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Abstract: The quality of dental arch impression has a substantial role in the precision of the intervention.
It is traditionally acquired with resins that solidify when in contact with the air. Compared to that
method, digital impression gives great advantages and, together with three-dimensional (3D)
digitization devices, allows a simplification of the digital impression process. The growing adoption
of such systems by a large number of dental clinics determines the need for an in-depth evaluation of
the accuracy and the precision of the different systems. The aim of this work is to define a methodology
for the evaluation of the accuracy and precision of 3D intraoral and desktop scanning systems, by
using volumetric and linear methods. The replica of a tooth was realized with zirconium; afterward,
high-accuracy point clouds of the master model were acquired by a coordinate measurement machine
(CMM). In this way, the dimensions of the replica were accurately known. An intraoral scanner (I)
and three desktops (D1, D2, D3) were then used to scan the replica. The geometry resulting from
the CMM was compared with the ones derived from the scanners, using two different commercial
programs (Geomagic and 3-Matic) and a custom-developed algorithm (MATLAB). Geomagic showed
the mean values to be in a range from 0.0286 mm (D1) to 0.1654 mm (I), while 3-Matic showed mean
values from −0.0396 mm (D1) to 0.1303 mm (I). MATLAB results ranged from 0.00014 mm (D1) to
0.00049 mm (D2). The probability distributions of the volumetric error of the measurements obtained
with the different scanners allow a direct comparison of their performances. For the results given by
our study, the volumetric approach that we adopted appears to be an excellent system of analysis.

Keywords: intraoral scanners; volumetric error distribution; point cloud registration

1. Introduction

In the last few years, prosthetic technology was characterized by very important changes in
techniques and materials with the introduction of zirconium and lithium disilicate, and intraoral
impression techniques [1–4]. In particular, in the last ten years, the introduction of Computer
Aided Design (CAD) and Computer Aided Manufacturing (CAM) systems in dentistry led to several
advantages for both clinicians and patients. An important step in prosthetic rehabilitation is represented
by a good imprint of the dental arch/dental area, able to accurately replicate the morphology of the
oral cavity. In this way, it is possible to obtain a good cast model used by technicians to realize
the final rehabilitation and to clearly explain to patients the clinical procedure [4]. The traditional
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imprint technique requires silicon materials (obtained by addition and condensation polymerization)
in single or double imprinting techniques used with knitted cords. In this way, it is possible to
replicate the clinical tooth preparations with high precision, as widely shown in the literature [5–14].
However, some critical aspects about the accuracy of the traditional imprint still remain and are related
to clinicians (e.g., tray choice, imprinting technique, material adhesion to the tray, use of knitted
cords) [15,16], materials (e.g., hydrophilic properties, thermal expansion coefficient, syneresis, blood or
saliva presence), and laboratory (e.g., humidity, temperature [8], preservation of materials, elapsed time
between imprint and cast model, type of gypsum used, techniques used to obtain the study model).
Moreover, the traditional imprint is generally not well accepted by patients sensitive to material taste
and prone to nausea and general oral discomfort [10,17]. On the other hand, starting from the 1980s, the
introduction of CAD/CAM technology in dentistry represented a revolution in prosthetic dentistry with
a predicted high diffusion in the upcoming decades for different clinical situations [18]. CAD/CAM
systems are generally divided into three groups: digital impression capture systems, prosthetic design
software (CAD), and milling systems (CAM) [18,19]. The introduction of digital techniques shows
several advantages such as the possibility to visualize in any moment the three-dimensional (3D) files,
to easily modify the file multiple times for simulating different situations and, consequently, to plan
the most appropriate rehabilitation. The 3D models can also be quickly shared between clinicians and
technicians in every moment; finally, the imaging helps to promptly identify critical zones (e.g., reduced
space, presence of undercut zones, etc.) after tooth preparation. Further advantages are the absence
of impression distortion due to bad material conservation and higher patient acceptance [20–26]. In
addition to prosthetic applications, digital technology is developing in implant surgery, as well as
endodontic and orthodontic measurements [21,23,27–30].

Some different aspects have to be observed in the clinician’s choice of CAD/CAM systems:
accuracy, precision, clinic operativity (scan speed, matting, tip dimension especially for molars, color
images), open or closed systems (the faculty to have not only an owner file but also an STL), and
purchase and operating costs. Accuracy (precision and trueness) represents an important aspect to
compare traditional and digital impressions, according to ISO 5725-1; the precision represents the
degree of dispersion of different measurements from each other, whereby the higher the precision is,
the more similar different measurements are [31]. The trueness describes the discrepancy between
the measurement and the real dimension of the object. High trueness delivers a result that is close or
equal to the actual dimensions of the measured object [6]. Compared to precision, trueness is harder
to obtain since it requires the real object’s dimensions and simple geometries. Many in vitro [32–35]
and few in vivo [1,9,36] studies were conducted on several impression materials and techniques with
different results in terms of accuracy and precision of 3D impressions vs. traditional techniques; the
works focused on single reconstructions, oral quadrants, and full dental arch. Lutharrdt et al. [37],
found that the accuracy of a digital impression obtained using a Cerec 3D camera, is equal to 28 µm;
Guth et al. [27] found that direct 3D digitization with LAVA showed higher accuracy compared to
traditional methods. Mehl et al. [38] reported an accuracy of 19 µm for a Cerec AC Bluecam [39].

Recently, the validity of a digital model produced following an indirect method was evaluated
in a systematic review by comparing digital and plaster models, thus concluding that digital models
offer a high degree of validity [39,40]. Trueness measurements for conventional intraoral impressions
with gypsum casts are most frequently done with linear distance measurements [41]. In general,
two modes can be used to analyze the trueness and the precision of different impression systems:
the first one consists of the comparison of digital files using commercial software, and the second
consists of the comparison of the fit of restorations obtained with different systems. Regarding the
comparative evaluation of digital files, in the literature, different methods were used to evaluate the
accuracy of the digital impression, including the measure of surface points with high trueness using
coordinate measuring machines (CMMs), but these lack in scan speed and do not accurately measure
freeform surfaces because of the geometric size and shape of the tip (probe) [42–45]. Optical scanners
with high accuracy are currently limited to the measurement of single teeth or quadrants [18,46].
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Another way would be to compare the surface resulting from stereolithography (STL) datasets, whose
function would be the input for CAD reconstruction. The 3D discrepancies between two surface
datasets can be analyzed by superimposition using appropriate inspection software [10]. Any approach
for the comparison of acquired geometries passes through the acquisition algorithms, which may
be either direct (Procrustes analysis) or, more often, iterative (ICP, iterative closest point). In the
bibliography, it is common to use commercial software to compare geometries, whether they come from
measuring or mathematical approaches. The purpose of the present work is to evaluate the metrological
performances of different 3D scanning systems, both desktop and intraoral, both with classical linear
distance methodology and a volumetric error approach proposed by the authors. It has to be noted
that the comparison of different intraoral scanning systems is very important for the clinician, among
other, more obvious reasons, for choosing the most suitable materials for prosthetic reconstruction
(ceramic, metal, zirconia, etc.). The null hypothesis is that there are no significant differences between
the digital scanning systems using commercial software or the custom ICP technique.

