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Abstract: Controlling the sources of Fe available to pathogens is one of the possible strategies that
can be successfully used by novel antibacterial drugs. We focused our interest on the design of
chelators to address Mycobacterium avium infections. Taking into account the molecular structure of
mycobacterial siderophores and considering that new chelators must be able to compete for Fe(III),
we selected ligands of the 3-hydroxy-4-pyridinone class to achieve our purpose. After choosing the
type of chelating unit it was also our objective to design chelators that could be monitored inside
the cell and for that reason we designed chelators that could be functionalized with fluorophores.
We didn’t realize at the time that the incorporation a fluorophore, to allow spectroscopic detection,
would be so relevant for the antimycobacterial effect or to determine the affinity of the chelators
towards biological membranes. From a biophysical perspective, this is a fascinating illustration of the
fact that functionalization of a molecule with a particular label may lead to a change in its membrane
permeation properties and result in a dramatic change in biological activity. For that reason we believe
it is interesting to give a critical account of our entire work in this area and justify the statement
“to label means to change”. New perspectives regarding combined therapeutic approaches and the
use of rhodamine B conjugates to target closely related problems such as bacterial resistance and
biofilm production are also discussed.

Keywords: fluorescent iron chelator; 3-hydroxy-4-pyridinone; fluorophore; rhodamine; membrane
interactions; bacteria; antibacterial activity

1. Introduction

1.1. Chelators and Iron

Numerous transition metal ions have proved to be essential for life, though it is well known that
transition metals can be toxic. Living organisms have resolved this paradigm by incorporating metal
ions in complex biological structures and by developing highly complex regulatory mechanisms to
keep the amounts of “free metal ion” available at any time very tiny, thus counteracting toxicity [1].

Chelation is a type of bonding normally used to bind metal ions to biomolecules, namely proteins
and nucleic acids, as well as to uptake and/or deliver metal ions. A chelator is a ligand (molecule or
anion; Lewis base) that has the capacity to bind a metal ion (Lewis acid) through at least two coordinate
bonds. The chemical entity that is formed upon chelation is designated a metal-chelate. There is a large
variety of molecules that can act as chelators and which use for chelation: (a) different types of atoms
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(O, N, S) providing different coordination spheres and (b) different number of atoms (2, 3, 4, 6, etc.)
being classified as having different denticity (bidentate, tridentate, tetradentate, hexadentate, etc.).

The affinity of a chelator for a selected metal ion, in a particular oxidation state, is defined by
the stability constant (Log β) of the respective metal-chelate measured in standard thermodynamic
conditions. The enhancement of stability, provided by replacement of ligands of lower denticity by
chelators of higher denticity is known as the chelate effect [1].

It is important to bear in mind that, upon chelation the redox potential of the metal ion and
protonation constants of the chelator are altered. In the case of iron (Fe), the first characteristic is
particularly important since it allows the fine-tuning of redox potentials by choosing the appropriate
ligands thus making it suitable to participate in electron transfer chains and providing an approach to
diminish toxicity.

Iron is one of the most abundant elements in Earth’s crust, and the most abundant transition metal,
being an essential micronutrient for all living organisms [2], with the exceptions of Lactobacilli and
Borrelia burgorferi [3–5]. Despite its abundance, the geological availability of Fe is compromised by the
fact that the element exists in insoluble chemical forms making its uptake extremely difficult to living
organisms. Bacteria and plants obtain iron from the environment by chelation, whereby the element is
chemically bound to another substance (siderophore) making the whole complex (Fe-chelate) soluble
and available.

Siderophores are chelators produced by living organisms to acquire Fe from the environment in
response to a need of the element. More than 500 siderophores have been described and the chemical
structure of approximately 260 siderophores is known [6]. Most siderophores are hexadentate chelators
bearing hydroxamate (such as desferrioxamine) or catecholate units (such as enterobactin) for which
the values of the Fe(III) stability constants are in the range 30 < (Log β) < 49. The latter values are ca 20
orders of magnitude higher than those regarding the corresponding Fe(II) chelates thus favouring the
release of the metal ion by reduction, a common step in the delivery of Fe into cells [7]. At this point
it must be mentioned that, in physiological conditions, judgement of the effectiveness of a chelator
to withdraw Fe(III) from the environment is better achieved by comparison of the respective pFe(III)
(-log[Fe(III)]) values, which are calculated considering pH 7.4, a total ligand concentration of 10−5 M
and a total Fe(III) concentration of 10−6 M [8] in opposition to the standard thermodynamic conditions
considered for the determination of the stability constant (Log β) [9].

Iron is a cofactor in metalloproteins, and is involved in essential biological functions, from DNA
biosynthesis and transcription to energy production and central metabolism [10]. The suitability of Fe
arises from its unique physico-chemical properties to act in electron transfer, namely the possibility
of existing in various oxidation states and the extreme variability of its redox potentials, which can
be fine-tuned upon chelation [11,12]. Nevertheless, this redox activity can also be pernicious if the
element exists in chemical forms with redox potentials that allow their participation in the generation
of reactive oxygen species (ROS) [13].

The maintenance of Fe homeostasis demands a tight control of intracellular and systemic iron
levels, which is achieved through sophisticated regulatory mechanisms [14]. Disruption of Fe
homeostasis has consequences in the physiopathology and clinical evolution of a significant number
of diseases in all medical areas. In clinical practice, and depending on the disease, various therapeutic
approaches are used to regain Fe homeostasis and chelation therapy is one of the currently available
choices [15–19].

The need to control Fe levels by chelation, in Fe unbalance related diseases, has prompted
chemists to synthesize several types of chelators and the increasing knowledge about Fe metabolism
and identification of specific targets, has been providing important feedback to the design of new and
more effective chelators.

Natural and synthetic Fe chelators have first been used to treat iron overload diseases and at
present three types of chelators (desferrioxamine (DFO), desferasirox (DFX) and deferiprone (DFP))
(Figure 1) are used in clinical practice [18,20–22]. The use of Fe chelators has been extended to address
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the control of Fe levels in other disease scenarios in which a disruption of Fe homeostasis has been
identified such as inflammation, infection, cancer, neurodegenerative processes and diabetes [23–25].

