a,d,g,j), Group 2: Stage III treated with EBRT+BT (b,e,h,k) and Group 3: Stage III
treated with EBRT alone (c,f,i,l). serum level for each protein was divided into quartiles containing 25%
of patients, Q1: Quartile 1 (0–25%), Q2: Quartile 2 (25–50%), Q3: Quartile 3 (50–75%) and Q4: Quartile
4 (75–100%). Quartile 1 was compared to Q2–Q3.

The robustness of these top models identified by the training and testing pairs were further
evaluated by 1000 iterations of bootstrapping. Each bootstrap sampled 70% of the RTBT2 patients and
the bootstrapped patient subsets were divided into two subsets at the 40th percentile cutoff based on
the Ridge regression score of each model. HR and p value were computed for each bootstraped data
set. Data for each model are summarized in Table 3, which shows the mean HR for 1000 bootstraps
and the number of bootstraps with different levels of p value. Conventionally, the models are validated
if 95% of the models have p values of <0.05. All 31RTBT2 models showed high robustness with >98.5%
of the bootstraps having p < 0.05. The mean HR of these bootstraps range from 3.13 to 4.52, suggesting
that these models are robust and can reliably identify patients with high SASP and bad prognosis.
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Figure 2. Kaplan-Meir curves for Ridge models developed with the RTBT2 dataset. Shown for each
representative model are survival curves for the training subset (column 1), testing subset (column2),
all RTBT2 dataset (column3) and validation in the RTBT3 dataset (column4). Patients in each training
subset were divided into high (60%) versus low (40%) for survival comparison and the cutoff threshold
was applied to the testing and the independent RTBT3 dataset.

These 31 RTBT2 models were further validated in the independent RTBT3 dataset to determine
their performance on a dataset that contains patients with a higher stage but received the same therapy
as RTBT2. As shown in Table 3, all 31 RTBT2 models were confirmed to be able to identify RTBT3
patients with high SASP score and worse survival, providing further evidence that the 31 RTBT2
models are good biomarkers for both stage II and stage III patients.

2.5. SASP Models Optimized for RT3 Patients

The models derived from the RTBT2 dataset were not expected to perform very well for the RT3
patients who differ from RTBT2 by both stage and treatment modality. Therefore, we searched new
models for RT3 patients by applying the analytical pipeline to the RT3 dataset using the same eight
and seven protein sets. The top 25 selected models have HRs between 3.05 and 3.93 in training and
between 3.04 and 5.23 in testing (Table 4 and Figure 3). All 25 models were validated by 1000 iterations
of bootstrapping and the mean HRs from bootstrapping were also high (HR = 2.93–4.61) (Table 4).
All 25 models except one were also validated in the RTBT3 dataset and all models were validated in
RTBT2 dataset (Table 4).
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Table 4. Summary of bootstrapping results showing HR (95%) and number of models having p values < 0.05 for selected models for 7 protein models and 8 protein
models for Group 1–3.

Model
Number

RT3 Training & Testing RT3 Bootstrapping (1000) RTBT2 Data Set RTBT3 Data Set

Train HR Train_p HR_Test Test_ p Mean HR p > 0.05 p =
0.05–0.001 p < 0.001 HR (95% CI) p

Value HR (95% CI) p Value

RT3: 8 Protein models g

54 3.92 (1.65–9.3) 0.00199 3.46 (1.37–8.72) 0.00868 3.65 (2.45–6.17) 1 371 628 1.92 (1.01–3.66) 0.0482 2.48 (1.6–3.86) 5.48 × 10−5

179 3.54 (1.44–8.73) 0.00602 3.16 (1.32–7.54) 0.00961 3.39 (2.25–5.33) 4 591 405 2 (1.2–3.33) 0.00749 2.2 (1.4–3.45) 0.000582
727 3.76 (1.38–10.22) 0.0094 3.19 (1.33–7.65) 0.00917 3.61 (2.39–5.5) 4 624 372 1.94 (1.2–3.14) 0.00678 1.54 (0.98–2.43) 0.0596
85 3.85 (1.56–9.48) 0.00338 3.81 (1.28–11.31) 0.016 3.87 (2.53–5.96) 4 635 361 2.01 (1.23–3.29) 0.00508 1.85 (1.17–2.93) 0.00852

1590 3.18 (1.23–8.21) 0.017 3.56 (1.54–8.27) 0.00308 3.4 (2.27–5.21) 4 659 337 2.08 (1.22–3.57) 0.00758 2.59 (1.67–4.01) 2.08 × 10−5