2. Materials and Methods

2.1. Master Model Molding

The study did not involve human participants, specimens, or samples of vertebrate or vertebrate
animals, embryos, or tissues. For this reason, the authors stated that the study did not involve human
participants. For this reason, no ethics committee was requested. The authors declare that the full
arch imprint obtained as a zirconia master model was acquired by a cast model of an author, granted
for the scientific work. Starting from a cast model, an alginate imprint was obtained, and a reference
zirconium model was produced. One of the authors with a complete dentition was recruited for a full
arch imprinting using silicon material (Elite HD, Zhermack, Badia Polesine, Italy). The impressions
were disinfected for 10 min (Impresept, 3M ESPE, Maplewood, NJ, USA) and poured in type IV dental
stone (Moldastone CN, Heraeus Kulzer, Wasserburg am Bodensee, Germany).

A first inferior molar with normal anatomical features was obtained from the cast model and
identified as the reference model. The choice of a molar was due to its complex morphological
characteristics like different cusps, marginal ridges, pits, and fissures. The sixth molar selected was
divided and scanned using an optical scanner D7000 (3Shape, Copenaghen, Denmark), obtaining
an STL file. The file was processed by a CAM software connected to a milling machine (Zenotec
T1, Zenotec limited, Tuam, Ireland). The model made of zirconium (Zenotec ZR Bridge) to ensure
high hardness and stability over time was sectioned and milled. These features are fundamental for
obtaining reliable measurements using contact measuring systems.

2.2. Reference Digitalization

To obtain a reference measurement of the master model, a coordinate measurement machine
(CMM) was used to acquire high-accuracy point clouds of the master surface. The machine output is a
point cloud describing the surface of the measured object; a feeler pin touching the surface of the object
was used to acquire the points. The uncertainty of the CMM was 0.1 µm (Table 1).

Table 1. Coordinate measurement machine (CMM) characteristics.

Manufacturer Brown&Sharpe DEA S.p.a.
Model Scirocco MP101509

Performance Compliance ISO 10360-2
Calibration Certificate date 2016-04-29

Measure Volume 1000 × 1500 × 2012 (mm)
Head Type Renishaw PH10MQ

Gauge Renishaw TP20
Polar radius max difference (25 measures) 2.8 (µm)

Uncertainty (K = 2), up to 0.1 (µm)
MPE P 3.5 ± 1.75 (µm)

Gauge error 2.8 (µm)
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At the end of the process, the geometry of the object can be reconstructed using a triangle-based
rendering. After several measurements, it was possible to obtain the superficial geometry of the object
with triangle-shaped modeling, obtaining an STL (standard triangulated language) file. Due to its
high accuracy and high reliability, CMMs are often used in industrial applications for dimensional
inspection. The CMM used in this study was manufactured by Brown&Sharpe DEA with a Renishaw
touching probe. The metrological features are shown in Table 1.

2.3. Impression Scanning

To evaluate the effectiveness of the proposed methodology, four STL files were created by scanning
the model with three desktop scanners: 3Shape D700 (3shape), 5Series (Dental Wing), and Sinergia
Scan (Nobil-Metal), and one intraoral scanner: Trios (3Shape). Table 2 shows the different scanners and
the abbreviations used in this work.

Table 2. The different scanners used.

Abbreviation Name Manufacturer Accuracy Photo

D1 3Shape D700 3Shape 20 µm

Materials 2019, 12, x FOR PEER REVIEW 4 of 21 

 

Uncertainty (K = 2), up to 0.1 (µm) 
MPE P 3.5 ± 1.75 (µm) 

Gauge error 2.8 (µm) 
At the end of the process, the geometry of the object can be reconstructed using a triangle-based 

rendering. After several measurements, it was possible to obtain the superficial geometry of the object 
with triangle-shaped modeling, obtaining an STL (standard triangulated language) file. Due to its 
high accuracy and high reliability, CMMs are often used in industrial applications for dimensional 
inspection. The CMM used in this study was manufactured by Brown&Sharpe DEA with a Renishaw 
touching probe. The metrological features are shown in Table 1. 

2.3. Impression Scanning 

To evaluate the effectiveness of the proposed methodology, four STL files were created by 
scanning the model with three desktop scanners: 3Shape D700 (3shape), 5Series (Dental Wing), and 
Sinergia Scan (Nobil-Metal), and one intraoral scanner: Trios (3Shape). Table 2 shows the different 
scanners and the abbreviations used in this work. 

Table 2. The different scanners used. 

Abbreviation Name Manufacturer Accuracy Photo 

D1 
3Shape 
D700 3Shape 20 µm 

 

D2 5Series Dental Wing 20 µm 

D3 Sinergia 
Scan Nobil-Metal 12 µm 

 

I Trios 3Shape 20 µm 

 

All scanners were not capable of providing any information on geometrical features close to the 
roughness scale; thus, any analysis close to the micrometric scale was not considered in this work 
[46–50]. 

2.4. Data Analysis with Commercial Software 

The measurement performed with CMMs was taken as a reference for all the other comparisons. 
The comparisons were made using commercial software (Geomagic and 3-Matic, Carolina del Nord, 
NC, USA) and with custom algorithms developed in the MATLAB environment. Each STL file 
obtained from scans (STL format) was transformed into a point cloud for a comparison with the 
output of the CMM. The point clouds obtained were compared and analyzed with the ones acquired 
by two frequently used commercial software: Geomagic (Geomagic Control 2014, 3D Systems, 
Carolina del Nord, NC, USA) and 3-Matic (3-Matic Analyze-Mimics Innovation Suite, Materialise, 
Leuven, Belgium). 