Although we recognize the importance of the use of chelation therapeutic approaches in many
diseases in this work we will focus on infection, particularly on mycobacterial infection.
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1.2. Iron and Infection

The sharp control of transition metal ion concentration is of extreme importance in infection
scenarios since transition metals are also nutrients for the invading pathogens. As referred above,
living organisms counteract transition metal ion toxicity through mechanisms that maintain very
tiny amounts of free metal ion available for redox cycling. Similar mechanisms seem to be used by
living organisms to withhold nutrients from invading pathogens in a process, which has been termed
“nutritional immunity” [26,27].

In fact, it has been described that the withholding of Fe is one of the primary defence mechanisms
against pathogenic invaders [26,28]. The competition for Fe between pathogens and their hosts
is dramatic and pathogenic bacteria have developed survival strategies like residing in specific
intracellular niches within the host cell and the ability to use the host Fe sources. Mycobacteria,
namely M. tuberculosis and M. avium, are examples of intracellular pathogens, being able to inhibit the
maturation of phagosomes and taking profit of the host Fe acquisition mechanisms [29].

An increase in the susceptibility to infection was observed in patients suffering from Fe overload
related diseases [30]. Due to the high levels of iron available in Haemochromatosis, the disease
has been associated with an increased susceptibility to infection by several bacteria [27] such as
Yersinia enterocolitica [31] and Vibrio vulnificus [32]. High levels of iron acquired from the diet lead
to an exacerbation of M. tuberculosis infection symptoms in both humans and mice [33]. Moreover,
it has been shown that iron overloaded haemochromatosis protein (HFE) deficient mice are more
susceptible to M. avium infection [34]. These findings were reproduced in macrophages isolated from
mice and infected with M. avium [35]. Several studies correlate the iron status in AIDS patients and the
susceptibility to mycobacterial infections and experiments have shown that iron overload increases
mycobacterial growth in immune-deficient mice [35,36], and iron redistribution towards macrophages
in AIDS patients was shown to favour the progress of tuberculosis [37].

Taking advantage of the knowledge on the iron-related interplay between host and the pathogen
and the evidence of a nutritional immunity, the development of many different antibacterial approaches
based on the destabilisation of iron concentrations accessible for bacteria have been reported [26,38–40].

Amongst others, the process of iron acquisition represents one of the pathways, which can be
successfully targeted by new antibacterial drugs and restriction of Fe was shown to improve the
outcome of a number of infectious diseases including mycobacterial infections [29,41–44].

Considering that bacteria produce siderophores to gain access to iron from their environment one
of the obvious choices to intervene in Fe acquisition is the administration of synthetic chelators that
are able to compete with the natural ones. Preferably, from the chemical point of view the structure
of new antimicrobial agents should differ from that of natural siderophores in order to prevent the
recognition and uptake of the iron-chelate by the pathogens.
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1.2.1. Iron Chelation—A Therapeutic Tool to Tackle Microbial Infection?

Several reports have been produced, suggesting the application of chelation therapy for the
control of infections [29,38,45–48].

The effect of iron chelators in the treatment of bacterial infections has been extensively investigated
and one of the first molecules studied was 8-hydroxyquinoline and its related ligands [49]. Some
chelators such as EDHPA, EDTA and DTPA have shown activity against Gram-positive and
Gram-negative bacteria (reviewed in [50,51]). The effect of iron chelators against bacterial biofilms
has also been proved, for instance in the biofilms produced by Pseudomonas aeruginosa [52–55] or
Staphylococcus aureus [56].

The extensively used DFO and DFX have demonstrated antibacterial effect in a numerous range of
bacterial pathogens [57–60]. However, these ligands offer some drawbacks. DFX is a tridentate ligand
and consequently has lower iron affinity than most bacterial siderophores, which are hexadentate
ligands. DFO is a hexadentate natural siderophore and some pathogenic bacteria possess specific
receptors for capturing the iron loaded chelator and use the metal ion for their own growth [59,61,62].

To overcome these disadvantages, the antimicrobial activity of chelating units, which are not
present in natural siderophores, such as 3,4-HPO ligands, has been considered. DFP has shown
efficacy against several bacteria, such as S. aureus and P. aeruginosa [59,62–64]. Other 3,4-HPO, have
shown in vitro inhibitory activity against several Gram-positive and Gram-negative bacterial species,
including S. aureus, P. aeruginosa and Escherichia coli [40,65–70].

1.2.2. Mycobacterial Infections

Mycobacteria

Mycobacterium is a genus of bacteria that comprises several species, such as Mycobacterium
tuberculosis and Mycobacterium leprae, responsible for tuberculosis and leprosy. Other mycobacteria are
responsible for opportunistic infections in humans and other animals, namely Mycobacterium avium.
M. avium complex (MAC) includes M. avium and also the non-tuberculous mycobacteria, such as
Mycobacterium intracellulare.

Mycobacterium species can be classified in different groups, according to their growth rate, as
slow growers and fast growers. Both M. tuberculosis and M. avium are slowly growing mycobacteria
while other mycobacteria, such as M. smegmatis comprises the fast growers group [71]. Mycobacteria
can also be classified according to their morphotypes as smooth or rough, transparent or opaque.
The smooth transparent morphotype is usually related with virulence in mouse while the rough
opaque morphotypes was found in AIDS patients [72].

Both, the lipidic composition and the cell envelope architecture contribute to the pathogenicity of
these microorganisms [73]. Mycobacteria’s cell envelope is a unique and complex structure composed
by the plasma membrane, the cell wall and the capsule (Figure 2) [74].