126 3.27 (1.35–7.91) 0.00868 4.03 (1.5–10.82) 0.00572 3.44 (2.22–5.42) 10 707 283 2.02 (1.24–3.28) 0.00463 2.11 (1.34–3.33) 0.00126
345 3.4 (1.39–8.32) 0.00736 3.04 (1.26–7.36) 0.0134 3.04 (2–4.91) 18 759 223 1.91 (1.11–3.27) 0.019 2.19 (1.4–3.41) 0.000551
1058 3.19 (1.32–7.68) 0.00979 3.25 (1.26–8.4) 0.0147 3.26 (2.23–4.9) 7 778 215 2.4 (1.46–3.96) 0.00055 2 (1.28–3.12) 0.00224
1205 3.81 (1.62–8.94) 0.00216 3.71 (1.34–10.23) 0.0115 3.1 (2.06–4.84) 19 784 197 2.1 (1.3–3.37) 0.00231 1.64 (1.05–2.57) 0.0298
1539 5.42 (2.08–14.13) 0.00054 3.22 (1.07–9.66) 0.0374 3.12 (2.06–4.8) 24 812 164 2.5 (1.55–4.02) 0.00016 1.52 (0.96–2.4) 0.0725
1430 3.71 (1.47–9.34) 0.00543 3.35 (1.12–10.04) 0.031 3.22 (2.14–5.09) 23 862 115 1.99 (1.22–3.23) 0.00565 1.23 (0.77–1.96) 0.396
1908 3.28 (1.37–7.86) 0.00763 3.11 (1.15–8.45) 0.0259 3.05 (1.96–4.72) 43 856 101 2.36 (1.44–3.87) 0.00062 1.82 (1.17–2.85) 0.00794
435 3.27 (1.44–7.47) 0.00482 3.06 (1.02–9.2) 0.0468 3.03 (2.01–4.68) 41 865 94 2.34 (1.44–3.81) 0.00059 1.66 (1.06–2.61) 0.028
384 5.93 (2.48–14.17) 6.25E-05 4.19 (1.39–12.64) 0.011 4.61 (3–7.28) 2 998 8 1.99 (1.24–3.2) 0.00455 2.07 (1.33–3.22) 0.00119
1464 4.24 (1.57–11.46) 0.00443 3.89 (1.43–10.56) 0.00767 4.52 (2.92–7.61) 14 986 8 1.92 (1.19–3.12) 0.00803 2 (1.28–3.11) 0.0023
304 4.28 (1.64–11.16) 0.00292 5.46 (2.21–13.49) 0.00023 3.78 (2.54–6.08) 19 981 8 1.96 (1.09–3.53) 0.025 2.63 (1.7–4.08) 1.48 × 10−5

1722 3.42 (1.47–7.99) 0.00443 3.56 (1.37–9.27) 0.00941 3.58 (2.4–5.84) 38 962 8 2.01 (1.13–3.57) 0.0172 2.53 (1.63–3.93) 3.80 × 10−5

RT3: 7 Protein models

1689 7.54 (2.69–21.11) 0.00012 3.91 (1.51–10.13) 0.00493 5.07 (3.32–8.27) 0 45 955 2.03 (1.24–3.33) 0.0048 2.29 (1.47–3.58) 0.00026
775 5.51 (2.13–14.23) 0.00042 3.54 (1.51–8.26) 0.0035 4.61 (3.09–7.19) 0 67 933 2.44 (1.46–4.09) 0.0006 2.09 (1.33–3.29) 0.00149
10 3.88 (1.59–9.47) 0.00287 3.49 (1.36–8.95) 0.00928 3.9 (2.74–5.91) 0 249 751 1.91 (1.08–3.39) 0.027 2.22 (1.42–3.48) 0.000499

1969 3.95 (1.64–9.49) 0.00215 5.23 (1.51–18.16) 0.00919 4.34 (2.79–6.77) 0 392 608 1.98 (1.22–3.21) 0.0056 2.43 (1.56–3.78) 8.30 × 10−5

1263 3.41 (1.44–8.05) 0.00512 3.65 (1.4–9.51) 0.00815 3.61 (2.35–5.55) 1 559 440 2.04 (1.19–3.49) 0.0097 2.17 (1.39–3.4) 0.000713
345 4.45 (1.73–11.48) 0.002 3.07 (1.27–7.42) 0.0126 3.41 (2.3–5.16) 1 569 430 2.42 (1.46–4.01) 0.00058 2.34 (1.51–3.64) 0.000158
304 4.28 (1.64–11.16) 0.00292 3.34 (1.4–7.94) 0.00646 3.5 (2.33–5.64) 4 612 384 2 (1.13–3.55) 0.018 2.52 (1.62–3.92) 4.02 × 10−5