Geomagic is a set of products for CAD design, 3D scan management, and analytical and 
statistical inspection. Geomagic Control, part of the Geomagic Suite, is a metrology software platform 

D2 5Series Dental Wing 20 µm

Materials 2019, 12, x FOR PEER REVIEW 4 of 21 

 

Uncertainty (K = 2), up to 0.1 (µm) 
MPE P 3.5 ± 1.75 (µm) 

Gauge error 2.8 (µm) 
At the end of the process, the geometry of the object can be reconstructed using a triangle-based 

rendering. After several measurements, it was possible to obtain the superficial geometry of the object 
with triangle-shaped modeling, obtaining an STL (standard triangulated language) file. Due to its 
high accuracy and high reliability, CMMs are often used in industrial applications for dimensional 
inspection. The CMM used in this study was manufactured by Brown&Sharpe DEA with a Renishaw 
touching probe. The metrological features are shown in Table 1. 

2.3. Impression Scanning 

To evaluate the effectiveness of the proposed methodology, four STL files were created by 
scanning the model with three desktop scanners: 3Shape D700 (3shape), 5Series (Dental Wing), and 
Sinergia Scan (Nobil-Metal), and one intraoral scanner: Trios (3Shape). Table 2 shows the different 
scanners and the abbreviations used in this work. 

Table 2. The different scanners used. 

Abbreviation Name Manufacturer Accuracy Photo 

D1 
3Shape 
D700 3Shape 20 µm 

 

D2 5Series Dental Wing 20 µm 

 

 
 

D3 
Sinergia 

Scan Nobil-Metal 12 µm 

 

 
 

I Trios 3Shape 20 µm 

 

 
 

All scanners were not capable of providing any information on geometrical features close to the 
roughness scale; thus, any analysis close to the micrometric scale was not considered in this work 
[46–50]. 

2.4. Data Analysis with Commercial Software 

The measurement performed with CMMs was taken as a reference for all the other comparisons. 
The comparisons were made using commercial software (Geomagic and 3-Matic, Carolina del Nord, 
NC, USA) and with custom algorithms developed in the MATLAB environment. Each STL file 
obtained from scans (STL format) was transformed into a point cloud for a comparison with the 

D3 Sinergia Scan Nobil-Metal 12 µm

Materials 2019, 12, x FOR PEER REVIEW 4 of 21 

 

Uncertainty (K = 2), up to 0.1 (µm) 
MPE P 3.5 ± 1.75 (µm) 

Gauge error 2.8 (µm) 
At the end of the process, the geometry of the object can be reconstructed using a triangle-based 

rendering. After several measurements, it was possible to obtain the superficial geometry of the object 
with triangle-shaped modeling, obtaining an STL (standard triangulated language) file. Due to its 
high accuracy and high reliability, CMMs are often used in industrial applications for dimensional 
inspection. The CMM used in this study was manufactured by Brown&Sharpe DEA with a Renishaw 
touching probe. The metrological features are shown in Table 1. 

2.3. Impression Scanning 

To evaluate the effectiveness of the proposed methodology, four STL files were created by 
scanning the model with three desktop scanners: 3Shape D700 (3shape), 5Series (Dental Wing), and 
Sinergia Scan (Nobil-Metal), and one intraoral scanner: Trios (3Shape). Table 2 shows the different 
scanners and the abbreviations used in this work. 

Table 2. The different scanners used. 

Abbreviation Name Manufacturer Accuracy Photo 

D1 
3Shape 
D700 3Shape 20 µm 

 

D2 5Series Dental Wing 20 µm 

 

 
 

D3 
Sinergia 

Scan Nobil-Metal 12 µm 

 

 
 

I Trios 3Shape 20 µm 

 

 
 

All scanners were not capable of providing any information on geometrical features close to the 
roughness scale; thus, any analysis close to the micrometric scale was not considered in this work 
[46–50]. 

2.4. Data Analysis with Commercial Software 

The measurement performed with CMMs was taken as a reference for all the other comparisons. 
The comparisons were made using commercial software (Geomagic and 3-Matic, Carolina del Nord, 
NC, USA) and with custom algorithms developed in the MATLAB environment. Each STL file 
obtained from scans (STL format) was transformed into a point cloud for a comparison with the 

I Trios 3Shape 20 µm

Materials 2019, 12, x FOR PEER REVIEW 4 of 21 

 

Uncertainty (K = 2), up to 0.1 (µm) 
MPE P 3.5 ± 1.75 (µm) 

Gauge error 2.8 (µm) 
At the end of the process, the geometry of the object can be reconstructed using a triangle-based 

rendering. After several measurements, it was possible to obtain the superficial geometry of the object 
with triangle-shaped modeling, obtaining an STL (standard triangulated language) file. Due to its 
high accuracy and high reliability, CMMs are often used in industrial applications for dimensional 
inspection. The CMM used in this study was manufactured by Brown&Sharpe DEA with a Renishaw 
touching probe. The metrological features are shown in Table 1. 

2.3. Impression Scanning 

To evaluate the effectiveness of the proposed methodology, four STL files were created by 
scanning the model with three desktop scanners: 3Shape D700 (3shape), 5Series (Dental Wing), and 
Sinergia Scan (Nobil-Metal), and one intraoral scanner: Trios (3Shape). Table 2 shows the different 
scanners and the abbreviations used in this work. 

Table 2. The different scanners used. 

Abbreviation Name Manufacturer Accuracy Photo 

D1 
3Shape 
D700 3Shape 20 µm 

 

D2 5Series Dental Wing 20 µm 

 

 
 

D3 
Sinergia 

Scan Nobil-Metal 12 µm 

 

 
 

I Trios 3Shape 20 µm 

 

 
 

All scanners were not capable of providing any information on geometrical features close to the 
roughness scale; thus, any analysis close to the micrometric scale was not considered in this work 
[46–50]. 

2.4. Data Analysis with Commercial Software 

The measurement performed with CMMs was taken as a reference for all the other comparisons. 
The comparisons were made using commercial software (Geomagic and 3-Matic, Carolina del Nord, 
NC, USA) and with custom algorithms developed in the MATLAB environment. Each STL file 
obtained from scans (STL format) was transformed into a point cloud for a comparison with the 

All scanners were not capable of providing any information on geometrical features close to
the roughness scale; thus, any analysis close to the micrometric scale was not considered in this
work [46–50].