The lipidic composition of the plasma membrane includes different phospholipids and glycolipids
embedded in the plasma membrane, Mycobacteria are unusual Gram-positive bacteria in which the
cell wall contains peptidoglycan covalently bound to arabinogalactan esterified with long chain
mycolic acids. The more external layer of the mycobacterial cell envelope, the capsule, is predominantly
composed by glycoproteins, arabinomannan and mannan derived polysaccharides [74,75]. The particular
characteristics of the cell envelope, mainly hydrophobicity and impermeability, contribute to the
virulence of mycobacteria, constituting a barrier that compromises the uptake of many antibiotics.
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Figure 2. Schematic representation of the cell envelope of pathogenic mycobacteria (A, adapted
from [74]); Structure of mycobacterial siderophores: Mycobactin T produced by M. tuberculosis (MB T);
Carboxymycobactin synthetized for M. avium, M. tuberculosis e M. bovis (n = 2–9); Exochelin MS
produced for M. smegmatis. (B, adapted from [76–78]).

Both M. tuberculosis and M. avium are facultative intracellular pathogens that reside primarily
inside mononuclear phagocytes, namely monocytes and macrophages. These pathogens grow
inside vacuoles, the phagosomes, and developed several strategies to survive and resist to host
defenses [79–81].

To ensure survival and replication inside the phagosome in infected macrophages, mycobacteria
developed strategies to retard phagosome maturation, namely by manipulating the host cell endocytic
pathways in order to prevent the fusion of the phagosome with late endosomes and lysosomes [79,82].
Thus, the mycobacteria-containing phagosomes remain with characteristics of an early endosome.
The levels of ATPase are low and the vacuole is not acidified (the neutral pH value is maintained).

Mycobacterial Siderophores

Mycobacteria have developed systems for sensing and regulating iron levels in the intracellular
medium. They produce siderophores for iron acquisition and transport and also synthesize proteins
to store the iron recruited from the host [83]. Mycobacteria differ from other bacteria by being able
to produce different types of iron ligands, namely lipophilic molecules restricted to the cell envelope
(mycobactins) and polar extracellular siderophores (carboxymycobactins and exochelins) [83,84] (Figure 2).
M. leprae is an exception, lacking the gene cluster (mbt) responsible for the synthesis o mycobactins [85].
Non-pathogenic species, such as Mycobacterium smegmatis and Mycobacterium neoaurum, produce
exochelins while pathogenic mycobacteria synthesize carboxymycobactins [86,87]. Mycobactins are
salicylate-containing siderophores, which are acylated with long chain fatty acids in order to remain
associated with the bacterial membrane. The extracellular siderophores are exochelins, which have a
peptide-based structure, and/or carboxymycobactins, in which the long alkyl chain of mycobactin
is substituted with a short carboxylated acyl chain (Figure 2). Mycobacterial siderophores are
hexadentate ligands possessing chelating units based on the phenyloxazolidine ring, ornithine- derived
hydroxamates and salycilates [86]. In addition to their specific siderophores, mycobacteria produce
salicylic and citric acids which may also play a role in iron acquisition [88].
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After production of siderophores and chelation of iron, mycobacteria uptake this element for
usage or storage and the mechanism of transport differs according to the type of siderophore and its
localization. Mycobactins, located in the membrane, provide high stability constants for the formation
of the Fe complex (Log β ~ 31) [89] and these siderophores are able to remove iron from host proteins,
such as transferrin and ferritin. However, due to their localization, the access to these proteins is
difficult sometimes compromising acquisition of such iron sources. Thus, mycobactins bind iron
previously bound by carboxymycobactins, which are extracellular siderophores, and then transfer the
element through the bacterial membrane [76,87].

Several mechanisms to acquire and transport iron bound to mycobactins have been proposed
and in an interesting study Groves et al. [83,90] suggest that mycobactins may diffuse into the
host macrophage and then mobilize iron available in the intracellular pools of the macrophage.
The ferri-mycobactins are then associated to lipid droplets and return to the phagosomes.

In the case of exochelins, these ligands are able to transport iron through the cell membrane [86,91].
Exochelins, like carboxymycobactins, may also transfer iron to mycobactins. Moreover, it is also
described in the literature that exochelins are taken up by active transport and access iron from ferritin,
Tf and Lf [76,92].

Iron Chelators to Control Mycobacterial Infection

The use of chelators to control mycobacterial infection by iron deprivation has been successfully
tested (reviewed in [16,42]). The use of chelators to restrict the iron available for mycobacterial growth
has been reported [87], namely for M. tuberculosis [43,93] and M. avium [42,89,94,95].

DFO has been used to inhibit Mycobacterium aurum growth [96] and another study suggested
that DFO in combination with silybin, an iron-chelating agent from plants, was able to reduce the
extracellular growth of M. tuberculosis. However, both of these chelators induced slightly effects on
the reduction of in intracellular growth of the pathogen [97], DFO also inhibited biofilm formation by
M. smegmatis and M. bovis BCG [98].

Other ligands, namely spiro pyridopyrrolizines, pyrrolidines [99] and 4H-pyrano[3,2-c]pyridine
derivatives [100], have been tested and the results have shown that the compounds are effective to
inhibit the in vitro growth of M. tuberculosis. Spiropiperidin-4-ones derivatives also inhibited the
growth of M. tuberculosis, both in vitro and in vivo [101]. 2-Hydrazinopyrimidin-4(3H)-one derivatives,
have been tested against M. tuberculosis and several molecules have shown antimycobacterial
activity [102].

The antimycobacterial activity of different chelators, namely DFO, HBED, dDFT and VUF-8514
against M. avium were investigated [42]. The results show that DFO, HBED e VUF8514 inhibit
mycobacterial growth in axenic conditions and HBED and DFO also inhibit M. avium intramacrophagic.
In vivo, the administration of DFO or HBED had small effect on the growth of the pathogen.
Considering that inhibition of mycobacterial growth was observed in mice fed with a low iron diet,
the authors assume that the limited effect of the chelation therapy is a consequence of a lack of efficacy
of currently available chelators, stressing the requirement for new molecules, which can target the
intracellular compartments where mycobacteria proliferate [73].

