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Activation of complement system in kidney after
ketoprofen-induced kidney injury in sheep
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Abstract

Background: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat inflammatory pain in humans and
animals. An overdose of an NSAID is nephrotoxic and can lead to acute kidney injury (AKI). Complement activation occurs
in several types of renal disorders with proteinuria. The aim of this study was to investigate whether complement system
becomes activated in kidneys after a high dose of NSAID. Kidney tissue and urine samples were collected from six sheep
with ketoprofen-induced AKI and from six healthy control sheep. The localization of complement proteins in kidney tissue
was carried out using immunohistochemical stainings, and excretion of C3 was tested by immunoblotting.

Results: The complement system was found to become activated in the kidney tissue as demonstrated by positive
immunostaining for C1q, C3c, C4c, C5, C9 and factor H and by Western blotting analysis of C3 activation products in
urine samples in sheep with AKI.

Conclusions: Our results thus suggest that the alternative complement pathway is activated, and it may contribute to
the acute tubular injury seen in the kidneys of NSAID-induced AKI sheep. Inhibition of complement activation may serve
as potential therapeutic target for intervention in drug-induced AKI.
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Background
The complement system is composed of a large set of sol-
uble and membrane-bound proteins, which act to mediate
inflammation, tissue clearance of dying cells, and protec-
tion against infection [1,2]. Although the majority of circu-
lating complement C3, the main complement component,
is synthesized in the liver, the kidney also contributes to the
systemic pool of C3 [3]. Small amounts of complement
component C3 are activated in uninjured kidney but com-
plement regulatory proteins, such as factor H, MCP
(CD46) and DAF (CD55), inhibit any further activation of
the complement cascade [4-8]. In rodents, Crry (comple-
ment receptor 1-related protein y) serves the same role as
both human regulatory proteins CD46 and CD55 [9,10].
Complement has been shown to be under a state of con-
tinuous, but low-level activation via the alternative pathway.
The proximal tubular cells seem to be involved in the acti-
vation of this alternative pathway in the kidneys [11]. Com-
plement activation is associated with a large variety of renal
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disorders with proteinuria both in humans and animals.
These include various forms of glomerulonephritis [12],
renal infarction [13], ischemia-reperfusion injury [14,15]
and IgA nephropathy [16].
Nonsteroidal anti-inflammatory drugs (NSAIDs) are

widely used to treat acute and chronic inflammatory
conditions and pain in humans and animals. NSAIDs
block vasodilatory prostaglandins by inhibiting cyclo-
oxygenase enzymes (COX-1 and COX-2) that are essen-
tial for prostaglandin synthesis [17]. Both COX-1 and
COX-2 are expressed in the kidneys of mammals, al-
though some differences between species occur in the
localization of the mature proteins [18]. COX-1 is con-
stitutively expressed in most mammalian tissues and it
is the most abundant COX isoform in the kidney
[19-21]. In contrast, COX-2 exists only at low levels in
normal tissues including the kidney. However, COX-2
levels are increased in response to injury or inflamma-
tion [22,18]. Prostaglandins (PGs) synthesized in the
kidneys modulate renal blood flow, glomerular filtration
rate in addition to facilitating urinary sodium and water
excretion [23,24]. The use of NSAIDs has been reported
to increase the risk of acute kidney injury in humans
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[25-28], cats and dogs [29-31]. Since complement acti-
vation is associated with different renal disorders with
proteinuria, we wanted to investigate the possible acti-
vation of the complement system in ketoprofen-induced
acute kidney injury in sheep.

Methods
Animals
Urine and tissue samples were collected from 12 female
Finnish Landrace sheep. All sheep were >18-months-old
and their body weights ranged from 48.5 to 59 kg (mean
52.5 kg). No clinical signs of diseases were detected in any
of the sheep before the trial, and no changes indicative of
renal disease were detected in their plasma or urine sam-
ples. The sheep were provided with good quality hay and
water ad libitum before and during the experiment. Six of
the 12 sheep were administered a high dose of ketoprofen
intravenously (30 mg/kg), the other six sheep did not re-
ceive any injections. The study protocol was approved by
the Ethics Committee for Animal Experimentation at the
University of Helsinki.