2.4. Data Analysis with Commercial Software

The measurement performed with CMMs was taken as a reference for all the other comparisons.
The comparisons were made using commercial software (Geomagic and 3-Matic, Carolina del Nord,
NC, USA) and with custom algorithms developed in the MATLAB environment. Each STL file obtained
from scans (STL format) was transformed into a point cloud for a comparison with the output of
the CMM. The point clouds obtained were compared and analyzed with the ones acquired by two
frequently used commercial software: Geomagic (Geomagic Control 2014, 3D Systems, Carolina del
Nord, NC, USA) and 3-Matic (3-Matic Analyze-Mimics Innovation Suite, Materialise, Leuven, Belgium).

Geomagic is a set of products for CAD design, 3D scan management, and analytical and statistical
inspection. Geomagic Control, part of the Geomagic Suite, is a metrology software platform that
enables, among other things, to compare two or more elements providing statistical analysis of the
comparison. Mimics Innovation Suite is a suite of biomedical engineering software, for segmentation
processes and CAD design. Lastly, 3-Matic is a CAD suite that, apart from designing, allows the
analysis and comparison of a couple of items, providing statistical analysis of such a comparison.
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2.5. Data Analysis with Proposed Algorithm: MATLAB Environment

MATLAB is a programming language that allows the implementation of scripts for a variety of
needs. The software also has a huge and constantly updated toolbox library; MATLAB is widely used
in the academic world for processing data of any kind.

Each commercial software uses its own tuning set of algorithms for the registration, which leads
to different results between them. The tuning of this control is in some cases difficult; to overcome this
problem, a MATLAB code, developed by authors in a previous study, was applied to obtain complete
control of the algorithms [51]. Specifically [52–56], the MATLAB code was based on registration
algorithms using an iterative approach (ICP) similar to commercial software. Figure 1 describes the
architecture of the developed registration algorithm. The algorithm improves the classic point-to-point
ICP registration, introducing point-to-surface distance optimization; thus, the objective function is to
minimize the volumetric error. In this case, a volumetric error is considered as the evaluator of the
method, instead of the point-to-point distance calculated in commercial software.
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This volumetric approach is a native three-dimensional description and can be used on point
cloud datasets, like the traditional approach widely used in commercial programs.

2.6. Statistical Analysis

After the alignment of the two point clouds, the software that we used provided statistical
information such as maximum, minimum, and mean of the distances and the related standard
deviation. To verify the repeatability of the full process, a set of 30 measurements were performed for
each scanner under analysis. In every measurement, the position of the measured item was changed.

According to the one-way ANOVA, the mean precision values are statistically different among the
groups. The results of each acquisition, at p < 0.01, are detailed in Table 3. The level of significance was
α = 0.05. In Tables A1–A4 the results of the statistical analysis over the entire population are reported
(Appendix A).

Table 3. Mean, maximum, minimum, and standard deviation values of compared geometries with
commercial software. Values are calculated as mean values among the entire population of data.
D—desktop; I—intraoral.

Scanner Software
Min Max Median Mean SD
(mm) (mm) (mm) (mm) (mm)

D1
3-Matic −0.3103 0.0321 −0.0373 −0.0396 0.094

Geomagic −0.4122 0.3062 — 0.0286 0.0551

D2
3-Matic −0.1018 0.2624 0.0187 0.025 0.0441

Geomagic −0.0239 0.2579 — 0.0388 0.0428

D3
3-Matic −0.2906 0.2172 −0.0196 −0.0269 0.0863

Geomagic −0.2906 0.2221 — 0.0545 0.0863

I
3-Matic −0.1285 0.5273 0.1134 0.1387 0.1303

Geomagic −0.4505 0.5273 — 0.1654 0.1391

3. Results

3.1. Comparison of Geometries with Commercial Software

Figures 2 and 3 show the results obtained with Geomagic and 3-Matic. Table 3 shows the results
in terms of mean, maximum, and minimum values and standard deviation of distances between points
laying on the compared geometries. Columns 1 and 2 report, respectively, the minimum and maximum
values; column 3 shows the mean value of medians (when such medians are producible from the
software). Columns 4 and 5 show, respectively, the means of the mean values deriving from every
single measurement, and the mean values of their standard deviations. The 3-Matic software also gives
also median values, but they cannot be compared with Geomagic’s values since this software does
not provide these results. The mean values and standard deviations calculated with the Geomagic
software were 0.0286 mm and 0.0551 mm for the D1 scanner, 0.0388 mm and 0.0428 mm for the D2
scanner, 0.0545 and 0.0863 for the D3 scanner, and 0.1654 mm and 0.1391 mm for the I scanner.
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The mean values and standard deviations calculated with 3-Matic were −0.0396 and 0.094 for the
D1 scanner, 0.025 and 0.0441 for the D2 scanner, −0.0269 and 0.0863 for the D3 scanner, and 0.1387 and
0.1303 for the I scanner (all values are expressed in millimeters).

3.2. Comparison of Geometries with MATLAB Custom Algorithm Results

As with the commercial software approach, the model was superimposed on the individual
scans using the developer tools. Figure 4 shows the overlapping points of clouds for all the scanners.
Figure 5 represents the volumetric error calculated with the algorithm proposed, while, in Figure 6, the
volumetric error distribution histograms are reported.
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Table 4 shows the mean, median, and variance, and the minimum and maximum values of the
volumetric errors.

Table 4. Mean, median, and variance, and the minimum and maximum volumes of the volumetric
errors of compared geometries with MATLAB.

Scanner Mean (mm3) Median (mm3) STD (mm3) Min (mm3) Max (mm3)

D1 1.4156 × 10−4 6.0725 × 10−5 5.2291 × 10−4 2.8328 × 10−10 0.0219
D2 4.9597 × 10−4 2.7183 × 10−4 9.1085 × 10−4 1.1154 × 10−8 0.0182
D3 3.1453 × 10−4 1.8008 × 10−4 5.2450 × 10−4 1.1310 × 10−9 0.0141
I 2.0287 × 10−4 9.2062 × 10−5 5.6518 × 10−4 1.5876 × 10−9 0.0217

The mean volumes and standard deviations calculated with MATLAB were 0.00014156 and
0.00052291 for the D1 scanner, 0.00049597 and 0.00091085 for the D2 scanner, 0.00031453 and 0.0005245
for the D3 scanner, and 0.00020287 and 0.00056518 for the I scanner (all values are defined in mm3).
In Figure 7, the trends of the probabilistic volumetric errors for each used scanner are shown, while
Figure 8 shows the box plots of the volumetric errors.
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4. Discussion

The growing diffusion of CAD/CAM technologies in dentistry determined the need to obtain
simple and reproducible methods to compare digital and conventional impression techniques. This
research should start from natural tooth anatomy and from the scanner’s capability to capture its
geometry, especially in prosthetic rehabilitation. In the last few years, this aspect was analyzed by
using linear distance measurements, even if the results showed some variability mainly related to the
operator’s ability [2,4,5,9,15,29,57–60].