1644 3.05 (1.21–7.68) 0.0181 3.24 (1.36–7.7) 0.00777 2.93 (1.97–4.58) 32 768 200 2.05 (1.16–3.64) 0.0141 2.37 (1.52–3.68) 0.000129

Number of models counted for p value intervals in the table.
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Figure 3. Kaplan-Meir curves for Ridge models developed with the RT3 dataset. Shown for each
representative model are survival curves for the training subset (column 1), testing subset (column 2),
validation in the RTBT2 (column 3) and RTBT3 datasets (column 4). Patients in each training subset
were divided into high (40%) versus low (60%) for survival comparison and the cutoff threshold was
applied to the testing and the independent RTBT2 and RTBT3 datasets. Results for selected protein
models are presented here.

2.6. Model Consistency and Plurality Voting (Consensus Model)

Because multiple models can potentially predict survival, it is essential to determine how
consistently these different models classify each patient. Model consistency would be further evidence
that the identified models are valid. Each model was used to assign each patient to either SASP-H or
SASP-L group. The classification data for RTBT2 models on RTBT2 patients are summarized by the
heatmap in Figure 4a, while the RTBT3 models on RT3 patients are summarized in Figure 4b.

The final classification of a patient is determined by plurality voting of all models and the
confidence of the classification is for each patient can be assessed by the percentage of models voting
the patient into a SASP group. For the RTBT2 group 74.9% of patients were classified with 75–100%
confidence (most with 100% confidence), 25.1% of the patients have lower confidence and are referred
to as medium SASP (SASP_M). Similarly for RT3 patients, 79.1% are classified with 75–100% confidence
while 20.9% of the patients are classified with lower confidence. These results suggest that these
models classify are largely consistent. The consensus model identifies patients with significant survival
differences comparable or better than individual models (Figure 4c,d). The survival difference between
SASP_H and SASP_L patients is quite dramatic. For example, the RT3_H patients have a one year
survival of about 20% and a five year survival of about 10% compared to one year survival of 70–90%
and five year survival of 40–60% for the RT3-L patients.

2.7. Multifactorial Prognostication by Stage, Treatment and SASP

Our previous study has shown that stage and especially treatment type are major determinants
of SCCC survival in this cohort [11]. Figure 4c,d show the collective influence of stage, treatment
and SASP score on survival. Stage 2 SASP_L patients treated with brachytherapy (RTBT2_L group)
have the best prognosis (five year survival of about 80%), while stage 3 SASP_H patients without
brachytherapy (RT3_H) have the worst prognosis (5-yrs survival of about 10%). The next best survival
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rate is observed in stage 2 SASP_H patients (RTBT2_H) and stage 3 SASP_L patients (RTBT3_L) who
received brachytherapy (5-yrs survival of about 50%).
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Figure 4. Model consistency and plurality voting for patient classification. (a,b) Heatmaps showing the
voting by each model (row) on each patient (column). Red: SASP_H; Blue: SASP_L. Voting results are
shown for all RTBT2 patients by RTBT2 models (a) and RT# patients by RT3 models (b). (c) Kaplan-Meir
survival curves for SASP_H and SASP_L subsets in each of the three datasets (RTBT2, RTBT3 and RT3).
SASP groups were defined by plurality voting of all 31 RTBT3 Ridge models. A patient is considered
as SASP_H if >50% of the models voted the patient as SASP_H. (d) Kaplan-Meir survival curves for
SASP_H and SASP_L subsets in each of the three datasets (RTBT2, RTBT3 and RT3). SASP groups were
defined by plurality voting of all 25 RT3 Ridge models. A patient is considered as SASP_H if >50% of
the models voted the patient as SASP_H.

2.8. SASP Has a Major Impact on Response to Brachytherapy

Brachytherapy is known to provide benefit to SCCC patients and was shown to be associated with
much better survival in this data set (HR = 6.7) [11,12]. Here, we explored whether brachytherapy
improves survival for all stage 3 patients or only a subset of stage 3 patients.

