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Simple Summary: Beyond their use of treating human and animal diseases, antimicrobial agents
have also been employed in animal feeding as “growth promoters”, being administrated at low doses
throughout the husbandry period, and leading to beneficial effects, mainly for large-scale production.
However, the consequent selective pressure has helped to increase antimicrobial resistance frequencies
in isolates from animals globally. Brazil is a major food producer and exporter; therefore, it is of great
value to look at the panorama of bacterial resistance associated with farm animals. Since 1998, many
drugs have been prohibited from being used as growth promoters in Brazil. However, neither data on
the prophylactic and therapeutic use of antimicrobial agents in farms, nor results of contemporary and
integrated surveillance programs regarding antimicrobial resistance associated with food production
animals, are still publicly available. This review aims to update and discuss the available Brazilian
data on this topic emphasizing legal aspects, occurrence, and genetics of the resistance reported by
studies published since 2009, focusing on producing animals and derived foods with the most global
public health impact. Data here compiled may be useful to monitor and evaluate the local situation
and serve as a basis for establishing parameters for the future.

Abstract: In animal husbandry, antimicrobial agents have been administered as supplements to
increase production over the last 60 years. Large-scale animal production has increased the importance
of antibiotic management because it may favor the evolution of antimicrobial resistance and select
resistant strains. Brazil is a significant producer and exporter of animal-derived food. Although Brazil
is still preparing a national surveillance plan, several changes in legislation and timely programs
have been implemented. Thus, Brazilian data on antimicrobial resistance in bacteria associated with
animals come from official programs and the scientific community. This review aims to update and
discuss the available Brazilian data on this topic, emphasizing legal aspects, incidence, and genetics of
the resistance reported by studies published since 2009, focusing on farm animals and derived foods
with the most global public health impact. Studies are related to poultry, cattle, and pigs, and mainly
concentrate on non-typhoid Salmonella, Escherichia coli, and Staphylococcus aureus. We also describe
legal aspects of antimicrobial use in this context; and the current occurrence of genetic elements
associated with resistance to beta-lactams, colistin, and fluoroquinolones, among other antimicrobial
agents. Data here presented may be useful to provide a better understanding of the Brazilian status
on antimicrobial resistance related to farm animals and animal-derived food products.
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1. Introduction

The increase in the world population will lead to a significant increase in food production demand
in the coming years (i.e., in the order of 60% to nearly 10 billion people by the year 2050) [1]. As a
large and tropical country, Brazil represents one of the biggest global food producers. The country
is particularly relevant when it comes to increasing food supply, as it is a leading country in animal
production, both for domestic consumption and for export to many countries. Furthermore, as a
continental country divided into five distinct regions (N, North; NE, Northeast; MW, Midwest; SE,
Southeast, and S, South; Figure A1), Brazil has particular aspects related to animal production. In
general, most of the beef production for foreign markets comes from Midwestern states, while pork
and poultry production is concentrated in Southern states. Otherwise, dairy and egg production,
which is mainly destined for the domestic market, is usually concentrated near large urban centers
throughout the country.

The increase in animal production and productivity has a vital link with the control of infectious and
parasitic diseases, especially in tropical countries. Thus, therapeutic and rational use of antimicrobial
agents is inevitable, especially in intensive farming animals, such as swine, poultry, and confined
beef cattle. On the other hand, concerning the use of antimicrobial agents, as growth promoters, their
contribution (to a lower occurrence of diseases and higher productivity) has gradually been abolished
by their evident participation in the selection of resistant microorganisms that can reach humans
through the food chain [2–5].

The increase in antimicrobial resistance is a growing issue worldwide, and is associated with
several factors; therefore, it requires broad and coordinated action to contain or diminish the problem.
In a One Health perspective, there is a consensus that various actors must work together to control the
increased antimicrobial resistance worldwide. Regarding animal production, this implies changes in
some traditional farming practices [6,7].

Due to its relevance in animal food production, the way Brazil regulates the use of antimicrobial
agents in animals, whether for prophylactic or therapeutic use, may have implications at the local
and global levels of antimicrobial resistance. In addition to legal issues, the Brazilian scientific
community has been searching for the profile and evolution of antimicrobial resistance of bacterial
pathogens isolated from several animals and foods. Furthermore, some international publications have
sought and included data related to Brazil. Although numerous, these studies are often focused on a
small collection of samples or isolates obtained in a restricted geographic region; thus, jeopardizing
their representativity.

The present overview intends to update and discuss the available Brazilian data on this topic,
emphasizing legal aspects, evolution, and genetics of the antimicrobial resistance focused on producing
animals and derived foods with global public health impact. Moreover, due to their relevance as
bacterial pathogens, non-typhoid Salmonella sp., Escherichia coli, Campylobacter spp., and Staphylococcus
aureus are emphasized. Some data on other animals, as well as other bacterial pathogens, are briefly
presented. The data presented here mainly covers the last decade; we considered only studies that
have references to the date, location of collection, and methodology employed. When a specific state
was mentioned as a place of sampling, its region was referred (abbreviated in brackets). Since the
recommendations and interpretation standards for the reading of susceptibility tests have varied
during this period, and their standardization was not applicable, data that met previous criteria were
treated equally and compared.

2. Legal Aspects Related to Animal Antimicrobial Control and Monitoring Programs in Brazil

The burden of antimicrobial resistance has led to greater control in the use of antimicrobial agents in
animal production (as growth promoters and for therapeutic purposes). In this sense, the European Union
has progressively restricted the use of antimicrobial agents as additives to improve zootechnical performance
in producing animals, including the prohibition of the use of these drugs since 2006 [8]. Particularly in
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intensive farming animals, the mandatory sale of medically important antimicrobials for therapeutic use,
only in animals with a veterinary prescription, was instituted between 2017 and 2018 [9,10].