In this work, a comparison between the metrological performance of different dental scanners
was made, involving the linear distance measurements and volumetric error analysis. Several previous
studies used commercial programs to determine the trueness of intraoral scanners. In this, however,
an attempt was made to apply a volumetric error analysis to the dental field.

It is interesting to note that the maximum and minimum values of each measurement remain
very close to the general mean, showing the absence of major errors in point coordinate measurements
due to good characteristics of the measurement devices and to automatic corrections performed
by the software while recreating the point clouds. Further investigations about this aspect have to
be performed.

The mean values of the point-to-point distance remained of the same order for all three desktop
scanners (D1, D2, D3), while we registered a significant worsening for the intraoral scanner (I).

The mean error measured with the I scanner was greater than the D scanners’ values with both
techniques. The I scanner’s standard deviation was higher than the D scanners’ values, with a greater
measurement dispersion. According to these results, the Metrologic I scanner’s performance was
lower than the D ones. The results reject the null hypothesis of the study.

Generally, a three-dimensional scanner produces a non-uniform mapping of points in space.
This means that each point acquired contributes within the same way for the length, but the volume
error depends on the local density of the cloud, where a lower density corresponds to a higher
error. The different programs provide users with different sizes and a direct comparison can be made
only based on variables common to both programs. From the available data, it is not possible to
define which program will outperform the other. For example, it can be noted that, while the spread
between maximum and minimum values varies significantly, this leads in some cases to a substantial
modification in the statistical distribution of the distances (D1 scanner), while, in other cases, there
are no significant changes. Figure 4a shows the good alignment of the point clouds in the occlusal
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area, while Figure 4b–d show areas where the overlap is not optimal. This is clear in Figure 8, where
there are many measuring points outside the limit. This is mostly due to the presence (in the different
scans) of elements that have no direct correspondence on the point cloud generated by the CMM. This
phenomenon is particularly evident in Figure 4b,c, where the measured points (in green) do not have a
direct correspondence in the CMM scanning.

The software written in MATLAB looks for global optimization, i.e., it tries to find the best
possible location even for the points that do not have a correspondence between the two scans, via the
minimization of an objective function of the global type. The obtained effect is to introduce an error
distributed over the entire volume of measurement. In place of the calculation of the point-to-point
distances typically used in commercial software, the approach used by MATLAB aims to minimize
point-to-surface distance, which implies the minimization of the volume between the registered areas.
This was possible by introducing the metric for the calculation of volumes and using the minimization
of volumes as to the objective function for the process of optimization of the registration phase. In the
proposed approach, the volumes have to be considered, rather than the distances. Figure 5 shows,
in a false color scale, the recording of volumetric errors. As expected, the major errors occur in the
lower area of the model where the point clouds deriving from the CMM and the scanner may differ
significantly. It is, however, to be noted that the greatest similarity of clouds relative to the scanners
1–4 leads to a lower overall volumetric error, clearly evident in Figure 5a, while Figure 5b,c show how
the diversity of the clouds in the lower area constitutes a mistake of registration also in the coronal
area. From Figure 5a, the values were 0.00014156 mm3 (SD 0.00052291) for the D1 scanner, 0,00049597
mm3 (SD 0.00091085) for the D2 scanner, 0.00031453 mm3 (SD 0.00052450) for the D3 scanner, and
0.00020287 mm3 (SD 0.0005618) for the I scanner. Figure 6 shows the histogram of the local volumetric
error distribution. It is evident that the errors are concentrated in the low area abscissa, showing the
substantial absence of a bias error. Figure 7 compares the volumetric error probability distributions for
measurements performed with the different scanners. For this distribution, it can be observed that D1
and I scanners have a low probability of errors with respect to D2 and D3 scanners.

Using comparative analysis based on linear analysis and volumetric error analysis allows us to
obtain an evaluation of the performances of the scanners [61]. In particular, the evaluation based
on linear distances deriving from the commercial software shows a lower metrological performance
compared to desktop ones. The additional comparison performed with MATLAB demonstrated the
same behavior as well, but a direct comparison between the two approaches cannot be easily applied
and deserves further analysis.

The limitation of this study is that some investigations must be done regarding the full arch in
terms of volumetric analysis.

5. Conclusions

The following conclusions were drawn: all of the digital impression systems were able to measure
the specific tooth structure; each tested system showed different levels of trueness and precision values;
commercial programs are reliable methods to analyze accuracy and precision; a different approach
based on volumetric error calculation was proposed in addition to classical linear error calculation; the
results seem to demonstrate the good reliability of the procedure.

Further studies to validate the volumetric error approach are necessary, as well as its extension to
full arch data acquisition.
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Appendix A

Table A1. Scanner D1: results of the statistical analysis over the entire population. Mean, maximum, minimum, and standard deviation values of compared geometries
with commercial software.