Also, the study of the effect of DFP and other 3,4-HPO, namely L1Net, L1NPr and L1NAll in
in vitro studies revealed that the influence of the chelators in the replication of M. avium might depend
on the tested concentration. Chelators enhanced intracellular and extracellular growth of M. avium
at low concentrations. However, at high concentrations, they are effective in the control of M. avium
infections [103].

Functionalized tetrahydro-4(1H)-pyridinones have been synthesized and tested revealing in vitro
activity against M. tuberculosis [104]. These studies, although demonstrating the effectiveness of an
iron deprivation strategy to fight proliferation of mycobacteria also pointed out the necessity to design
chelators with physico-chemical properties which allow them to reach the infection targets.
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Moreover, at the starting point of our work little was known about the cellular distribution of
previously tested chelators thus suggesting the need to synthesize molecules that could be followed
inside the cell in order to monitor the chelators pathways inside the cells.

Our research group has designed 3,4-HPO chelators to address M. avium infection and performed
studies concerning their antimycobacterial activity, interaction with biological membranes and cellular
distribution. In this work we discuss the design of chelators, structure activity relationships, combined
therapeutic approaches and forthcoming perspectives regarding other bacterial infection scenarios.

2. Design of 3-Hydroxy-4-pyridinone Chelators to Address Mycobacterial Infections

2.1. Overview

The design of new antibacterial drugs with diverse modes of action is crucial to counteract
bacterial resistance [105–107]. Within this scope, several studies demonstrated that iron deprivation
induced by chelators could be a strategy to inhibit the proliferation of pathogenic bacteria but more
effective iron chelators able to reach the infection targets are needed.

We focused our interest in the design of chelators to address mycobacterial infection, in particular
infection by Mycobacterium avium. Considering the molecular structure of mycobacterial siderophores
and bearing in mind that in order to compete for Fe different chelating units, that originate chelators
with higher affinity for Fe(III) are necessary, we selected ligands of the 3-hydroxy-4-pyridinone class to
achieve our purpose. This class of chelators and their complexes have proved to be useful in several
fields of application [95,108–111]. In what concerns biomedical applications [112,113], Deferiprone
(1,2-dimethyl-3-hydroxy-4-pyridinone) is one of the ligands in clinical use to treat iron overload in
thalassemia major patients [114–117].

After choosing the type of chelating unit it was also our objective to design chelators that could be
monitored inside the cell and for that reason we designed chelators that could be functionalized with
fluorophores. We didn’t realize at the time that the incorporation a fluorophore would be relevant for
the antimycobacterial effect or determine the affinity of the chelators towards biological membranes.
From a biophysical perspective, this is a fascinating illustration of the fact that functionalization of
a molecule with a particular label, to allow spectroscopic detection, may lead to a change in the
membrane permeation properties of the molecule and result in a dramatic change in biological activity.

Interesting works calling the attention for the alterations introduced by fluorophore labelling have
been reported [118–125] for cell penetrating peptides (CPP) [123]. Two of the works [118,126] regard
the antibacterial properties of rhodamine B-conjugated gelsolin-derived peptides and describe the
importance of rhodamine B fluorophore on the interaction of the peptides with the bacterial membrane.
The authors demonstrate the existence of a positive correlation between the surface pressure activity
of the peptides and its antibacterial function, which is based on membrane disruption.

More recently, two elegant studies report the influence of fluorophore labelling on the cellular
distribution and cell viability of a set of CPPs [120] and on their interaction with biological
membranes [122]. The studies point out the importance of the fluorophore labeling on the alteration of
physicochemical properties and demonstrate the existence of correlations between: (i) physicochemical
properties and uptake and toxicity of the CPPs [120] and (ii) physicochemical properties and mode
and degree of interaction of CPPs with biological membranes [122]. In the latter study it has been
found that the most hydrophobic compounds are those that induce the highest membrane disturbance.
For the above reasons we believe it is interesting to give a critical account of our entire work in this
area and justify the statement “to label means to change”.

2.2. 3-Hydroxy-4-pyridinone (3,4-HPO) Chelators

3-hydroxy-4-pyridinones are N-heterocyclic compounds in which two adjacent carbonyl and
hydroxyl groups provide the two potential coordinating oxygen atoms that confer the characteristics of
a bidentate chelator (Figure 3). The 3,4-HPO ligands display superb chelating properties for M(III)
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and M(II) metal ions and form M(3,4-HPO)3 and M(3,4-HPO)2 neutral metal ion chelates. Since the
structure of 3,4-HPO ligands allows modification of their hydrophilic/lipophilic balance (HBL) without
significantly changing their metal ion affinity, these ligands are particularly suited for biomedical
applications. The variation of the HBL of the ligand is also reflected in their corresponding M-chelates.

The versatile chemical structure of 3,4-HPO bidentate chelators has prompted their extensive
use as chelating units to synthesize chelators with higher denticity (such as tetra- and hexadentate
chelators) [89,95,112,113,127,128].
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2.3. Anti(myco)bacterial Effect in Intramacrophagic Growth of M. avium

In order to perform a systematic study of 3,4-HPO chelators, and taking into account the results of
a previous study regarding the inhibition of intramacrophagic growth of M. avium [42], we organized
experiments to screen the influence of several properties of the chelators such as denticity, lipophilicity
and structure of anchor molecules used to produce hexadentate chelators.