To meet international requirements, Brazil has gradually established, through various legal
regulations, a greater rigor regarding antibiotic use and other performance-enhancing additives
(Table A1). Thus, the use of avoparcin was prohibited in 1998; antimonial compounds in 2002;
chloramphenicol and nitrofurans (including veterinary clinical use) in 2003; olaquindox in 2004;
carbadox in 2005, amphenicols, tetracyclines, beta-lactams (benzylpenicillin and cephalosporins),
quinolones, and sulfonamides in 2009; spiramycin and erythromycin in 2012; and colistin in 2016 [11–19].
Recently, the use of the additives tylosin, lincomycin, and tiamulin was prohibited. Virginiamycin and
bacitracin are the remaining additives allowed for use [20].

The World Health Organization (WHO) elected the essential antimicrobial agents for human
medicine, as a reference to assist the formulation and prioritization of risk analysis and management
strategies in order to contain antimicrobial resistance. Antimicrobial agents important for human
medicine are classified by WHO according to established criteria as critically important, highly
important, and important. However, even antimicrobial agents used only in animals (apramycin,
ceftiofur, tylosin, enrofloxacin, and florfenicol) belong to antimicrobial classes also applied to treat
infections in humans. This molecular similarity may drive the development and selection of mechanisms
resulting in cross-resistance, which justifies the necessity of integrated actions to control the evolution
and dissemination of antimicrobial resistance [21].

Due to the potential influence of veterinary medicines in human health, Brazilian regulatory
authorities establish the Acceptable Daily Intake (ADI) and the Maximum Residue Limit (MRL) of
veterinary medicines in food, including antimicrobial agents, frequently based on Codex Alimentarius
standards. Thus, the competence to determine the ADI and MRL values belong to the Brazilian national
health surveillance agency (ANVISA), while the Ministry of Agriculture, Livestock and Supply (MAPA)
is responsible for the registration and supervision of veterinary products [22].

In addition, national control programs/plans regarding antibiotics were established in previous
years, among which, four stand out. The Program of Analysis of Residues of Veterinary Medicines in
Animal Foods—PAMVET (from the Portuguese designation “Programa de Análise de Resíduos de
Medicamentos Veterinários em Alimentos de Origem Animal”) monitored the use veterinary medicinal
products in food-producing animals from 2002 to 2007. The National Program for Monitoring
Prevalence and Bacterial Resistance in Chicken—PREBAF (from the Portuguese designation “Programa
Nacional de Monitoramento da Prevalência e da Resistência Bacteriana em Frangos”) evaluated
the prevalence and the antimicrobial resistance profile of Salmonella spp. and Enterococcus spp. in
chicken meat marketed in Brazil from 2004 to 2006. The National Plan for Control of Waste and
Contaminants—PNCRC/Animal (from the Portuguese designation “Plano Nacional de Controle de
Resíduos e Contaminantes”) has evaluated, since 2010, the presence of residues and contaminants
in eggs, milk, and honey sent for processing, as well as animals sent for slaughter, in establishments
under federal inspection. The Sanitary Surveillance Action Plan on Antimicrobial Resistance has been
promoting actions for the prevention and control of antimicrobial resistance in the country, articulated
between human health, animal health, and agriculture, since 2015. Brazil, as a signatory member, has
been participating (since 2015) in the Food and Agriculture Organization (FAO)–WHO–the World
Organization for Animal Health (OIE) global monitoring system, which is a self-assessment system for
reviewing and summarizing countries’ progress with multisectoral work on antimicrobial resistance.

Results of programs focused on residues of antimicrobial agents on food indicated overall scarce
contamination [23,24]. In contrast, the survey performed by PREBAF showed a low prevalence of Salmonella
spp., but a high incidence of multidrug resistance, especially in Salmonella Enteritidis and Salmonella
Heidelberg serotypes. Enterococcus spp. was isolated from almost 100% of the samples, and resistance to
streptomycin, tetracycline, erythromycin, ciprofloxacin, and chloramphenicol was often detected [25].

Regarding the FAO-WHO-OIE global monitoring system, in the most recent report (with information
about the status of countries concerning the implementation of the global action plan, and actions to
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combat antimicrobial resistance in all sectors), Brazil is classified at level 2, with an action plan still under
development. Meanwhile, other countries, such as China and the USA, are at level 5, characterized by
having an action plan in progress, with an ongoing monitoring and evaluation process [26].

The FAO believes that in the coming years, there will be pressure for livestock to meet the growing
demand for food, especially in the BRICS countries (Brazil, Russia, Indian, China, and South Africa).
This scenario could increase antimicrobial use to ensure productivity and animal health in search
of new global markets, which may increase the spread of antimicrobial resistance (AMR) in terms
of their prevalence and diversity of resistance genes [27]. It also considers that medium and small
family-run farms (mainly pig and poultry farms) are less monitored and regulated for antimicrobial
use than intensive systems. Thus, there is a potential risk of AMR in these systems, which can spread
through improperly disposed manure and sludge (such as in nearby watercourses), or even by selling
animals and their products through network marketing and marketing distribution, which can also
reach international markets.

This current and future perspective makes the legislation of each country, and the role of control,
monitoring, and enforcement institutions, highly relevant in achieving broad compliance to practices
dedicated to reducing the risk of emergence and spread of AMR in exporting countries, influencing the
threat of international spread.

3. Antimicrobial Resistance in Poultry Farming

Poultry production has traditionally been highly productive due to intensive husbandry practices.
Brazil is the second-largest producer and the world’s largest exporter of poultry meat; thus, occupying
a prominent position [28]. However, the growing challenges in the fight against multidrug-resistant
(MDR) bacteria and the expansion of this resistance have led to greater control and changes in some
traditional poultry practices. It also justifies more intensive trade restrictions from importing countries
that generally have more restrictive conditions when it comes to using antimicrobials in animals.

Due to their greater importance and occurrence in poultry, most antimicrobial resistance data
on antimicrobial resistance in isolates obtained from poultry produced in Brazil refer to three main
microorganisms: Salmonella sp., E. coli, and Campylobacter spp. (Table 1 and Figure A1).