Sample
n◦

Scanner D1: Min
[mm] 3-matic

Scanner D1: Max
[mm] 3-matic

Scanner D1: Median
[mm] 3-matic

Scanner D1: Mean
[mm] 3-matic

Scanner D1:
SD[mm] 3-matic

Scanner D1: Min
[mm] Geomagic

Scanner D1: Max
[mm] Geomagic

Scanner D1: Mean
[mm] Geomagic

Scanner D1: SD
[mm] Geomagic

1 −0.2885 0.0115 −0.0628 −0.0363 0.0814 −0.38545406 0.276725124 −0.04893728 0.055600599

2 −0.26876 0.0252 −0.0405 −0.0532 0.1083 −0.37093595 0.303139111 −0.01996574 0.044769622

3 −0.30531 0.019 −0.0617 0.0029 0.0981 −0.37368288 0.289543464 −0.00173811 0.073996361

4 −0.30372 0.008 −0.0467 −0.0278 0.0851 −0.4017169 0.286267097 −0.06426665 0.051998538

5 −0.30722 0.0006 −0.0458 −0.0443 0.102 −0.40603246 0.265953915 −0.06816115 0.062262669

6 −0.27031 0.0252 −0.0288 −0.0686 0.0864 −0.37767468 0.28051937 −0.0160112 0.070223043

7 −0.28462 0.0008 −0.0745 −0.0402 0.0781 −0.38332871 0.276554047 −0.02353725 0.072008235

8 −0.27174 0.0003 −0.0325 −0.0136 0.1044 −0.39164583 0.294442145 −0.04605321 0.045416321

9 −0.30609 0.0237 −0.0483 −0.0666 0.0815 −0.37024251 0.302135949 −0.06132818 0.04543797

10 −0.3042 0.0299 −0.0229 −0.0067 0.1103 −0.40867947 0.290691141 −0.05508965 0.066147463

11 −0.27261 0.0081 −0.0545 −0.0445 0.0814 −0.3786655 0.297845856 −0.01645955 0.063384042

12 −0.30993 0.0206 −0.0541 −0.0483 0.0868 −0.36256436 0.274582175 −0.00504935 0.056942696

13 −0.29971 0.0237 −0.0324 −0.0335 0.0916 −0.40549641 0.259519921 −0.04622169 0.065123292

14 −0.30771 0.0235 −0.0116 −0.0459 0.096 −0.38237552 0.259110778 −0.00326103 0.040148547

15 −0.29877 0.0068 −0.0168 −0.0033 0.1019 −0.40460144 0.284267483 −0.00384671 0.049719942

16 −0.27969 0.0226 −0.0351 −0.0536 0.084 −0.40771983 0.29649729 −0.02071697 0.068142639

17 −0.27361 0.0211 −0.0151 −0.0618 0.1064 −0.39129371 0.285217503 −0.00786584 0.045105455

18 −0.29876 0.0262 −0.0116 −0.0261 0.1096 −0.37816782 0.260653735 −0.00561344 0.045626003

19 −0.2781 0.0014 −0.0001 −0.0647 0.0959 −0.40477652 0.30451627 −0.02658745 0.051661294

20 −0.27688 0.0098 −0.0346 −0.0232 0.0772 −0.37010547 0.271668893 0.00190503 0.050605688

21 −0.2784 0.0169 −0.0271 −0.04 0.0924 −0.3901043 0.272363344 −0.02061957 0.06297591

22 −0.26954 0.0215 −0.0086 −0.0408 0.0955 −0.4023326 0.302295757 −0.06862174 0.042297196

23 −0.26298 0.0077 −0.0721 −0.0452 0.09 −0.39514631 0.297153096 −0.01107715 0.062633413

24 −0.26034 0.0019 −0.024 −0.048 0.1023 −0.39656539 0.289381906 −0.0030611 0.048203578

25 −0.27528 0.0066 −0.0705 −0.0661 0.0996 −0.39286144 0.258569199 −0.02369157 0.044807161

26 −0.29037 0.0226 −0.0683 −0.0687 0.0902 −0.37867023 0.300837065 −0.03693786 0.057959913

27 −0.29019 0.0147 −0.0633 −0.0115 0.0999 −0.40914412 0.284389628 −0.06022517 0.053896628

28 −0.28717 0.0061 −0.0156 −0.0713 0.082 −0.40814553 0.301813925 −0.03036833 0.050702256

29 −0.2681 0.0209 −0.0036 −0.0123 0.0964 −0.40996617 0.275787637 −0.03803396 0.057036145

30 −0.27895 0.0008 −0.0375 −0.0245 0.1087 −0.37012382 0.288388967 −0.02655814 0.048167383
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Table A2. Scanner D2: results of the statistical analysis over the entire population. Mean, maximum, minimum, and standard deviation values of compared geometries
with commercial software.

Sample
n◦

Scanner D2: Min
[mm] 3-matic

Scanner D2: Max
[mm] 3-matic

Scanner D2: Median
[mm] 3-matic

Scanner D2: Mean
[mm] 3-matic

Scanner D2: SD
[mm] 3-matic

Scanner D2: Min
[mm] Geomagic

Scanner D2: Max
[mm] Geomagic

Scanner D2: Mean
[mm] Geomagic

Scanner D2: SD
[mm] Geomagic

1 −0.05559809 0.234735985 0.005188452 0.015044861 0.040011603 −0.016596856 0.239030035 0.044568789 0.039483152

2 −0.079878997 0.2234752 −0.029041417 −0.00533495 0.038541149 0.006775945 0.238065342 0.036471998 0.054091924

3 −0.094650934 0.235459432 −0.038287262 0.057053765 0.054767438 0.002674579 0.213585298 0.04597167 0.032883445

4 −0.082978553 0.234895242 −0.036483554 0.018257273 0.05357025 0.013187224 0.240011775 0.073075048 0.057173863

5 −0.089290001 0.242043471 −0.034817528 0.055937677 0.051643043 0.02241958 0.212302958 0.053286243 0.037526151

6 −0.094196344 0.233567315 0.002372854 0.044651262 0.031525171 −0.019191686 0.21550202 0.03024454 0.040416117

7 −0.08665247 0.253418581 −0.053414435 0.003382346 0.059631522 0.008584724 0.242304096 0.029611291 0.033038573

8 −0.07803046 0.250341111 −0.037287012 0.040198773 0.036962065 0.005213882 0.212859701 0.035924326 0.050874009

9 −0.071364294 0.259518304 −0.023500462 0.055674948 0.051957324 −0.010659493 0.237952216 0.001938023 0.048503503

10 −0.077967423 0.234525853 −0.05272095 0.051754075 0.040672267 0.024751507 0.231409636 0.036502749 0.0443001

11 −0.074460155 0.261552656 −0.049905676 0.02122489 0.054119402 −0.019955628 0.219989993 0.02449097 0.026033484

12 −0.093435767 0.219585312 0.015092024 0.010846666 0.030194845 −0.009175737 0.237299049 0.026956223 0.046847739

13 −0.095493586 0.239723286 −0.039745544 0.031874569 0.047589366 0.019569632 0.230508414 0.039900278 0.024481113