The results showed that, like deferiprone, none of the seven N-alkyl and N-aryl bidentate chelators
was able to inhibit intramacrophagic growth of M. avium. Since the chelators tested exhibit variable
lipophilicity we ruled out or the influence of the substituents for this first group of chelators [94].
Hexadentate chelators were synthesized using three types of anchor to bind the chelating bidentate
units. One of the anchors (CP256, Figure 4) is based on a tetrahedral carbon atom thus providing an
extra binding site further functionalization. This possibility was ideal for the synthesis of fluorescent
chelators and being so, compounds labelled with rhodamine B (MRH7 in Figure 4, referred as
CP777 in reference [94] and as ligand 4 in reference [89]) and fluorescein derivatives (CP851, CP852,
Figure 4) were synthesized and tested against M. avium intracellular infection of bone marrow-derived
macrophages (BMM).
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The results showed that the chelating unit CP256 did not affect M. avium growth inside BMM but
contrastingly the rhodamine B labelled chelator had a clear and reproducible inhibitory effect. In order
to confirm that the effect of MRH7 was due to its capacity to chelate Fe we tested a parent chelator in
which the chelating units were chemically blocked and the Fe(III) complex of MRH7. Upon addition of
the latter compounds we observed no effect in M. avium growth. Comparison of the effect of chelators
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labelled with rhodamine B and fluorescein derivatives showed that, although all of them have a better
effect than the non-functionalized chelating unit the effect of MRH7 is much better in particular for
lower concentrations [94].

The differences in anti(myco)bacterial effect observed between the hexadentate unit and the
rhodamine labelled chelator bearing the same chelating unit, were quite fascinating since both
compounds have the same affinity for iron (Log β (Fe3+) = 34.4 and pFe3+ = 29.8), values which
are greater than those of natural siderophores. The results demonstrate that a strong capacity to chelate
iron is indispensable but that characteristic alone is not sufficient to inhibit M. avium growth. Moreover,
the differences between chelators labelled with two types of fluorophore also suggest that the structure
of the fluorescent group may be significant.

At this stage, we hypothesized that the better anti(myco)bacterial effect of the rhodamine B
labelled chelator must also be associated with a special ability to penetrate the cell and to gain access to
its targets. In order to get insight on such differences we studied the permeation properties and cellular
distribution of chelators MRH7 (rhodamine B labelled) and CP852 (fluorescein labelled) [89]. The values
of partition coefficients (Log D7.4) and of partition constants (KP) in liposomes showed that MRH7 is
strongly lipophilic and has a strong affinity for lipid bilayers in contrast with CP852. The intracellular
distribution of the two chelators is markedly different. Upon 20 min of incubation, chelator MRH7
is widely distributed in the cell and accumulates in phagosomes while CP852 is localized in vesicles
and areas proximal to the plasma membrane but not inside phagosomes. The results suggest that the
structure of the rhodamine labelled chelator seems to be more suited to progress within the cell and
reach the niche that harbours M. avium.

To better understand the influence and consequence of the rhodamine B fragment we designed a
hexadentate chelator conjugated with another rhodamine derivative (5(6)-carboxy-tetramethylrhodamine)
and the corresponding bidentate chelators labelled with the same fluorophores [95] (Figure 5).
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Figure 5. Formulae of fluorescent 3,4-HPO chelators, MRH8, MRB8 and MRB7. The abbreviation and
numbering of compounds was assigned according to chelator denticity (MRBi for bidentate and MRHi
for hexadentate) and fluorophore (i = 7, 8).

The results of this new experiment showed that: (a) 5(6)-carboxytetramethylrhodamine- labelled
chelators are capable to limit intracellular growth of M. avium; (b) administration of bidentate
fluorescent chelators also restricts intracellular M. avium growth as long as the concentration used is
corrected according to the stoichiometry of the Fe chelate; (c) the antibacterial effect is dependent on the
structure of the fluorescent label and (d) the inhibitory effect of the rhodamine B labelled compounds
(MRH7 and MRB7) is significantly superior to that observed for the tetramethylrhodamine labelled
chelators (MRH8 and MRB8). This result points out the importance of the rhodamine B fluorophore
and the thiourea linkage, which has been introduced in the molecular framework by the use of the
reagent rhodamine B isothiocyanate in the synthetic procedure. For chelators MRH8 and MRB8 the
rhodamine derivative used is 5(6)-carboxytetramethylrhodamine, which introduces an amide linkage.
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The type of linkage present in the chelators was not deliberate, but remarkably, the choice of different
types of reagents revealed that apart from the fluorophore, the linkage between chelating unit and
fluorophore must also be considered in the chelators ´design. We consider the possible relevance
of the thiourea group since: (a) the more efficient chelators contain that type of linkage and (b) the
antibacterial properties of isothiocyanate groups against Gram(+) and Gram(−) bacteria, which have
been related to the capacity of the group to disorder the structure of the bacterial membrane, and are
well-known [129–131].

We speculate that the presence of the thiourea linkage in the structure of the chelators may allow
the targeting of the bacterial cell wall. This effect would not be related with the restriction of Fe
sources but might threat the survival of the pathogen. This hypothesis led us to consider the design
and testing of other compounds in which the thiourea linkage is now deliberately included in the
molecular framework.

To achieve that purpose we synthesized the set of compounds in Figure 6 and tested their activity
against M. avium in comparison with that of the lead chelator MRH7 [109]. The results showed that
all the fluorescent chelators exhibit antimycobacterial effect and corroborated the relevance of the
thiourea linkage, the ethyl substituents on the amino groups of the xanthene ring and the advantage
of their associated inclusion in the molecular framework. The rhodamine B labelled chelator MRH7
proved to be the most active compound in controlling of the infection.
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for hexadentate) and fluorophore (i = 9–10).

In what concerns antimycobacterial infection we think that the next step is the use of combination
therapies involving iron chelators and classic antimycobacterial antibiotics in clinical. Such combination
allows intervention towards different targets and synergic effects are to be expected. The clinical
potential of the combination of iron chelators with other antibiotics has been demonstrated to fight
bacterial [39,40,57,58,70], fungal [132] and protozoal [133] infections.