3.1. Salmonella sp.

In general, previous data on the resistance profile of Salmonella strains isolated from poultry
in Brazil indicate resistance against ampicillin, some first and second-generation cephalosporins,
sulfonamides, tetracycline, and nitrofurantoin. However, in the early 2000s, quinolone resistance was
a rare profile in these strains [29,30]. Similar patterns were also described in some studies from the
South region, with strains of serotypes Enteritidis and Hadar [30–33], and the Northeast region [34,35].
On the other hand, Penha-Filho et al. (2009) studied Salmonella sp. strains from São Paulo State (SE)
and Goias State (MW), and described a different resistance profile, with higher resistant frequencies to
quinolones, in comparison with those detected to tetracycline and sulfonamides [36].

Many studies were published in the last decade describing the antimicrobial resistance profile of
Salmonella sp. in Brazil, most of them from the South region. There is considerable variation in the
susceptibility patterns, but in general, it is possible to notice an increase in quinolone resistance over
the years. Additionally, a few studies reported strains resistant to colistin and polymyxin B. Besides
that, the maintenance of high levels of resistance to sulphonamides, but often susceptibility to the
association of this drug with trimethoprim, remains frequently described. Nitrofurantoin resistance
frequencies vary widely, some exceeding 50% and others below 10%. The same occurs with tetracycline;
resistance frequencies range between 10% and 30% [35,37–45].

Quinolone resistance has been mainly reported concerning nalidixic acid, reaching values above 70%.
Otherwise, resistance to fluoroquinolones is lower, including some studies reporting full susceptibility. Due
to its more frequent and exclusive use in animals, higher resistance values in this group are usually found
for enrofloxacin. However, very high rates to different fluoroquinolones were described in a study with
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Salmonella Gallinarum (a rare serotype) isolated from outbreaks of fowl typhoid (>80%) [45], and in another
study with S. Enteritidis from different foodborne outbreaks (>40%) [44].

Epidemiologically important non-typhoidal Salmonella (NTS) serotypes linked with a high burden
of foodborne Salmonella outbreaks in humans worldwide include Enteritidis, Typhimurium, Heidelberg,
and Newport [46]. Several studies in Brazil report results of S. Enteritidis, which is generally the most
frequently found serotype in poultry. Vaz et al. (2010), for instance, investigated the antimicrobial
resistance of 96 Salmonella Enteritidis strains from 1995 to 2003 in the South region, a period when
chloramphenicol, penicillins, tetracyclines, and sulfonamides have already been banned as growth
promoters in food-producing animals. In this study, Salmonella Enteritidis strains were isolated from
salmonellosis outbreaks (43) and poultry-related products (53). Although 43.7% of strains were sensitive
to all drugs tested, resistance to sulfonamide (34.4%), trimethoprim-sulfamethoxazole (25.0%), nalidixic
acid (14.6%), streptomycin (2.1%), gentamicin, and tetracycline (1.0%) was identified. All strains were
susceptible to ampicillin, cefaclor, ceftazidime, ciprofloxacin, and chloramphenicol, which have been
some of the antimicrobial agents of choice for human therapy in Salmonella sp. infections over the
years [37]. Another study with 148 Salmonella Enteritidis strains belonging to the SE86 clonal group
isolated from chicken and food related to foodborne disease in the South region showed resistance
frequencies of 41.9% and 17.6% to ciprofloxacin and enrofloxacin, respectively [44].

Notwithstanding the epidemiological relevance of S. Enteritidis, in some studies in Brazil, other
serovars prevailed, such as Heidelberg [42] and Senftenberg [47]. Salmonella Heidelberg is one
of the most widely distributed serotypes worldwide, frequently associated with human diseases.
This serotype also presents high resistance frequencies to ceftiofur and reduced susceptibility to a
related antimicrobial agent, ceftriaxone, which could limit the options for treatment of extra-intestinal
infections, since it appears to be more invasive in humans than other NTS serotypes [48,49]. In Brazil, S.
Heidelberg has been described in chickens, especially in recent years [42,50]. Voss-Rech et al. (2019), in
a study in broiler farms of South Region, reported that S. Heidelberg comprises the vast majority (87.5%)
of serotypes isolated. Another relevant feature of this serovar is its persistence in the environment. The
authors demonstrated that S. Heidelberg could persist in the recycled broiler litter, remaining capable
of colonizing the subsequently housed broilers [51].

A national surveillance program with a focus on the resistance of bacteria isolated from chicken
meat (PREBAF, performed from 2004 to 2006 with 2679 carcasses collected from all geographic regions
of the country), reported a low prevalence of Salmonella (2.7%), but more than 50% of the isolates were
MDR. A high percentage of the isolates were resistant to streptomycin (89.2%), sulfonamides (72.4%),
florfenicol (59.2%), and ampicillin (44.8%). The most frequently occurring serotype was S. Enteritidis
(48.8%). Isolates from serotype Heidelberg were resistant to ceftriaxone (75.0%) and ceftiofur (43.8%) [38].

A subsequent and similar study, which evaluated 1234 Salmonella sp. strains isolated between
2007 and 2011 by public and private laboratories from commercial poultry carcasses and poultry
by-products from different regions of Brazil, reported a lower frequency of MDR strains (16.4%). Most
of the isolates belonged to the serotypes Enteritidis, Minnesota, Typhimurium, Schwarzengrund, and
Mbandaka. However, the occurrence of serotype Enteritidis decreased throughout the study from
49% in 2007 to 7.8% in 2011. The authors also reported a slight increase in resistance frequencies to
ampicillin, tetracycline, and gentamicin and a marked decrease in resistance frequencies to nitrofurans
(61.9 to 9.2%), nalidixic acid (44.4 to 15.5%), and folate inhibitors (11.7% to 7.2%). A small number of
isolates were resistant to fluoroquinolones (0.3% of the strains since 2009) [52]. This study is probably
one of the most significant ones about antimicrobial resistance of Salmonella in chicken meat during
these years, given the size and the homogeneity of the collection evaluated.