To answer this question, all stage 3 patients (RTBT3 and RT3) are combined into one dataset
and classified SASP_L or SASP_H group based on their SASP score from each of the 25 RT3 models.
Survival was assessed between brachytherapy and no brachytherapy within SASP_L and SASP_H
patient groups. Surprisingly, irrespective of the 25 models examined, brachytherapy has no significant
impact on survival for SASP_L patients while brachytherapy significantly improves survival of SASP_H
patients (HR > 4.0 for the best models) (Figure 5a, Table 5).
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Figure 5. Impact of SASP on response to brachytherapy. (a) All stage 3 patients (RTBT3+RT3) were
classified into four subsets based on brachytherapy status (+BT and -BT) and SASP status (H vs. L)
using cutoffs for each of the 25 RT3 models. Survival curves are shown for all four subsets for two
representative models. HR and p values are shown between +BT and -BT subsets within SASP_H or
SASP_L subsets. Data for all 25 models are shown in Table 3. (b) All stage 3 patients are classified
into four subsets based on brachytherapy status and SASP status using plurality voting of all 25 RT3
models. SASP_H: >75% models voted the patient as SASP_H; SASP_L: >75% models voted the patient
as SASP_L; SASP_M: <75% of models voted the patient as SASP_H or SASP_L. Data is summarized on
the right.

Using plurality voting of the 25 RT3 models, all stage 3 patients were classified into three SASP
groups: H (>75% models voting high), L (>75% models voting low) and M (less 75% models voting
either high or low). Consistent with the data from individual models, brachytherapy does not provide
a significant survival benefit for SASP_L patients (HR = 1.5, p = 0.311), which represent 47% of all
stage 3 patients, while brachytherapy does provide a significant survival benefit to SASP_H patients
(HR = 3.3, p < 5 × 10−5) and SASP_M patients (HR = 2.4, p = 0.017) (Figure 5b).
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Table 5. Impact of SASP status on response to brachytherapy.

Model
Number

SASP_L SASP_H

# Patients
(+BT/−BT) HR (95% CI) p Value Adj.p # Patients

(+BT/−BT) HR (95% CI) p Value Adj.p

#7-10 151/43 1.95 (1.15–3.32) 0.014 0.34 52/43 3.06 (1.78–5.26) 5.27 × 10−5 0.00131723
#7-1263 152/35 1.79 (0.99–3.21) 0.052 1.30 51/51 2.47 (1.48–4.14) 0.00057642 0.0144105
#7-1644 153/38 2.25 (1.34–3.79) 0.002 0.06 50/48 2.34 (1.37–3.98) 0.00177445 0.04436126
#7-1689 141/40 1.58 (0.88–2.86) 0.126 3.15 62/46 3.70 (2.22–6.17) 5.28 × 10−7 1.32 × 10−5

#7-1969 131/29 1.56 (0.81–3.00) 0.184 4.61 72/57 2.99 (1.87–4.79) 5.04 × 10−6 0.00012591
#7-304 146/34 2.01 (1.11–3.64) 0.020 0.51 57/52 2.27 (1.39–3.70) 0.001019163 0.02547908
#7-345 144/39 1.99 (1.14–3.49) 0.016 0.41 59/47 2.85 (1.72–4.71) 4.43 × 10−5 0.0011083
#7-775 152/39 1.74 (1.00–3.02) 0.051 1.28 51/47 3.24 (1.89–5.54) 1.89 × 10−5 0.00047331

#8-1058 135/34 1.85 (1.02–3.35) 0.043 1.06 68/52 3.09 (1.90–5.03) 5.81 × 10−6 0.00014527
#8-1205 114/33 2.22 (1.22–4.03) 0.009 0.23 89/53 3.16 (2.00–5.01) 9.57 × 10−7 2.39 × 10−5

#8-126 139/36 1.77 (0.98–3.20) 0.057 1.43 64/50 3.10 (1.88–5.11) 8.81 × 10−6 0.00022014
#8-1430 101/28 1.76 (0.92–3.39) 0.090 2.25 102/58 3.61 (2.31–5.66) 1.92 × 10−8 4.80 × 10−7

#8-1464 101/31 1.41 (0.70–2.84) 0.338 8.45 102/55 4.07 (2.61–6.32) 4.82 × 10−10 1.20 × 10−8

#8-1539 114/32 2.01 (1.09–3.68) 0.025 0.63 89/54 3.22 (2.04–5.11) 6.10 × 10−7 1.53 × 10−5

#8-1590 144/34 1.96 (1.08–3.55) 0.026 0.66 59/52 2.56 (1.58–4.16) 0.000145401 0.00363503
#8-1722 158/40 2.10 (1.25–3.53) 0.005 0.12 45/46 2.37 (1.37–4.10) 0.002131359 0.05328398
#8-179 149/40 2.00 (1.17–3.40) 0.011 0.27 54/46 2.98 (1.75–5.09) 6.10 × 10−5 0.00152563

#8-1908 103/31 1.70 (0.93–3.12) 0.085 2.13 100/55 4.15 (2.58–6.66) 3.83 × 10−9 9.58 × 10−8