In a first attempt, we investigated the combined administration of chelator MRH7 with the
antibiotic ethambutol [109]. Ethambutol, acts by inhibiting the biosynthesis of components of the
mycobacterial cell wall [134–136]. The compound is active against M. avium pathogens but high
doses are necessary thus suggesting the application of combined therapeutic approaches. The results
showed that the concomitant administration of chelator MRH7 and ethambutol is advantageous
since a higher antimycobacterial effect is achieved. The results imply that this combination allows
reduction of the amount of chelator used to obtain a significant biological effect and improves the
activity of ethambutol.
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2.4. Chelator Membrane Interactions

In parallel to the antibacterial investigations, biophysical studies regarding the partition and
distribution of fluorescein or rhodamine derived chelators have been performed in liposomes
membrane models [89,137–139].

Drug-membrane interactions have enormous importance in drug design and the understanding of
these interactions at a molecular level allows the development of more effective drugs [140–142]. In the
context of M. avium infection, the ability of drugs to interact with and cross barriers is particularly
important since M. avium is a facultative intracellular pathogen that resides within mammalian cells.

In our studies drug membrane interactions were assessed in liposome model membranes by
fluorescence spectroscopy and nuclear magnetic resonance (NMR) and by computational studies,
namely molecular dynamic (MD) simulations.

Steady-state fluorescence spectroscopy was used to determine partition constants (KP) of chelators
MRH7, MRB7, MRH8 and MRB8 in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and DMPG
(1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol)) liposomes [89,137].

Although we recognize that octanol-water Log P and Log D values give important information
regarding the hydrophilic/lipophilic balance of a candidate drug, we believe that the values of
partitions constants determined in liposome membrane models are more realistic. The values of KP

allow a quantification of the interaction of compounds with a lipid bilayer and reflect their preference
for the lipid or the aqueous phase. Preparation of liposomes, with lipids of different characteristics
allow a better understanding of surface interactions and permeation properties. The values of Log KP

obtained for chelators with different fluorophores and linkages clearly indicate that compounds
incorporating N-ethyl substituents in the amino groups of the xanthene ring and a thiourea linkage,
have a greater affinity for the lipid phase (ca 10 times) than those bearing N-methyl substituents and
an amide linkage. The results demonstrate that the permeation and partition properties of rhodamine
labelled chelators can be tuned by choosing appropriate substituents of the rhodamine moiety.

NMR spectroscopy was also used to determine the affinity of MRB7 and MBR8 for the
phospholipid bilayer of DMPC liposomes in order to complement/corroborate the fluorescence
studies. The permeation properties of the chelators were assessed by analysis of the alterations of NMR
parameters, such as chemical shifts, line shape, spin−lattice relaxation time (T1), and translational
diffusion coefficient of the lipids and the liposomes [138,139].

In a first study [138] we used a concentration of chelators within the range of those used in the
biological experiments and observed changes in the chemical shifts of the protons associated with the
different functional groups of the phospholipid. The latter can be related with a different distribution
and location of MRB7 and MRB8 in the phospholipid bilayer of DMPC. The changes in the chemical
shift values imply that chelator MRB7 strongly interacts with the choline head groups at the surface
of the liposome sphere and is able to permeate deeper and reach the centre of hydrophobic area of
the phospholipid bilayer as demonstrated by the significant perturbations of the proton resonances
induced on the terminal protons of the acyl chains located in that area. In contrast, MRB8 molecules
strongly interact with the polar surface of liposomes and seem to be preferably located between
the polar interface and ester groups of the lipid bilayer thus justifying the non-perturbation of the
proton resonances belonging to the lipid acyl chains. The presence of N-ethyl groups in the xanthene
structure and the thiourea link in the structure of MRB7, as opposed to N-methyl groups in the
xanthene structure and an amide link in the structure of MRB8, seem to facilitate the affinity of MRB7
molecules to the liposome surface and their ability to penetrate deeper into the hydrophobic interior of
lipid bilayer.

A more extensive and detailed NMR analysis was performed using higher concentrations of
chelators to allow generation of NMR signals of appropriate intensity for measurements based
on the NMR resonance signals of the chelators [139]. This study revealed that these chelators,
in particular MRB7, might be able to induce alterations in the structure of the liposome. This result



Pharmaceuticals 2018, 11, 110 12 of 24

is quite relevant since it is indicative that these chelators may be able to disturb the structure of the
biological membranes.

MD simulation studies demonstrated that chelators interact with the lipid phases at different
levels of the bilayer and that the interaction seems to be reinforced for the compounds that contain
N-ethyl groups and a thiourea linkage (MRB7 and MRH7). The rhodamine B labelled chelator MRB7
seems to have a superior insertion and residence time in the hydrophobic region of the membrane
bilayer, in comparison to the tetramethylrhodamine labelled chelator MRB8. This observation is
consistent with the partition constants determined by fluorescence spectroscopy and mainly with
NMR results. Altogether, these results support the hypothesis that the effectiveness of the chelators as
anti(myco)bacterials is related to a greater ability to permeate lipid bilayers [95,138,139].

All the biophysical results are indicative that the more effective chelators are those that exhibit
higher affinity towards lipid bilayers and better permeation properties across biological membranes.
These results are in agreement with those obtained for cell penetrating peptides [118–126] thus
reinforcing the idea that the presence of groups that enhance the partition and permeation properties
within lipid bilayers is relevant in the design of new antibiotics.

2.5. Intracellular Distribution and Co-Localization Studies of Rhodamine Labelled Chelators in Macrophages

Comparison of the intracellular distribution patterns of a rhodamine B labelled chelator (MRH7)
and a fluorescein labelled chelator (CP851) in macrophages suggested that distinct uptake and
intracellular distributions are likely to account for different efficacy as anti(myco)bacterial agents.
To gain insight on the uptake by macrophages and cellular distribution of the set of rhodamine
labelled chelators under study we organized new confocal microscopy studies. The results obtained
showed that: (i) all the rhodamine labelled chelators are taken up by macrophages; (ii) experiments
performed with the same concentration of chelator provide images that suggest that the lipophilicity
of the chelators may limit the amount of chelator which is internalized in the cell; (iii) the
intracellular distribution and the interaction of the chelators with different cellular compartments
within macrophages are similar for all tested chelators; (iv) the rhodamine labelled chelators are able to
target the phagosome compartment (v) considering the similarity of the chelators’ distribution patterns
in the macrophage and its subcellular compartments, the pathways of all chelators appear to be the
same although a considerably higher number of rhodamine B isothiocyanate derived chelators seems
to cross the membrane in the same time frame as illustrated in Figure 7.