More recently, a meta-analysis of 29 articles published with data from Salmonella in Brazil between
1995 and 2014, including 2119 nontyphoidal Salmonella isolates (1272 recovered from poultry and 847 from
humans), reported that the highest levels of antimicrobial resistance from isolates from poultry were verified
for sulfonamides (44.3%), nalidixic acid (42.5%), and tetracycline (35.5%). Isolates from human origin were
resistant mainly for sulfonamides (46.4%), tetracycline (36.9%), and ampicillin (23.6%) [53].
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Nevertheless, studies performed with more restricted collections may present particular resistance
patters. The analysis of 82 Salmonella sp. isolates recovered from drag swabs between 2009 and
2010 in commercial broiler farms from Santa Catarina (S), Paraná (S), and Mato Grosso do Sul (MW)
demonstrated that the higher resistance frequencies were to tetracycline (52.4%); streptomycin (24.4%);
trimethoprim with sulfamethoxazole (17.1%), and ceftiofur (12.2%). All isolates were susceptible to
fluoroquinolones [50]. Considering isolates recovered from chicken carcasses obtained in Mato Grosso
State (MW) during 2014−2015, the analysis of resistance profile and serotypes of Salmonella sp. revealed
12.9% MDR strains; nearly all isolates were resistant to folate pathway inhibitors but susceptible to
florfenicol, streptomycin, nalidixic acid, ciprofloxacin, enrofloxacin, and nitrofurantoin. Over 70% of
the isolates belonged to serotypes Salmonella Infantis, Salmonella Abony, and Salmonella Agona [54].
In contrast, among 98 different Salmonella sp. isolates obtained from 300 frozen cuts of chicken collected
in Paraná State (S) in 2015 and 2016, high resistance frequencies were observed for nalidixic acid
(95%), tetracycline (94%), doxycycline (94%), ampicillin (87%), amoxicillin with clavulanic acid (84%),
ceftriaxone (79%), and ciprofloxacin (76%). More than 80% of the isolates were MDR, of which 13
isolates encoded beta-lactamase genes, especially blaCTX-M-2 e blaTEM-1. The major serotypes identified
were Salmonella Typhimurium (43%) and S. Heidelberg (39%) [55].

In a recent study, the resistance profile of 163 Salmonella sp. strains from 11 serotypes was
compared, and some differences according to the serotypes were observed. S. Typhimurium, S.
Bredeney, Salmonella Schwarzengrund, and Salmonella Tennessee had the highest overall resistance
frequencies. However, this result could be influenced by the limited number of isolates of the three
last serotypes. Isolates of serotypes Enteritidis, (n = 70) and Heidelberg (n = 49) were less resistant,
including to ceftiofur [56]. With an alternative approach, another recently published study evaluated
264 Salmonella sp. strains recovered from poultry and swine isolated between 2000 and 2016 by whole
genome sequencing, revealing the occurrence and persistence of international lineages of serotypes
with multidrug resistance and virulent background [57].

3.2. E. coli

When compared with Salmonella sp., E. coli strains have higher resistance frequencies, but generally
they are resistant to the same antimicrobial agents. Moreover, no significant differences in resistance
levels have been detected for commensal isolates, extraintestinal pathogenic E. coli (ExPEC), or Avian
Pathogenic E. coli (APEC) strains.

Regarding beta-lactams, ampicillin resistance frequency varies from around 20% [58] to over
80% [59], reaching 100% in clinical isolates [60,61]. Similar data have been described for first-generation
cephalosporins [62,63], while low resistance has been reported to second and third-generation
cephalosporins [64], except for ceftiofur, despite reports of low resistance frequencies in some
collections [62,65]. Resistance to tetracycline is also reported with high frequencies, usually over 70%, but
with exceptions again, including 13.3% in APEC strains [61]. The same study reported a low resistance
frequency to enrofloxacin (6.7%). It is also important to highlight the high resistance percentage against
quinolones, not only to nalidixic acid but also with fluoroquinolones, including enrofloxacin [63,65,66].
However, some opposite data show the absence of resistance to quinolones in isolates from avian-derived
organic fertilizers [58]. Low resistance frequency to sulphamethoxazole-trimethoprim was also reported
in this study, contrasting with most data [59–61,66]. Among aminoglycosides, high resistance prevalence
to streptomycin is widespread, but not to other drugs of this class [61–63,67]. Colistin and polymyxin
B resistance were rarely described [59].

Furthermore, multidrug resistance has been frequently reported. The majority of strains isolated
from commercial poultry of Pernambuco State (NE) were MDR (33/35, 94%) [68]. In a study conducted
in Bahia State (NE), the majority of ExPEC isolates were resistant to at least four antimicrobial agents
from different classes. The most common resistance phenotypes were observed to levofloxacin (51.8%),
amoxicillin/clavulanic acid (70.4%), ampicillin (81.5%), cephalothin (88.8%), tetracycline (100%), and
streptomycin (100%). The overall multidrug resistance varied from 4 to 11 antimicrobials and reached
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92.6% of E. coli strains. In addition, 40.7% of the strains were simultaneously resistant to streptomycin,
levofloxacin, ciprofloxacin, and tetracycline. The proportion of highly multidrug-resistant strains (8–11
antimicrobial agents) reached 22.2%. Conversely, the aminoglycoside amikacin of avian and human
use was very effective against 89.9% of ExPEC [63].

Another study compared the antimicrobial susceptibility profile of E. coli strains isolated from
free-range and conventional raising animals. Strains from conventionally raised chickens had a
higher frequency of antimicrobial resistance for the 15 antibiotics tested, as well as exhibited genes
encoding extended-spectrum β-lactamase (ESBL) and ampicillin C (AmpC), unlike free-range poultry
isolates. The frequency of antimicrobial resistance in strains from free-range poultry was low, except
for tetracycline (60%), whereas isolates from conventional poultry showed high resistance frequencies,
mainly to tetracycline, nalidixic acid, and ampicillin [69].