#8-304 153/39 2.05 (1.19–3.53) 0.010 0.25 50/47 2.43 (1.45–4.10) 0.000817003 0.02042507
#8-345 144/38 2.19 (1.26–3.79) 0.005 0.13 59/48 2.56 (1.55–4.24) 0.00025089 0.00627225
#8-384 118/36 1.68 (0.90–3.12) 0.103 2.58 85/50 3.89 (2.43–6.24) 1.61 × 10−8 4.04 × 10−7

#8-435 115/31 1.79 (0.98–3.26) 0.058 1.46 88/55 3.61 (2.24–5.83) 1.49 × 10−7 3.73 × 10−6

#8-54 164/43 2.21 (1.36–3.60) 0.001 0.04 39/43 2.52 (1.40–4.54) 0.001995723 0.04989307
#8-727 112/35 1.69 (0.92–3.09) 0.089 2.21 91/51 4.14 (2.56–6.68) 6.04 × 10−9 1.51 × 10−7

#8-85 132/29 1.67 (0.89–3.14) 0.112 2.80 71/57 2.95 (1.82–4.77) 1.03 × 10−5 0.00025838

Adj.p: adjusted p-value, +BT: radiotherapy+brachytherapy, −BT: radiotherapy alone.
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3. Discussion

This study profiled 19 serum proteins in 565 SCCC patients categorized in three phenotypic
groups based on disease stage and treatment modalities, both having a major impact on DSS. Statistical
analyses of single proteins revealed 10 proteins that are significantly associated with DSS in at least
one of the patient groups. All these proteins, with the exception of leptin, are elevated in patients
with poor survival in the stage- and treatment-matched patient groups. Surprisingly, every single
protein is part of the senescence-associated secretory phenotype (SASP) or is implicated in the
regulation of SASP, which is a hallmark of cellular senescence, a programmed cell response leading to
a permanent cell cycle arrest. Cellular senescence is a tumor-suppressive mechanism that permanently
arrests cells at risk of malignant transformation on one hand, but SASP turns senescent cells into
pro-inflammatory cells with the ability to promote tumor progression [13]. Multiple prognostic
proteins identified in this study are part of SASP, including MMP1, growth-related oncogene (GRO),
encoded by the CXCL1 gene, monokine induced by IFNγ (MIG), encoded by the CXCL9 gene.
These pro-inflammatory chemokines are responsible for excessive neutrophil recruitment to the site
of inflammation [14]. Neutrophils produce ROS and secrete other pro-inflammatory molecules for
recruitment of macrophages and T-cells [15], driving the neoplastic processes.

IL2Rα (CD25) is increased in senescent T cells [16] and thus component of SASP. It has been
reported that the soluble sIL2Rα, an antagonist of IL2 signaling, is elevated in response to disease
severity in cervical cancer patients [17], whereas IL2 levels declined with disease severity [18,19].
The sIL2Rα is generated by proteolytic cleavage from the cell surface of activated T and NK cells,
monocytes and tumor cells and is shown to play a role in cancer mediated immune suppression [20].
The poor prognosis in cervical cancer patients with elevated IL2Rα as part of the senescence phenotype
may be explained by a lack of Th1 response as the consequence of immune suppression through
sequestering free IL2 [17,20,21].

Plasminogen activator inhibitor-1 (PAI-1), a member of the evolutionarily conserved serine
protease inhibitor family, is a potent and rapid-acting inhibitor of the mammalian plasminogen
activators. Increased PAI-1 production guides the onset and progression of a number of human diseases
and contributes to the age-related morbidities. Cellular senescence, a hallmark of aging is associated
with marked increases in PAI-1 expression in tissues, is suggested as a bonafide marker and a critical
mediator, of cellular senescence associated with aging and age-related diseases including cancer [22].
This study demonstrated that elevated level of PAI-1 is significantly associated with poor prognosis of
cervical cancer, especially in the stage III patients treated without brachytherapy, further supporting
the critical role of SASP in cervical cancer treatment outcome.

Production of pro-inflammatory mediators is a critical part of the SASP phenotype. Increased
inflammation is widely known to play important roles in HPV-mediated cervical cancer [7,8,10,23].
Acute phase reactants (CRP and SAA) are pattern recognition molecules and are considered as
part of innate immune system [24–26]. Both CRP and SAA are produced under the influence of
the inflammatory cytokines, and can stimulate production of key SASP such as IL-8 [27], MMPs,
chemokines (MCP-1), cytokines such as IL-6 and TNF-α, cytokine receptor antagonists [27–30].