14 −0.087406718 0.244379261 −0.043395828 0.00233264 0.0278432 0.007200076 0.239544986 0.039312111 0.05235953

15 −0.09316826 0.222852287 −0.026583558 −0.009644497 0.037603005 −0.02147101 0.246618525 0.028449294 0.037169703

16 −0.063558113 0.220461847 −0.046924348 0.050575846 0.044434621 −0.006206507 0.213522839 0.055873168 0.047579536

17 −0.099786947 0.240640095 −0.040210836 0.044004416 0.058841372 0.002862416 0.247935963 0.044382685 0.032934142

18 −0.09571366 0.231879772 −0.049921057 0.032762332 0.058688293 −0.00161732 0.214176942 0.065488819 0.046906082

19 −0.096496409 0.2524543 -6.63E-05 0.055600465 0.02647297 0.021941952 0.249702482 0.02850467 0.05763061

20 −0.056612949 0.252046073 −0.000203084 −0.007344192 0.055170739 0.004669284 0.225967725 0.059806344 0.043873914

21 −0.068318089 0.245444284 0.001477482 0.053230343 0.05357518 −0.006495504 0.22170474 0.002601997 0.047615307

22 −0.078092437 0.235603597 0.012484246 0.048197805 0.035767248 −0.000516601 0.221063933 0.068867886 0.053460028

23 −0.059482741 0.249081672 −0.052432452 −0.009648531 0.04656202 −0.021088249 0.215532105 0.020729887 0.047664035

24 −0.082352509 0.247768547 −0.044205592 −0.007854655 0.03078478 0.009957894 0.21222616 0.074483778 0.057447131

25 −0.0828698 0.250334262 0.007473731 0.002004107 0.058578741 −0.005851656 0.231746344 0.040073564 0.02512131

26 −0.086593431 0.245878227 −0.055776121 0.021900566 0.0334415 0.005638017 0.218707713 0.048717413 0.030059703

27 −0.07075342 0.22330662 −0.024378255 0.011410853 0.031208516 −0.0017974 0.247131175 0.025584927 0.039479181

28 −0.098065754 0.214475158 0.001400795 0.055925483 0.037787586 0.001404241 0.207987499 0.029776333 0.056168042

29 −0.097681818 0.219984572 −0.054021264 −0.013020418 0.037781806 0.002768872 0.217710293 0.019367593 0.033486409

30 −0.070790562 0.251131126 −0.02880334 0.019001283 0.057272978 0.002772199 0.255505325 0.033037383 0.039392164
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Table A3. Scanner D3: results of the statistical analysis over the entire population. Mean, maximum, minimum, and standard deviation values of compared geometries
with commercial software.

Sample
n◦

Scanner D3: Min
[mm] 3-matic

Scanner D3: Max
[mm] 3-matic

Scanner D3: Median
[mm] 3-matic

Scanner D3: Mean
[mm] 3-matic

Scanner D3: SD
[mm] 3-matic

Scanner D3: Min
[mm] Geomagic

Scanner D3: Max
[mm] Geomagic

Scanner D3: Mean
[mm] Geomagic

Scanner D3: SD
[mm] Geomagic

1 −0.254310217 0.178069565 0.01541129 −0.028719584 0.079945746 −0.264776546 0.184517562 −0.033473335 0.097442048

2 −0.245332214 0.186576515 −0.055368173 −0.05046097 0.094199931 −0.256215369 0.195760877 −0.046362529 0.0859752

3 −0.276714554 0.2082844 −0.042906972 −0.023604206 0.073481657 −0.270589633 0.185760442 −0.027473323 0.084159645

4 −0.262810076 0.195895677 0.005396755 −0.05588251 0.098131013 −0.282996778 0.204212025 −0.076685213 0.073126555

5 −0.290327668 0.175718849 0.002924972 0.003700348 0.090169938 −0.286862586 0.184893945 −0.052759724 0.082404603

6 −0.29011559 0.192048751 0.011518932 −0.056650825 0.099730572 −0.244755377 0.194496313 −0.030458023 0.089906971

7 −0.266263505 0.212237894 −0.011439302 −0.03482762 0.093784678 −0.269797927 0.18993196 −0.049143057 0.088848151

8 −0.244765509 0.198089411 −0.007124041 −0.043516498 0.080398107 −0.266227758 0.193729547 −0.027826013 0.103418378

9 −0.244104377 0.195664308 −0.023080695 −0.05007469 0.090107952 −0.267912775 0.178157403 −0.090768961 0.079294486

10 −0.252607625 0.202303083 −0.019095623 −0.05475524 0.086065576 −0.252942313 0.182666535 −0.092989839 0.073845791

11 −0.280103874 0.176313915 −0.016119346 −0.059788134 0.079087947 −0.261700778 0.17851878 −0.045311494 0.092746223

12 −0.289976795 0.177175083 −0.023622587 0.003828915 0.097145488 −0.256864302 0.209846693 −0.052254141 0.084507914

13 −0.278218574 0.212038672 −0.003946003 −0.049882344 0.083915774 −0.251686565 0.196755571 −0.093406448 0.071999315

14 −0.264012588 0.175074466 0.014270096 0.008349977 0.10006406 −0.281608359 0.221303289 −0.028943935 0.087137103

15 −0.242468328 0.187963485 −0.008963086 −0.009603513 0.070863165 −0.288910445 0.184370625 −0.041414969 0.103385624

16 −0.289198419 0.173462374 0.017668911 −0.018196157 0.076888822 −0.242950347 0.184033623 −0.045536777 0.101012178

17 −0.243604655 0.210867521 −0.00027629 −0.000231042 0.081336703 −0.245736532 0.181974381 −0.07902084 0.078338864

18 −0.270019685 0.201494977 −0.035651628 −0.037627209 0.0792426 −0.262892094 0.205339708 −0.051040684 0.080077924

19 −0.244814798 0.209215056 0.009522518 −0.047046718 0.076371406 −0.247015252 0.202492287 −0.09656671 0.092188097

20 −0.254331832 0.20604674 −0.002933949 −0.049728139 0.098762815 −0.288111452 0.177005765 −0.026781972 0.091714406

21 −0.243574319 0.205360454 0.014191011 −0.026155182 0.069495636 −0.268968144 0.196514392 −0.072433713 0.071350331

22 −0.287046597 0.178264631 −0.011170269 −0.00437325 0.07261242 −0.254672641 0.185874091 −0.039114598 0.096651297