Carvalho et al. (2015) described the susceptibility profile of 109 E. coli strains isolated from the
soil of broiler houses from the Rio Grande do Sul State (S). All but two isolates were resistant to, at
least, one of the antimicrobial agents. More than 75% of the isolates were resistant to the tetracycline
and quinolone classes. Overall, multidrug resistance patterns were found in approximately 91% of
the E. coli isolates [66]. Braga et al. (2016) in Minas Gerais State (SE) reported the antibiotic resistance
profile of 15 E. coli strains isolated from 2012 to 2014 from bone lesions showing a high proportion of
MDR strains (73%), mainly to quinolones and beta-lactams, including third-generation cephalosporin.
The percentage of resistance to tetracycline was moderate (33%), but always associated with multidrug
resistance [65]. Vaz et al. (2017) in Pernambuco State (NE) studied E. coli strains isolated from poultry
liver carcasses and detected multidrug resistance with frequencies up to 48%, varying according to
the farm [67]. Borzi et al. (2017) studied E. coli recovered from free-range helmeted guinea fowl in
São Paulo State (SE), and multidrug resistance was detected in 90.4% of the isolates [62]. Moreover,
Maciel et al. (2017) reported that two E. coli isolates recovered from an avian colisepticemia outbreak in
the Rio Grande do Sul State (S) had resistance to all antimicrobial agents tested (ampicillin, tetracycline,
gentamicin, neomycin, sulfa-trimethoprim, enrofloxacin, and norfloxacin) [60].

3.3. Campylobacter spp.

Despite the often high occurrence of Campylobacter spp. in poultry and its importance in human
disease, studies regarding the resistance profile within this genus are not common, which could be
explained by the difficulty of cultivating, isolating, and maintaining these bacteria in the laboratory.
However, some previous data pointed to high resistance frequencies [70,71]. The data available in the
last decade demonstrate the maintenance of these profiles.

A study from Korea with 173 Campylobacter spp. strains isolated between 2004 and 2008, including
27 isolates recovered from chicken meat samples imported from Brazil, reported a high frequency
(80.9%) of MDR strains. Simultaneous resistance to ciprofloxacin, nalidixic acid, ampicillin, and
tetracycline was the most frequent phenotype among Brazilian strains. Resistance to all drugs tested
was found in the isolates originating from Brazil, except for florfenicol [72].

Similar results were found in the federal district (MW), with 16 Campylobacter jejuni strains isolated
from chicken carcasses with high resistance to ciprofloxacin (100%), nalidixic acid, streptomycin,
tetracycline, gentamycin (94% each), and chloramphenicol (38%), and in Parana State (S) in a study with
C. jejuni, C. coli, and C. lari with detection of 75% of MDR strains, and high frequencies of resistance
(>70%) to cephalothin, nalidixic acid, ciprofloxacin, and tetracycline [64,70].

More recently, Melo et al. (2019) evaluated the antimicrobial resistance of 99 C. jejuni isolated from
chilled chicken carcasses collected in slaughterhouses in Minas Gerais State (SE) during two distinct
periods (2011–2012 and 2015–2016). The prevalence of C. jejuni was significantly reduced in 2015–2016,
as well as the number of the drug (and multidrug) resistant isolates, except for tetracycline. During the
studied period, stricter regulations to control pathogens in poultry farms and slaughterhouses were
implemented in Brazil, which may have contributed to the profile variation observed due to changes
in selective pressures on bacterial populations [73].
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Table 1. Resistance profile of Salmonella sp., Escherichia coli, and Campylobacter spp. isolated from poultry, Brazil (data published between 2009 and 2019).

Reference Sampling
Period

Geographic
Region a Local (n) Isolates (n)

Antimicrobial Resistance b

Beta-lactam Tetracycline Quinolone Sulfonamide Aminoglycoside Others

Salmonella sp.

Duarte et al.,
2009 [35] 2004 NE poultry carcasses

(260)
11 serotypes

(19) Amp: 10.5% Tet: 31.6%
Cip, Eno: 5.2%

Nal: 21.0%
Nor: 2.5%

Sut: 5.2%
Kn: 15.8%
Str: 73.7%

Clo: 5.2%
Nit: 52.6%

Vaz et al., 2010
[37] 1995–2003 S – S. Enteritidis

(96)
Amp, Caz:

0.0% Tet: 1.0% Nal: 14.6% Sul: 34.4%
Sut: 25.0%

Gen: 1.0%
Str: 2.1% –

Medeiros et
al., 2011 [38] 2004–2006 N, NE, MW,

SE, S

poultry
carcasses

(2679)

18 serotypes
(250)

Amp: 38.0%
Atm: 19.2%
Cfl: 12.0%
Cfo: 13.2%
Cro: 6.0%
Ctf: 28.0%

Tet: 12.0%
Cip: 4.0%

Eno: 19.2% Nal:
40.0%

Sul: 58.0%
Sut, Tri:
10.0%

Gen: 12.0%
Str: 78.0%

Clo: 6.0%
Flo: 62.0%
Nit: 8.0%

Kottwitz et al.,
2012 [39] 2002–2006 S breeding chickens S. Enteritidis

(38)
Amp, Ctx:

0.0% – Cip: 0.0%
Nal: 26.3% Sut: 0.0% – Clo: 2.6%

Kottwitz et al.,
2013 [40] 2003–2006 S

discarded
hatching eggs

(1000)

4 serotypes
(26)

Amp, Ctx:
0.0% – Cip: 0.0%

Nal: 23.1% Sut: 0.0% – Clo: 0.0%

Costa et al.,
2013 [52] 2007–2011 N, NE, MW,

SE, S broiler carcasses 61 serotypes
(1234)

Amp:
12.4%–18.9%

Tet:
15.2–18.9% Nal: 15.5%-44.4% Sut:

7.2%-11.7% Gen: 7.0–10.6% Nit:
9.2%–61.9%

Moraes et al.,
2014 [74] – MW one-day-old

chicks and others
12 serotypes

(53) Amp: 5.7% Tet: 13.2% Cip: 0.0%
Eno: 5.7%

Sul: 73.6%
Sut: 13.2% Neo: 0.0% Flo: 0.0%

Campioni et
al., 2014 [41] 2004-2010 NE, MW, SE,

S – S. Enteritidis
(60)

Amp, Cfl,
Cro: 0.0% Tet: 0.0% Nal: 73.3% Sut: 0.0% Ami, Str: 0.0% Clo: 0.0%

Pandini et al.,
2015 [42] 2010–2011 S broiler farms (342

drag swabs)
19 serotypes

(39)

Amp: 20.5%
Cfl: 23.0%
Imp: 0.0%

Tet: 30.8% Cip, Nor: 0.0%
Nal: 28.2% Sut: 12.8%

Gen: 2.6%
Str: 10.2%
Tob: 0.0%

Clo: 2.6%

Minharro et
al., 2015 [75] 2010–2011 MW, SE

poultry carcasses
(300), heart (600)
and livers (600)

9 serotypes
(26)

Amc: 100%
Amp: 0.0%
Ctf: 3.8%

Dox, Tet:
0.0%

Cip: 0.0%
Eno: 3.8%

Sul: 53.8%
Sut: 0.0% Gen: 3.8% –

Voss-Rech et
al., 2015 [50] 2009–2010 S, MW broiler farms

(1543 drag swabs)
15 serotypes

(82)
Amc: 6.1%;
Ctf: 12.2% Tet: 55.4% Cip: 0%; Nor: 0%;

Eno: 0% Sut: 17.1% Str: 24.4%; Gen:
6.1%

Fos: 0%; Col:
0%

Palmeira et al.,
2016 [43] 2004–2006 S

broiler farms (18)
and turkey
carcasses

25 serotypes
(280)

Amp: 8.0%
Amc: 0.0%
Cfl: 5.0%
Ctf: 1.0%

Tet: 35%
Cip, Nor: 0.0%

Eno: 9.0%
Nal: > 60%

Sul: 3%
Gen: 12%

Kn, Str: 15%
Neo: 30%

Clo: 2.5%
Col: 15%
Fos: 5%
Nit: 35%
Pol: 0.0%
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Table 1. Cont.

Reference Sampling
Period

Geographic
Region a Local (n) Isolates (n)

Antimicrobial Resistance b

Beta-lactam Tetracycline Quinolone Sulfonamide Aminoglycoside Others

Bezerra et al.,
2016 [59] 2014–2015 NE broiler farms

(10/1000 samples) O:6,8 (2) Amp: 0.0%
Ctf: 100% Tet: 100% – Sut: 100% Gen: 0.0% Clo: 100%

Borges et al.,
2017 [44] – S various S. Enteritidis

(148) Ctf: 4.1% Tet: 2.7% Cip: 41.9% Sul: 75.0%
Sut: 1.4% Gen: 6.8% –

Koerich et al.
2018 [45] 2011–2014 S outbreaks of fowl

typhoid

S.
Gallinarum

(60)
– Tet: 33.0% Eno: 83.0%

Nor: 90.0% Sut: 7.0%
Neo: 30.0%
Str: 62.0%

Spm: 100.0%

Col: 27.0%
Fos: 0.0%

Cunha-Neto et
al., 2018 [54] 2014–2015 MW

slaughterhouses
(1) / carcasses

(850)

7 serotypes
(31)

Amp, Cfl:
25.0%

Atm: 21.9%
Ctf: 6.3%

Ctx: 18.8%

Tet: 9.4%
Cip, Eno, Nal:

0.0%
Nor: 6.7%

Sul: 100%
Sut: 75%

Tri: 87.5%

Gen: 3.1%
Str: 0.0%

Clo: 3.1%
Flo, Nit:

0.0%

Baptista et al.,
2018 [47] 2016 SE slaughterhouses

(6)
7 serotypes

(33)

Amc: 9.1%
Amp, Cef,
Ctx: 12.1%
Ctf: 9.1%

– Cip, Nor: 0.0%
Eno: 3.0% – – –

Borges et al.,
2019 [56] – S – 11 serotypes

(163) Cft: 6.1% Tet: 16% Cip: 27%; Eno:
19%

Sox: 95.7%;
Sut: 9.2%

Gen: 7.4%Spe:
12.3% Clo: 6.1%

Penha-Filho et
al., 2019 [36] – SE MW

chicken farms (6)
and

slaughterhouse (1)

36 serotypes
(83)

Amc, Caz,
Ctf, Ctx:
13.5%

Atm: 14.5%
Cfo: 6.0%

Cfp: 12.0%
Etp: 0.0%

Tet: 28.0%
Cip: 52.0%

Eno: 31.0% Nal:
41.0%

Sut: 20.5% – Clo:1.2%
Flo: 0.0%

E. coli

Barros et al.,
2012
[68]

– NE

broiler farms (11)
and laying hens

farms (7) (120
samples)

E. coli (35) Amo: 65.7%
Cfx: 25.7% Tet: 77.1% Eno: 45.7%

Nor: 40.0% Sut: 65.7% - -

Lima-Filho et
al.,2013 [63] 2013 NE slaughterhouses

(2/ 27 carcasses) ExPEC

Amp: 81.5%
Atm: 33.3%
Caz: 14.8%
Cfl: 88.8%
Ipm: 0.0%

Tet: 100% Cip: 44.4%
Lev: 51.8% –

Ami: 1.1%
Gen: 33.3% Str:

100%
Clo: 18.5%

Gazal et al.,
2015 [58] 2011–2012 S

12 farms
(40 samples of
avian organic

fertilizers)

E. coli (64)

Amo: 25.3%
Amp: 18.7%

Atm, Ctx,
Ipm: 0.0%

Tet: 35.9% Cip, Eno, Nor:
0.0% Sut: 12.5% Str:17.1% Clo, Col, Pol:

0.0%
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Table 1. Cont.