The adipokine leptin is involved in energy homeostasis in healthy individuals, while in obesity
leptin participates in the pro-inflammatory processes. In a meta-analysis of breast cancer study, higher
leptin levels were associated with obesity and lymph node metastases [31]. Hyperactive leptin signaling
has been implicated in pathogenesis and metastases in gynecological and breast cancers by inducing
cell proliferation and reduces cell apoptosis by activating c-myc in cervical cancer [32,33]. Interestingly,
high doses of leptin induce cell cycle arrest and senescence by activation of the p53/p21 pathway and
inhibition of the SIRT1 pathway [34]. However, it has been reported that leptin can increase expression
of PI3K/AKT/mTOR pathway and cell proliferation genes such as cyclin D1, cyclin D2, cyclin D3
and bcl-2, and reduce the expression of p21, a senescence protein marker [35], suggesting a possible
anti-senescence effect of leptin [36]. This is consistent with the role of lectin as a pivotal regulator for the
control of food intake and energy expenditure, which are essential determinants of cellular senescence.
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In this study, higher leptin is marginally associated with better prognosis at individual protein level
but contributes heavily to some prognostic models. Our observation is consistent with its proposed
role as a senescence factor. Indeed, the role of leptin may depend on the concentration and route of
administration, centrally or peripherally [37]. In supporting of this concept, moderate level of leptin is
associated with better survival in our datasets. Given the variable roles and observations, the precise
role of leptin in cancer remains to be resolved through additional clinical and experimental research.

The squamous cell carcinoma antigen (SCCA) is highly expressed in cervical cancer patients and
other cancers such as hepatocellular carcinoma. We demonstrated previously in a large cohort that
pretreatment SCCA is higher in late stage than early stage cervical cancer patients [38]. Several published
studies have suggested that pretreatment serum SCCA is associated with recurrence [39–41] and
normalization of SCCA after treatment is an indicator of good prognosis [41,42]. Here we presented
strong evidence that stage II patients with higher pretreatment SCCA have worse prognosis and SCCA
is a major contributor to the prognostic multi-protein models for RTBT2 patients. SCCA contains
two isoforms in the serum, SCCA1 (SERPINB3) and SCCA2 (SERPINB4). They are members of the
serine protease inhibitor (serpin) superfamily and SCCA1 may play a role in resistance to anti-cancer
therapy [39,42]. SCCA may act as papain-like cysteine protease inhibitor to modulate host immune
response against tumor cells and function as an inhibitor of UV-induced apoptosis. A recent study
showed that SCCA1/2 are transcriptionally upregulated by oncogenic Ras and that increased SCCA
expression leads to inhibition of protein turnover, unfolded protein response, activation of NF-kB and
is essential for Ras-mediated cytokine production and tumor growth [43]. Analysis of human colorectal
and pancreatic tumor samples reveals a positive correlation between Ras mutation, enhanced SCCA
expression and IL-6 expression [43]. NF-kB is a key transcription factor for SASP and IL-6 is a major
component of SASP [43]. These results indicate that SCCA is a Ras-responsive factor that is, at least
partially, responsible for the observed cellular senescence phenotype in cervical cancer.

HGF is another important pro-senescence mediator by inducing p38 MAPK, AKT and NF-kB,
which is a key senescence transcription factor. The receptor for HGF, cMET, is a well-known oncogene
and a new senescence marker [44]. HGF is associated with an induction of mitochondrial oxidative
stress, which in return contributes to HGF-dependent pro-senescence activity of ovarian cancer cells [45].
The senescence phenotype leads to oxidative stress, which in return promotes SASP, appearing to form
an auto-regulatory loop.

While individual SASP proteins only have a modest impact on survival, our machine learning
using Ridge regression discovered numerous multi-protein models that possess great potential to
stratify patients into subsets with very different prognosis. Among the top 31 models discovered using
patients in the RTBT2 dataset (stage III treated with EBRT+BT), all were validated by 1000 iterations
of bootstrapping. All 31 models were also validated in the independent RTBT3 (stage 3 treated
with EBRT+BT) dataset, despite the different stages between the two datasets, suggesting that these
prognostic biomarkers are very robust and likely applicable to future samples.

This study also discovered 25 models using RT3 patients who are stage 3 and did not receive
brachytherapy. All 25 top models were validated by 1000 iterations of bootstrapping and by the
independent RTBT2 dataset. Furthermore, 22 of the 25 models were also validated in the independent
RTBT3 dataset. These results suggest that these models are highly robust.