Sample collection
Blood samples were collected into tubes containing lith-
ium heparin before treatment (time 0) and at 1, 2, 4, 6,
8, and 24 hours after ketoprofen administration. Urine
specimens were collected from the six sheep with acute
kidney injury and their controls before treatment and at
two, four, and six hours after ketoprofen administration
via a urinary catheter (All-Silicone Foley Balloon Cath-
eter, Sewoon Medical Co). At the end of the study (24 h
after treatment), the treatment animals and their
Table 1 Median (range) values for the plasma and urine varia
induced AKI confirming renal impairment and from six contro

Plasma Urine

Creatinine
μmol/L

Urea mmol/L Creatinine
μmol/L

Prot:c

0 h case 86 (80–106) 5.3 (3.9-6.9) 17.8 (8.0-21.8) 0.11 (0

contr 92 (81–113) 4.7 (3.5-5.2) 12.4 (8.9-14.9) 0.14 (0

2 h case 89 (82–109) 5.8† (4.5-7.6) 10.9 (3.7-16.6) 0.96†

contr 89 (79–106) 4.9 (3.6-6.1) 13.4 (10.9-25.4) 0.49†

4 h case 120*† (100–140) 7.2*† (5.6-8.8) 7.2*† (4.5-10.0) 7.72*†

contr 91 (74–101) 4.6 (3.7-5.7) 14.9 (6.3-27.1) 0.78†

6 h case 151*† (131–191) 8.8*† (6.6-9.6) 3.9*† (2.2-7.9) 18.0*†

contr 90 (71–102) 4.1 (3.4-5.7) 15.3 (12.7-25.6) 1.41†

8 h case 184*† (150–208) 9.8*† (7.1-10.4) 2.7*† (1.4-6.5) 27.2*†

contr 88 (74–105) 3.4 (2.8-5.0) 12.8 (6.6-24.8) 1.36†

24 h case 390*† (131–414) 20.6*† (14.0-22.3) 2.7† (2.2-3.5) 3.76†

contr 90 (71–101) 4.1 (2.6-7.2) 9.1 (2.1-20.0) 0.77†

*Within a time point within a variable, value differs significantly (P < 0.05) from the
†Within a row, value differs significantly (P < 0.05) from the value of baseline.
NM Not measured.
controls were euthanized and the last urine samples
were collected via cystocentesis and autopsies were per-
formed. AKI was confirmed later by increased plasma
urea and creatinine concentrations, proteinuria, enzy-
muria (Table 1) and histopathology indicative of acute
tubular injury (ATI) as described in our previous report
[32]. Tissue samples from kidneys were collected imme-
diately after euthanasia and snap-frozen in liquid nitro-
gen and stored in −80°C freezer for later preparation
and analysis.

Immunohistochemical staining of kidney tissue
Snap-frozen kidney tissue samples were embedded in
OCT compound (Tissue-Tek, Sakura) and cut into
8 μm sections on a cryostat at −20°C. The localization
of complement proteins in kidney tissue was carried out
using antibodies raised against human complement pro-
teins that cross-react with respective sheep proteins,
namely: polyclonal anti-C1q (Dako Cytomation), poly-
clonal anti-C3c (Behring) reacting with C3, C3b, iC3b
and C3c, polyclonal anti-C3d (Dako Cytomation), poly-
clonal anti-C4c (Dako Cytomation) reacting with C4,
C4b and C4c, monoclonal anti-C5 (Quidel), monoclonal
anti-C9 (Quidel) and polyclonal anti-factor H (Quidel).
The polymer technique (Goat-on-rodent HRP-polymer
and Rabbit-on-pharma HRP-polymer, Biocare Medical)
and nickel-enhanced DAB chromogen (Biocare Med-
ical) were used according to manufacturer’s instructions
to visualize the bound antibodies. Negative control sec-
tions were processed in parallel without the primary
antibody. Sections were counterstained with Meyer’s
hematoxylin (Fisher).
bles in samples collected from six sheep with ketoprofen
l sheep [32]

rea ratio ALP:crea ratio GGT:crea ratio NAG:crea ratio

.09-0.18) 3.2 (1.9-5.0) 0.86 (0.50-1.18) 0.03 (0.02-0.04)

.08-0.38) 3.7 (2.6-7.4) 0.94 (0.56-1.14) 0.03 (0.02-0.04)

(0.56-1.5) 4.3 (1.9-9.7) 0.86 (0.79-1.38) 0.12*† (0.04-0.26)

(0.18-1.38) 4.3 (1.6-10.6) 0.81 (0.39-1.98) 0.02 (0.02-0.03)