23 −0.258481863 0.181437936 0.010469901 −0.042052681 0.088648845 −0.287646237 0.184605187 −0.092939708 0.08174602

24 −0.285257641 0.211889049 −0.044839747 −0.036283616 0.082438987 −0.279499543 0.204800837 −0.053647486 0.091646069

25 −0.280475922 0.209508775 −0.028061188 −0.025497988 0.091810286 −0.276645669 0.208593129 −0.030006671 0.093939263

26 −0.256539612 0.17959888 −0.051818611 −0.0067587 0.081766499 −0.26493827 0.207908965 −0.044338572 0.100260316

27 −0.25762658 0.183942233 −0.000991685 −0.02199195 0.091106159 −0.280490756 0.201153956 −0.046400184 0.080933861

28 −0.26738281 0.206320205 −0.00194047 0.001218856 0.096626083 −0.263384327 0.202752533 −0.043634908 0.071905164

29 −0.274765893 0.174749396 −0.018205667 −0.000392787 0.085241639 −0.275289398 0.194538021 −0.041025597 0.076496789

30 −0.27994523 0.183664002 −0.000599737 0.010003458 0.099559494 −0.257619673 0.187234597 −0.083240573 0.082541416
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Table A4. Scanner I: results of the statistical analysis over the entire population. Mean, maximum, minimum, and standard deviation values of compared geometries
with commercial software.

Sample
n◦

Scanner I: Min
[mm] 3-matic

Scanner I: Max
[mm] 3-matic

Scanner I: Median
[mm] 3-matic

Scanner I: Mean
[mm] 3-matic

Scanner I: SD
[mm] 3-matic

Scanner I: Min
[mm] Geomagic

Scanner I: Max
[mm] Geomagic

Scanner I: Mean
[mm] Geomagic

Scanner I: SD
[mm] Geomagic

1 −0.11781247 0.49795063 0.008689796 −0.1742938 0.13664737 −0.4222614 0.51627399 −0.145478598 0.152366066

2 −0.124892019 0.51138728 0.021866352 −0.1636303 0.1347985 −0.4442221 0.51579094 −0.163867642 0.145192668

3 −0.097546755 0.49686383 −0.01183871 −0.1128749 0.14219212 −0.4098171 0.50704209 −0.149092445 0.144715937

4 −0.102007814 0.49035466 −0.01395825 −0.1326804 0.12855203 −0.4269133 0.5219809 −0.148277286 0.137446306

5 −0.089735162 0.51364537 −0.02998977 −0.1265968 0.14216613 −0.4340189 0.52117973 −0.19305626 0.134018058

6 −0.119371988 0.48490691 −0.01333214 −0.1053726 0.1216599 −0.4141755 0.47849145 −0.202578541 0.155360827

7 −0.092763599 0.51238044 0.012373462 −0.1106396 0.14059593 −0.4102756 0.4961868 −0.153089979 0.153375816

8 −0.079816584 0.51509974 0.017380729 −0.1474741 0.12697789 −0.4227497 0.50512709 −0.186467778 0.13828498

9 −0.125690003 0.49006616 0.007894965 −0.1104756 0.13145195 −0.4501583 0.51281377 −0.169186181 0.148139641

10 −0.096790949 0.50712252 −0.04491549 −0.105626 0.12507113 −0.449114 0.50858314 −0.173226218 0.141503619

11 −0.08176709 0.48380357 −0.04712203 −0.1161692 0.12018203 −0.4412199 0.51835278 −0.203100171 0.135762015

12 −0.08942935 0.47777387 0.024462985 −0.1736686 0.1288828 −0.4254483 0.48049166 −0.161042323 0.121542016

13 −0.114175134 0.52680922 −0.00702429 −0.127794 0.12556558 −0.4458986 0.49690159 −0.15511584 0.13261246

14 −0.097592391 0.48457342 −0.0003491 −0.1432005 0.12228327 −0.4213368 0.50501752 −0.180934356 0.132151445

15 −0.126768593 0.49662327 −0.04227782 −0.1393851 0.13582834 −0.4447803 0.49978796 −0.203218517 0.149085868

16 −0.12625199 0.50752249 −0.03558122 −0.1617198 0.14511671 −0.4146253 0.50845198 −0.137539877 0.123564262

17 −0.116292692 0.52012804 −0.03972424 −0.1488023 0.14661289 −0.4010466 0.51320049 −0.138306097 0.122428148

18 −0.109952501 0.51338727 0.008726925 −0.1144032 0.11527645 −0.4269293 0.51804156 −0.1425405 0.130833686

19 −0.081442505 0.51454857 0.020090463 −0.1488778 0.13765427 −0.4315004 0.51842852 −0.173506192 0.136569566

20 −0.092419796 0.48527664 −0.00874486 −0.1128613 0.13112836 −0.4049787 0.50856657 −0.147672306 0.135382201

21 −0.124709961 0.48698669 0.017546582 −0.1220959 0.12597153 −0.4293716 0.51436094 −0.161701094 0.133814418

22 −0.099202757 0.48861968 −0.02268056 −0.1537021 0.14577961 −0.4286044 0.51825091 −0.153697755 0.122291941

23 −0.12453533 0.48328769 −0.00930665 −0.1718808 0.1404617 −0.4365059 0.48791528 −0.140175002 0.129642043

24 −0.124041271 0.4952397 −0.02401531 −0.1740354 0.12114903 −0.4194405 0.49181124 −0.186247028 0.147610025

25 −0.091844597 0.48432472 0.020236357 −0.1154929 0.11427098 −0.4499926 0.51558894 −0.168594521 0.150766974

26 −0.080288816 0.51846243 0.021326592 −0.1669572 0.11691116 −0.4244679 0.48474799 −0.168481123 0.125331508

27 −0.098828131 0.51264328 −0.00372945 −0.1301353 0.14128072 −0.4328578 0.5013414 −0.145632043 0.147953087

28 −0.089001162 0.52392736 −0.01411654 −0.1584058 0.12239955 −0.4207694 0.52583438 −0.159709246 0.151355366

29 −0.085326312 0.50104407 −0.03725311 −0.1406584 0.12426522 −0.4274239 0.51303678 −0.181544201 0.143912632

30 −0.115538035 0.48881803 0.005549855 −0.1510905 0.11786685 −0.4007188 0.51336581 −0.168920878 0.149986421
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