Together with our published analyses [11,12], it is abundantly clear that the prognosis of SCCC
patients is determined primarily by at least three risk factors: stage, treatment modality and cellular
senescence status. Stage 2 and stage 3 have a modest difference in survival (HR = 2.3). This report
demonstrated that senescence is associated with poor survival in both stage 2 (HR = 3.09–4.52) and
stage 3 (HR = 2.93–5.07) patients. Absence of brachytherapy was shown to be associated with a very
poor survival (HR = 6.7) [11,12]; however, the analysis was likely confounded by the senescence
status for patients who did and did not receive brachytherapy. After matching for senescence status,
absence of brachytherapy is still associated with poor survival but only in SASP_H (HR = 3.3) and
SASP_M (HR = 2.4) patient subsets. The best prognosis can be achieved using the combination of all
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three risk factors that seem to stratify all patients into four major survival categories. The best survival
category is for Stage2-SASP_L-brachytherapy+ (BT+) (5yr survival ~80%); the next best survival
category include is Stage2-SASP_H-BT+ and Stage3-SASP_L-BT+ patients (5yr survival ~55%); the next
category includes Stage3-SASP_H-BT+ and Stage3-SASP_L-BT− patients (5yr survival ~35%); and the
worst survival category is Stage3-SASP_H-BT− patients (5yr survival ~10%) (Figure 4d).

The interaction between brachytherapy and senescence is potentially of paramount importance
clinically. We presented strong evidence that brachytherapy provides significant survival benefit to
patients with moderate to high senescence. Therefore, patients with moderate to high senescence
should be treated with brachytherapy to achieve the best outcome. It will be important to reassess
whether brachytherapy should be given to patients who have low senescence because no significant
benefit was seen for these patients. This could be an even more critical decision in resource-limited
countries so that brachytherapy can be delivered to high senescence patients. Our results also raised
an interesting possibility that the benefit of brachytherapy is primarily through killing senescent cells
while external radiation therapy may not be efficient at eliminating senescent cells. This hypothesis is
worth further investigation.

It has recently been shown that high intake of pro-inflammatory diet is associated with increased
risk of cervical carcinogenesis [46]. Use of anti-inflammatory agents may improve the outcome of cancer
chemotherapies such as carboplatin and gemcitabine [47]. Although anti-inflammatory therapies using
pharmacological agents or nutritional supplements may be beneficial to cervical cancer treatment
outcome, our data suggest that anti-inflammatory therapy may not be sufficient. The elevation in
pro-inflammatory mediators is only a part of the cellular senescence phenotype, which is of critical
importance is highlighted in this study. Therefore, reduction and elimination of senescent cells
via pharmaceutical and/or nutritional senolytics such as the dasatinib and quercetin combination,
which has been shown to eliminate senescent cells in a recent clinical trial [48], could be powerful
strategies to further improve current chemoradiation therapies for cervical cancer and other cancers.

4. Materials and Methods

4.1. Study Design and Patients

This was a single-institution, prospective observational study examining serial serum samples in
patients with cervical cancer. All the subjects included in this study were recruited from the Instituto
Nacional de Enfermedades Neoplasicas, Lima, Peru, between 2004 and 2007. Informed consent was
obtained from every subject or a legally authorized representative. Inclusion criteria were: (1) histologically
confirmed squamous cell carcinoma, adeno-squamous carcinoma, or adenocarcinoma of the uterine
cervix; (2) International Federation of Gynecology and Obstetrics (FIGO) stage II (≤4 cm), III, or IVA
disease without rectal invasion; (3) measurable disease; (4) age between 20–75 years; (5) no prior surgery
or chemotherapy for cervical cancer. Patients who had prior chemotherapy or pelvic radiotherapy were
also excluded from the study. Venous blood was obtained from all subjects prior to initiation of treatment.
Because the study was conducted between 2004–2007 it was not recorded if patients had stage IIIC disease.
The patients then underwent treatment with pelvic external beam radiation (EBRT) alone or in combination
with brachytherapy (EBRT + BT). The stage and grade of the tumors were determined according to
the criteria established by the International Federation of Gynecology and Obstetrics. Disease-specific
survival (DSS) was used as the clinical endpoints. The study was conducted according to the declaration
of Helsinki (1996) and was approved by the institutional review boards at the Augusta University and the
Instituto Nacional de Enfermedades Neoplasicas.

4.2. Processing of Blood Samples

Venous blood collected in serum separator tubes (BD Biosciences, San Jose, CA, USA) was allowed
to clot for 30 min at room temperature. Serum was separated by centrifuging at 2000× g at 20 ◦C.
Aliquots of serum were prepared immediately after into wells of 96-well plates (150 µL/well) to create
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master plates. Daughter plates were then created by pipetting 5–25 µL of serum/well to avoid repeated
freeze/thaw for all samples. Samples were aliquoted and stored in a –80 ◦C freezer until use. For each
measurement, one daughter plate was thawed and used for the serum measurement.