(4.09-19.6) 13.9*† (9.4-42.4) 1.66 (0.49-4.20) NM

(0.34-1.77) 5.2 (1.4-13.2) 1.01 (0.37-2.95) NM

(6.69-63.1) 42.3*† (27.7-135.8) 3.02*† (1.27-8.17) 0.73*† (0.17-1.40)

(0.38-2.67) 5.8 (2.5-18.6) 1.07 (0.56-3.69) 0.02 (0.02-0.04)

(3.05-112.9) 98.2*† (16.2-420.8) 6.17*† (2.62-17.53) NM

(0.69-3.58) 9.6 (3.0-20.1) 1.34 (0.40-3.35) NM

(0.97-16.5) 27.4† (8.7-86.3) 2.62 (0.89-16.13) 0.26*† (0.05-0.60)

(0.23-3.60) 8.5 (4.4-9.9) 1.33(0.78-2.93) 0.04 (0.02-0.15)

value for the control sheep.



Figure 1 Immunostaining of control sheep and sheep with ketoprofen-induced AKI renal cortex and medulla using antibodies against
A) C1q; B) C3c; C) C3d; D) C4c; E) C5; F) C9; G) factor H. The arrows indicate the positively stained complement components (A-G) in the
cortex and medulla of sheep after NSAID-induced AKI. Original magnification obj. 20 X.
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Western blot analysis of urine
Western blot analysis was conducted on the urine sam-
ples. Individual urine samples were concentrated by
TCA-precipitation and the concentrations of proteins
in the samples were measured by using 2D Quant Kit
(GE Healthcare) according to the manufacturer’s in-
structions. Sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE) was carried out in 12%
polyacrylamide gels using a vertical slab gel apparatus
under non-reducing conditions (Bio-Rad TetraCell) as
described previously [33]. A total of 5 μg of protein
from each sample was loaded into the gel and the pro-
teins were separated by electrophoresis at 100 V for 2 h
30 min. Proteins were transferred to a PVDF membrane
(Immobilon, Amersham) using a semi-dry blotting ap-
paratus (Bio-Rad). Nonspecific binding to the mem-
branes was blocked by an incubation for 1 h using 5%
bovine serum albumin in Tris-buffered saline contain-
ing 0.1% Tween-20 (TBST). The membranes were there-
after probed with polyclonal anti-C3c in TBST at 4°C.
Membranes were then washed with TBST and incubated
for 3 h at room temperature with alkaline phosphatase-
conjugated anti-rabbit (1:2000, Santa Cruz) in TBS. Pro-
teins were visualized using Super Signal West Dura
chemiluminescence substrate (Thermo) and imaged by
the LAS3000 image analyzer (Fuji).

Results
Immunohistochemical staining of the normal kidney
tissue (control sheep), revealed that the basement mem-
branes of blood vessels, epithelial cells in the tubuli and
Bowman’s capsule in the glomeruli were positively
stained for C3. The tubulointerstitium in the medulla
showed positive staining for C3d. For complement C4,
normal kidney (control sheep) showed positive staining
in the distal convoluted tubules and in the proximal
tubular epithelia in the cortex. In normal kidneys (con-
trols) C5 and C9 were present in the proximal tubular
epithelial cells in the medulla. C1q and factor H were
absent from the normal kidney tissue (Figure 1).
Figure 2 A representative image of Western blot analysis of the urine
separated on 12% SDS-PAGE in non-reducing condition and they were det
C3b and iC3b; C) C3c; D) C3α´75 kDa; E) C3dg.
In the AKI kidney, the deposition of C3 was more in-
tense in the epithelial cells of the proximal tubules of
medulla and in the tubular lumina than in those of the
controls. However, the AKI kidney showed positive
staining for C4 in the distal convoluted tubules and in
the proximal tubular epithelia in the cortex, similar to
those of the healthy control tissue. Staining also oc-
curred in the proximal tubuli in the medulla, where C4
localized into the epithelial cells and associated with
cellular debris in the tubular lumina. C3d showed posi-
tive staining in the proximal tubular epithelial cells and
in the tubular lumen in the medulla of all the AKI
sheep. Moreover, C3d was found in the distal convo-
luted tubules in the cortex in two of the sheep with
AKI. C1q was also found in the proximal tubuli in me-
dulla and in the tubular lumina after AKI. C5 and C9
stained positive in the distal convoluted tubules and
proximal tubular epithelia, and in the tubular lumina,
intensifying from the cortex to the medulla. Factor H
showed strong positive staining in the proximal tubule
in the inner medulla of all affected sheep. Two sheep
with AKI also stained positive for factor H in the prox-
imal tubuli in the outer medulla and distal convoluted
tubuli in the cortical area (Figure 1).
Western blot analysis of urines revealed C3 excretion