The concurrent incorporation of N-ethyl substituents on the amino groups of the xanthene ring of
rhodamine and of a thiourea linkage between chelating unit and the fluorophore produces chelators
with enhanced permeation properties and which are superiorly up taken by macrophages. The latter
chelators proved to be the most efficient in inhibiting the intramacrophagic growth of M. avium.
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2.6. Suggested Mechanism in M. avium Infection

The confocal microscopy studies are indicative that the rhodamine labelled chelators are able
to target the phagosome compartment and are likely to preferentially reside in lipid environments.
This result is quite relevant since the targeting of the phagosomal compartment was one of our goals.
Since we realized that the presence of the fluorophores on the chelators molecular framework is
crucial to target the phagosome we hypothesize that the role of rhodamine fluorophore is: (a) to
enhance the chelators uptake by the macrophage; (b) to allow access to the phagosome and (c) to
efficiently anchor the chelator in the outer and inner parts of the phagosomal membrane thus allowing
an efficient competition with natural siderophores and restrict the iron supplies compromising the
survival of bacteria (Figure 8). Considering this assumed role of the chelator fluorescent moiety,
the better results obtained for the rhodamine B isothiocyanate labelled chelators can be assigned to
their higher hydrophobicity and affinity for lipid bilayers.
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2.7. First Studies in a Different Infection Scenario

As previously referred there is an urgent need to develop new antibiotics that may act on different
targets to counteract bacterial resistance. Within this scope, we believe that the use of chelators that are
able to deprive bacteria from Fe, can be a choice since the antibiotics currently in use do not target
Fe metabolism.

Considering the results obtained in M. avium infection, we first investigated the activity of the
same set of rhodamine labelled 3,4-HPO chelators towards a selected set of Gram (+/−) bacteria [143].
The results obtained showed that the activity of the fluorescent chelators in this new scenario is quite
distinct from the observed in M. avium. We found that in Gram (+/−) bacteria only hexadentate
chelators have a significant effect.

Regarding the results obtained with the hexadentate chelators we found that MRH7, MRH8, and
MRH10 inhibit bacterial growth of Staphylococcus (S). aureus ATCC 25923 and S. epidermis ATCC 12228.
The hexadentate chelator MRH7 is the only one that is able to inhibit the growth of Escherichia (E.) coli
ATCC 25922. The relevance of the type of fluorophore that provides the thiourea linkage and N-ethyl
substituents on the xanthene ring was confirmed. Curiously, MRH7 was the only chelator able to have
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an effect towards Gram (−). Chelator MRH7 exhibits the higher partition constant in liposomes and
proved to be able to permeate lipid bilayers [137].

At this point it is interesting to bear in mind the different complexity and composition of Gram
(+) or Gram (−) bacterial cell walls. Gram (−) bacteria may be less accessible for the penetration of the
chelators and the superior permeation properties like of MRH7 may be relevant to understand the
result. However, further studies are necessary to establish structure-activity relationships.

For the same type of bacteria, we also investigated the activity of a new 3,4-HPO bidentate chelator
labelled with a rosamine xanthene fluorophore (MRB20, Figure 9) in order to evaluate the effect of the
chelators´ charge [144]. The rosamine fluorophore is structurally related with the previously described
rhodamine moieties but lacks one carboxylic acid substituent thus implying that the overall charge of
the chelator is positive, at pH = 7.4, in contrast with the neutral charge of rhodamine labelled chelators.
Chelator MRB20 revealed a promising antibacterial activity against Gram (+) strains including clinically
relevant species as S. aureus, S. epidermidis, Enterococcus (E.) faecium and E. faecalis [144].

Pharmaceuticals 2018, 11, x FOR PEER REVIEW  14 of 24 

 

For the same type of bacteria, we also investigated the activity of a new 3,4-HPO bidentate 
chelator labelled with a rosamine xanthene fluorophore (MRB20, Figure 9) in order to evaluate the 
effect of the chelators´ charge [144]. The rosamine fluorophore is structurally related with the 
previously described rhodamine moieties but lacks one carboxylic acid substituent thus implying 
that the overall charge of the chelator is positive, at pH = 7.4, in contrast with the neutral charge of 
rhodamine labelled chelators. Chelator MRB20 revealed a promising antibacterial activity against 
Gram (+) strains including clinically relevant species as S. aureus, S. epidermidis, Enterococcus (E.) 
faecium and E. faecalis [144]. 

 
Figure 9. Formula of rosamine-derived 3,4-HPO chelator, MRB20. 

3. Concluding Remarks and Future Perspectives 

The challenge that gave rise to the work described was “to design Fe chelators to ironing out 
mycobacteria”. We consider that the objective was achieved and the work gave a significant 
contribution to produce chelators with adequate properties for macrophage uptake and distribution 
inside the cell. 

The choice of the class of ligands seems to be adequate since the chelating units are able to 
compete with mycobacterial siderophores. Although determinant, this chelating capacity is not 
sufficient to achieve anti(myco)bacterial effect. 

The labelling of the chelating unit with xanthene fluorophores proved to be crucial for the 
anti(myco)bacterial activity. Moreover, we found that the type of linkage that binds fluorophores to 
the chelating unit also seems to have an effect in anti(myco)bacterial activity . Fluorescein labelled 
chelators proved to be much less effective than the rhodamine parent compounds. For the latter 
group we found that the anti(myco)bacterial effect is dependent on the substituents of the xanthene 
ring groups. For rhodamine labelled chelators the simultaneous presence of N-ethyl substituents on 
the amino groups of the xanthene ring and a thiourea linkage between chelating unit and the 
fluorophore, produces chelators with enhanced anti(myco)bacterial effect. The same chelators also 
have the better permeation properties across biological membranes and are superiorly up taken by 
macrophages. These results point out the significance of the conjugation of a rhodamine B label to 
the chelator through a thiourea link and suggest that the high affinity of rhodamine B towards lipid 
phases may be determinant to situate the chelator in a favourable position to successfully compete 
with mycobacterial siderophores. 