4.3. Luminex Multiplex Protein Assay

We selected 19 proteins, viz serum amyloid A (SAA), C-reactive protein (CRP), CXCL chemokines
(MIG and GRO-α), soluble cytokine receptors (sIL1RII, sIL2Rα, sIL6R, sTNFRI and sTNFRII),
growth factors derived from epithelial (sEGFR), hepatocyte (HGF) and platelets (PDGF.AA and
PDGF.ABBB), squamous cell carcinoma antigen (SCCA), insulin-like growth factor binding protein 2
(IGFBP 2), tissue Plasminogen activator inhibitor-1 (tPAI1), matrix-metalloproteinase 1 (MMP1), leptin,
adhesion molecule (sE-selectin), to be measured in the serum [38]. These proteins were examined for
their ability to predict DSS and PFS when drawn at the time of diagnosis.

Luminex assays for the above mentioned 19 proteins were obtained from Millipore Inc. (Billerica,
MA, USA). Multiplex assays were performed according to instructions provided with the kit.
Serum samples were incubated with capture antibodies immobilized on polystyrene beads for
one hour. The beads were then washed and further incubated with biotinylated detection antibody
cocktail for one hour. Next, beads were washed twice to remove unbound detection antibody, and then
incubated with phycoerythrin-labeled streptavidin for thirty minutes. Last, beads were washed and
suspended in 60 µL of wash buffer.

The median fluorescence intensities (MFI) were measured using a FlexMAP 3D array reader
(Millipore) with the following instrument settings: events/bead: 50, minimum events: 0, flow rate:
60 µL/min, Sample size: 50 µL and discriminator gate: 8000–13,500.

Luminex median fluorescence intensity (MFI) data was subjected to quality control analysis for
low bead counts, high bead CV [49]. The coefficient of variation of replicate wells was also checked
and wells with CV > 25% were not included in further analyses.

Protein concentrations for samples were estimated using a regression fit to the standard curve
with known concentration included on each plate using a serial dilution series. To achieve normal
distribution, MFI and concentrations for standards were log2 transformed prior to all statistical analyses.

4.4. Statistical Analysis

All statistical analyses were performed using the R language and environment for statistical
computing (R version 3.62; R Foundation for Statistical Computing; www.r-project.org, accessed on
20 December 2019). The protein concentrations were log2 normalized after initial QC. The statistical
significance of differences was set at p < 0.05, all p values were two sided. Patients with no history of
recurrence or death were censored at the date of last follow-up visit. Patients who died of natural causes
unrelated to cancer were censored at time of death. DSS and PFS for all subjects greater than 5 years was
censored at 5 years. Kaplan-Meier survival analysis and log-rank test were used to compare differences
in DSS between patients in different quartiles using the 1st quartile as reference. Cox proportional
hazards analyses were used to assess survival. Effect of co-variates such as stage, treatment type and
protein level on disease specific (DSS) was evaluated by adding in Cox proportional hazards models.

In order to create a comprehensive multivariate score that serum data, we used the elastic net
algorithm (R package glmnet) [50]. This algorithm combines multiple predictors in a linear combination
and tunes the model base on a penalty term, which is the sum of the square of the coefficients used in
the model. The effect of the penalty term can be adjusted to either have no effect lambda = 0 or as
lambda approaches infinity, variable coefficients approach 0. The sum of the linear combination yields
a composite score for each individual patient. The number of predictors is optimized by setting the
alpha value to 0, where an alpha = 0 includes all variables added to the glmnet model. The optimum
lambda was determined using the lambda.min function in R, which automatically chooses the best
lambda value to eliminate errors on cross validation. The composite score of the combined predictors
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for each value of alpha were then subjected to survival analysis and cox proportional hazards to
determine the best score for predicting DSS.

5. Conclusions

The interaction between brachytherapy and senescence is potentially of paramount importance
clinically. We presented strong evidence that brachytherapy provides significant survival benefit to
patients with moderate to high senescence. Therefore, patients with moderate to high senescence
should be treated with brachytherapy to achieve the best outcome. It will be important to reassess
whether brachytherapy should be given to patients who have low senescence because no significant
benefit was seen for these patients. This could be an even more critical decision in resource-limited
countries so that brachytherapy can be delivered to high senescence patients. Our results also raised
an interesting possibility that the benefit of brachytherapy is primarily through killing senescent cells
while external radiation therapy may not be efficient at eliminating senescent cells. This hypothesis is
worth of further investigation.
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