Reference Sampling
Period

Geographic
Region a Local (n) Isolates (n)

Antimicrobial Resistance b

Beta-lactam Tetracycline Quinolone Sulfonamide Aminoglycoside Others

Carvalho et al.,
2015 [66] 2011–2012 S

overshoe swab
samples (109

broiler houses)
E. coli (109) Amp:

~55.0% Tet: ~75%

Cip: ~35.0%
Eno: ~50.0%
Nal: ~80.0%
Nor: ~45.0%

Sul: ~70.0%
Sut: ~50.0%

Gen: ~30.0%
Neo: ~25.0%

Clo: ~20.0%
Flo: ~5.0%

Nit: ~30.0%

Bezerra et al.,
2016 [59] 2014–2015 NE 10 chicken farms

(1000 samples) E. coli (959) Amp: 87.3%
Ctf: 42.5% Tet: 95.4% Cip: 91.4% Sut: 100% Gen: 27.5%

Clo: 51.1%
Fos: 33.3%
Pol: 1.1%

Braga et al.,
2016 [65] 2011–2012 SE

eight flocks from
seven farms

(osteomyelitis or
arthritis)

APEC (15)

Amo: 73.3%
Amc: 12.0%
Cfl: 53.0%
Cfo: 8.0%
Ctf: 40.0%

Tet: 33.0% Eno: 40.0% Nal:
68.0% Sut: 33.0% Gen: 20.0%

Neo: 8.0%
Clo: 6.7%
Pol: 0.0%

Stella et al.,
2016 [61] – – cloacal swabs

from broilers (80)
of 1 flock

APEC (15) Amo, Amp,
Cfl: 100% Tet: 13.3% Eno: 6.7% Sut: 86.7% Gen: 6.7%

Neo, Str: 100% Nit: 0.0%

– – non-APEC
(76)

Amo: 80.3%
Amp: 81.6%

Cfl: 73.7
Tet: 77.6% Eno: 27.6% Sut: 64.5%

Gen: 6.7%
Neo: 42.1%
Str: 88.2%

Nit: 5.3%

Maciel et al.,
2017 [60] – S

avian
colisepticemia

outbreak (spleen
and liver)

APEC (2) Amp: 100% Tet: 100% Eno, Nor: 100% Sut: 100% Gen, Neo: 100% –

Vaz et al., 2017
[67] – NE liver of poultry

carcasses (110) E. coli (88)

Amc: 15.9%
Atm: 19.1%
Caz: 21.3%
Cfl: 8.5%

Ipm: 12.8%

Tet: 44.7% Cip: 21.3% –
Ami: 29.8%
Gen:21.3%
Str: 84%

Borzi et al.,
2018 [62] – SE

free range
helmeted

guineafowl (4
farms/56 cloaca,

56 oropharynges)

APEC (21)

Amc: 14.3%
Amp: 71.4%

Cfl: 100%
Cfo: 9,5%
Cro:14.3%
Ctf: 4.8%

Tet: 61.9% Cip: 23.8%
Nor: 0.0% Sut: 33.3%

Gen: 14.3%
Kn: 33.3%
Str: 90.5%

Clo: 9.5%
Nit: 57.1%

Campylobacter sp.
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Table 1. Cont.

Reference Sampling
Period

Geographic
Region a Local (n) Isolates (n)

Antimicrobial Resistance b

Beta-lactam Tetracycline Quinolone Sulfonamide Aminoglycoside Others

Ku et al., 2011
[72] – –

Brazilian chicken
meat imported by

Korea

Campylobacter
spp. (27) Amp: 92.6% Tet: 51.9% Cip, Nal: 66.7% – Gen:18.5%

Azi, Ery:
29.6%

Cli: 25.9%
Flo:7.4%

Moura et al.,
2013 [76] – MW poultry carcasses

(92)
Campylobacter

spp. (16) Amo: 87.5% Tet: 93.8% Cip: 100%
Nal: 93.8% – Gen, Str: 93.8% Clo: 37.5%

Ery: 68.8%

Ferro et al.,
2015 [64] – S Campylobacter

spp. (24)

Amc, Ctx,
Mer: 0.0%

Amp: 16.7%
Cfl: 98.0%;

Tet: 75.0% Cip, Nal: 75.0% – Gen, Tob: 0.0% Clo: 4.16%
Ery: 0.0%

Melo et al.,
2019 [73]

2011–2012;
2015–2016 SE poultry carcasses

(1070)

C. jejuni
(2011-2012/55)
(2015-2016/44)

2011–2012
Amc: 65.5%
2015-2016

Amc: 43.2%

2011–2012
Tet: 74.5%
2015-2016
Tet:81.8%

- -

2011–2012
Gen: 14.5%
2015–2016
Gen: 2.3%

2011–2012
Ery: 38.2%
2015–2016
Ery: 9.1%

a Geographic Region: S (South), SE (Southeast), MW (Midwest), N (North), NE (Northeast); b Ami: amikacin; Amc: amoxicillin + clavulanic acid; Amo: amoxicillin; Amp: ampicillin;
Atm: aztreonam; Azi: azithromycin; Caz: ceftazidime; Cip: ciprofloxacin; Cfo: cefoxitin; Cfl: cephalothin; Cfp: cefepime; Cro: ceftriaxone; Clo: chloramphenicol; Cli: clindamycin; Col:
colistin; Ctf: ceftiofur; Ctx: cefotaxime; Dox: doxycycline; Eno: enrofloxacin; Ery: erythromycin; Etp: ertapenem; Flo: florfenicol; Gen: gentamicin; Ipm: imipenem; Kn: kanamycin; Lev:
levofloxacin; Mer: meropenem; Nal: nalidixic acid; Neo: neomycin; Nor: norfloxacin; Nit: nitrofurantoin; Pol: polymyxin B; Spe: spectinomycin; Spm: spiramycin; Str: streptomycin; Sul:
sulfonamide; Sut: sulfamethoxazole-trimethoprim; Tet: tetracycline; Tob: tobramycin; Tri: trimethoprim.
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4. Antimicrobial Resistance in Pig Breeding

Brazil is one of the largest animal protein producers, with 3.75 million tons of pork meat produced
in 2017, where 697,000 tons were exported to more than 70 different countries. Santa Catarina State (S)
accounted for more than 40% of all exported Brazilian pork meat [28].