We conclude that the effectiveness of the chelators to inhibit the intramacrophagic growth of M. 
avium is strongly dependant on its capacity to interact with and reside in the lipid bilayers. This 
capacity seems to provide better conditions to deprive mycobacteria from Fe. Confocal microscopy 
studies proved that rhodamine labelled chelators have access and are able to remain in to the 
phagosomal compartment, thus corroborating our hypothesis. 

It may be relevant to refer that, even though we performed confocal microscopy studies with 
genetically modified green mycobacteria we never observed co-localization of the red chelator MRH7 
and the bacteria. The mode of action may not include the crossing of the bacterial cell-wall but its 
function may be just ironing out the phagosome or create a gradient between the various macrophage 
iron pools. However, as the fluorescence of MRH7 is quenched upon chelation of Fe we cannot 

Figure 9. Formula of rosamine-derived 3,4-HPO chelator, MRB20.

3. Concluding Remarks and Future Perspectives

The challenge that gave rise to the work described was “to design Fe chelators to ironing out
mycobacteria”. We consider that the objective was achieved and the work gave a significant contribution
to produce chelators with adequate properties for macrophage uptake and distribution inside the cell.

The choice of the class of ligands seems to be adequate since the chelating units are able to compete
with mycobacterial siderophores. Although determinant, this chelating capacity is not sufficient to
achieve anti(myco)bacterial effect.

The labelling of the chelating unit with xanthene fluorophores proved to be crucial for the
anti(myco)bacterial activity. Moreover, we found that the type of linkage that binds fluorophores to
the chelating unit also seems to have an effect in anti(myco)bacterial activity . Fluorescein labelled
chelators proved to be much less effective than the rhodamine parent compounds. For the latter
group we found that the anti(myco)bacterial effect is dependent on the substituents of the xanthene
ring groups. For rhodamine labelled chelators the simultaneous presence of N-ethyl substituents
on the amino groups of the xanthene ring and a thiourea linkage between chelating unit and the
fluorophore, produces chelators with enhanced anti(myco)bacterial effect. The same chelators also
have the better permeation properties across biological membranes and are superiorly up taken by
macrophages. These results point out the significance of the conjugation of a rhodamine B label to
the chelator through a thiourea link and suggest that the high affinity of rhodamine B towards lipid
phases may be determinant to situate the chelator in a favourable position to successfully compete
with mycobacterial siderophores.

We conclude that the effectiveness of the chelators to inhibit the intramacrophagic growth of
M. avium is strongly dependant on its capacity to interact with and reside in the lipid bilayers.
This capacity seems to provide better conditions to deprive mycobacteria from Fe. Confocal microscopy
studies proved that rhodamine labelled chelators have access and are able to remain in to the
phagosomal compartment, thus corroborating our hypothesis.
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It may be relevant to refer that, even though we performed confocal microscopy studies with
genetically modified green mycobacteria we never observed co-localization of the red chelator MRH7
and the bacteria. The mode of action may not include the crossing of the bacterial cell-wall but its
function may be just ironing out the phagosome or create a gradient between the various macrophage
iron pools. However, as the fluorescence of MRH7 is quenched upon chelation of Fe we cannot exclude
the possibility that the chelator reaches M. avium where it resides as a non-fluorescent Fe-chelate,
which we are not able to detect.

In order to complement the studies described herein and regarding M. avium infection, we
consider that we need to investigate the toxicity of these chelators in several conditions and also to test
the chelators in in vivo models. The first results obtained in Gram (+/−) infection scenarios encourage
the pursuit of further studies and point out the need to explore the variety of functional groups and
charge of the new molecules, as discussed in Section 2.7.

In the studied systems, it was found that chelators that presented a higher capacity to interact
with biological membranes also lead to an increased antibacterial effect. In Table 1 we summarize all
results regarding the antibacterial effect and partition properties in biological membranes obtained
with this set of chelators together with their structural features.

Our results corroborate the findings of other authors [120,122] regarding the modifications
induced by the introduction of fluorescent labels in the physico-chemical, biophysical and biological
properties of a molecule. Moreover, the results also point out that the choice of reagent derivatives
used in the synthesis of the fluorescent molecules may introduce functional groups that further enrich
the molecule. The results reviewed herein illustrate the consequence of small changes in the structure
of the biological relevant molecules and the influence that these modifications might have in drug-
membrane interactions and biological activity.

Table 1. Summary of the antibacterial activity, structural features and membrane interaction of
the fluorescent chelators. (0–no effect; +–low; ++ moderate; +++–high; ++++ very high effect;
nd–not determined).

Chelator

Structural Features Antibacterial Activity Membrane
Interaction Ref.Type of

Fluorophore Linker Charge
(at pH = 7.4) M. avium Gram

(+/−)

MRB7
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Considering our results in conjunction with others described in the literature, namely those
related with rhodamine derived liposome tags [146], mitochondrial probes [147] and antimicrobial
peptides [118,120,122,123,126], some other topics can be further explored.

We believe it is worth to investigate the use of rhodamine B conjugates to target mycobacterial
infections and closely related problems such as bacterial resistance and biofilm production. Rhodamine
B has the advantage of being a fluorescent molecule whose properties are sensitive to its environment
thus allowing following its pathway within the cell. Also, it is well known that the formation of
biofilms is associated with a hydrated extracellular matrix composed by polysaccharides, nuclei acids,
lipids and metal ions. We think that the use of 3,4-HPO chelators could have an effect in the disruption
of biofilms produced by several bacterial strains and insight in this area are meaningful. A graphical
representation of past and future fields of application of rhodamine B conjugates is depicted in
Figure 10.
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