in both groups (Figure 2). An antibody, which was raised
against C3c for the Western blot analysis detected one
protein band at the 0 h time point and multiple protein
bands in the later samples. The excretion patterns were
similar for both AKI and control sheep groups showing
intact C3 (~190 kDa) and its activation C3b (~180 kDa)
and C3b inactivation products iC3b (170 kDa), C3c
(~140 kDa) and C3dg (~40 kDa).

Discussion
As reported in our previous publication and further
shown in Table 1, proteinuria was detected in sheep
after ketoprofen induced AKI by an elevated urine pro-
tein to creatinine ratio [32]. Proteinuria is usually a con-
sequence of protein leakage in the glomeruli that leads
of control and ketoprofen-induced AKI sheep. The proteins were
ected using polyclonal anti-C3c. The observed bands were: A) C3; B)
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to tubular injury [34,35]. It is believed that the tubular
epithelium plays a critical role in the inflammatory and
fibrotic changes seen in the interstitium when exposed
to high concentrations of protein [36]. Proteinuria also
increases tubular cellular turnover. This, in turn, leads
to the development of tubular atrophy and disturbs the
inhibition of the complement system by preventing fac-
tor H binding to the proximal tubular cells [37,38]. In
the present study positive immunostainings for C3, C4,
C1q, C5, C9 and factor H in the kidney tissue, and
Western blotting analysis for C3 activation products in
the urine demonstrated activation of complement. Our
findings are in line with previous reports suggesting that
protein leakage in the glomeruli causes renal toxicity via
inflammatory and fibrinogenic pathways in the proximal
tubular cells [39-42].
As reported earlier, activated C proteins cluster in the

epithelium of the proximal tubules during proteinuria
in humans [43,11,44,7] and rats [45,46]. In our present
study, C activation occurred principally in the proximal
tubular epithelial cells and in the tubular lumen. How-
ever, C activation occurred also in the distal convoluted
tubular epithelial cells to some extent. While intrarenal
synthesis of C components could mediate the progres-
sion of ketoprofen-induced AKI it is more likely that
the majority of complement proteins derive from blood.
Activation of the complement system leads to the for-
mation of either soluble (sC5b-9) or membrane associ-
ated forms of C5b-9 (membrane attack complex, MAC).
MAC contains one molecule of C5b, C6, C7, C8 and
multiple molecules of C9 [1], whereas sC5b-9 has only
one C9 molecule. MAC adheres onto the cell membrane
and induces cell injury and apoptosis [44]. In case MAC
complex was formed it could have, at least partly, have
been responsible for the cell injury seen in the tubular
cells after a high dose of NSAID. Proximal tubular cells
have a very low expression of membrane-bound C regu-
lators such as DAF and MCP. The cells can bind factor
H; yet excess plasma proteins or low pH can prevent
protective effect of factor H [47,38]. The positive immu-
nostaining for factor H in the tubules of all affected
sheep suggest that NSAID-induced AKI proteinuria
leads to complement activation, C3b deposition and
subsequent binding of factor H to C3b. Complement in-
hibitors, such as eculizumab, may offer more thera-
peutic options for patients suffering acute kidney injury.
The similarity of the excretion patterns of C3 and its acti-

vation products between AKI-sheep and controls suggests
that the urinary catheter activated the complement system,
probably in the urinary bladder. This bioincompatibility-
induced inflammation can occur, when either native or
plasma protein-coated surface binds C3 and activates the
alternative pathway via a conformational change in the C3
protein allowing the assembly of the alternative pathway
C3 convertase [48-50]. The origin of the plasma proteins
that bound to the catheter surface in our study could not
be ascertained. Urinary proteins originating from plasma or
from initial contact with blood during the implantation of a
bladder catheter are two possibilities.

Conclusions
We conclude that the alternative complement pathway
is activated, and it may contribute to the acute tubular
injury seen in the kidneys of NSAID-induced AKI sheep.
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