Antimicrobial resistance in pig breeding is of high relevance. However, while more than 2000
articles on this subject have been published in the last ten years across the globe, just over 20 are from
Brazil, highlighting the need for more local studies. Most studies focus on antimicrobial resistance
and identification of worldwide clones of Gram-negative bacteria, with very few data regarding
Gram-positive genus available. High frequencies of antimicrobial resistance could be found among
strains obtained from pigs in different moments of the production chain (Table 2 and Figure A1).

4.1. Salmonella spp.

Nontyphoidal Salmonella enterica is a common cause of foodborne disease outbreaks in Brazil
and other countries [77,78]. Pigs can often become asymptomatic carriers of Salmonella, increasing the
probability of food product contamination during slaughter and processing [79]. The widespread use
of antibiotics in different steps of swine production can favor the emergence of MDR strains, which is
also facilitated by mobile elements [80]. In Brazil, previous studies reported a prevalence of 24% of
Salmonella prevalence in pork carcasses, and a high frequency of antimicrobial resistance was described
in strains isolated from pork production [80,81].

The emergence of quinolone resistance is of particular concern because ciprofloxacin is a vital
drug to treat serious Salmonella infections [82]. In the early 2010s, ciprofloxacin resistance among
Salmonella sp. isolates was not evaluate or was lower than 4% [80,81,83,84]. In contrast, in 2019, Viana
et al. identified up to 50% of resistance to ciprofloxacin among 112 isolates obtained from pig lots that
have undergone prophylaxis with ciprofloxacin during growing and finishing production steps [85].
Regarding nalidixic acid, studies report rising rates over the years, from 5% in 2011 [73] to values
varying from 30% to 60% in 2015 and 2016 [80,83,84].

Among Salmonella sp. of swine-origin, resistance to tetracycline seems to be frequent. In 2011, a
high frequency of resistance to this antimicrobial agent was already reported (79%) [81]. Those high
frequencies were also observed throughout the decade, with values in different collections of isolates,
such as 54.5% in 2015 [80], 97.4% in 2017 [84], and 88.1% in 2019 [85]. Resistance to beta-lactams was
also commonly found. Studies published in 2011 and 2015 pointed to ampicillin resistance frequencies
of 29% and 46% [80,81]. However, the few studies released in the following years with Brazilian
isolates suggest a rising rate of resistance to ampicillin and amoxicillin, with reports as high as 80%
to 90% of the isolates in studies published in 2017 and 2019 [84,85]. That trend was not observed for
cephalosporins resistance with low prevalence hitherto described [81,85].

Resistance frequencies to folate inhibitors are generally high but variable, similar to the strains
isolated from poultry [35,37,38,40,42,52,80,81,83,84]. However, the frequency of aminoglycoside resistance
frequencies is generally higher in Salmonella strains isolated from pigs (Tables 1 and 2) [38,41,52,75,81,84,85].

Despite the high diversity of serotypes reported, the Salmonella serotypes more frequently recovered
from pigs in Brazil are S. Typhimurium and Salmonella Derby [80,81,83].

4.2. E. coli

Urinary tract infection (UTI) is a major cause of mortality and reduced life of sows. In a study
with isolates recovered from urine samples of sows with clinical signs raised in São Paulo State (SE),
Spindola et al. (2018) observed that 98% of E. coli isolates were MDR. The authors reported resistance to
ampicillin in 80% of the 186 strains tested, while resistance to amoxicillin/clavulanic acid was observed
in only two strains (1.1%), and resistance to cefoxitin and ceftiofur ranged from 1.1% to 2.6%. Resistance
to cefotaxime was not detected. More than 80% of these isolates were resistant to sulfonamides
(94.6%), tetracycline (91.9%), and florfenicol (83.3%); 50% to 70% of the isolates were reported as
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resistant to nalidixic acid (66.1%), sulfamethoxazole-trimethoprim (59.6%) and streptomycin (52.6%).
Resistance frequencies lower than 25% were detected to ciprofloxacin (22.5%), spectinomycin (11.2%),
and gentamycin (2.6%) [86]. In contrast, Silva et al. reported eight isolates obtained in 2012 also in the
same state from pig fecal swabs resistant to third- and fourth-generation cephalosporins, associated
with the occurrence of the ESBL encoding gene blaCTX-M-15. These isolates were also resistant to
ciprofloxacin, enrofloxacin, norfloxacin, tetracycline, sulfonamide-trimethoprim, and gentamicin, being
sensitive only to amikacin, cephamycins, and carbapenems [87].

In veterinary medicine, colistin sulfate is mainly used in oral preparations, due to its excellent
activity against E. coli and S. enterica, low frequency of resistance, and poor absorption after
oral administration, especially in pigs and poultry production. However, in the last few years,
colistin-resistant E. coli is becoming more common. In 2012, resistance to colistin could already be
observed in E. coli isolated from pigs. Morales et al. (2012) used the agar dilution test, which was
then considered the gold standard for colistin susceptibility evaluation, and observed that 6.3% of
E. coli isolates were resistant to colistin [88]. Recently, Kiefer et al. (2018) evaluated 126 pig samples
and identified eight colistin-resistant E. coli isolates. Among them, a single isolate was positive by
PCR for the mcr gene. This isolate was also resistant to broad-spectrum cephalosporins, tetracycline,
chloramphenicol, florfenicol, nalidixic acid, sulfonamides, sulfamethoxazole-trimethoprim, and
kanamycin [89].

4.3. Yersinia enterocolitica

Pigs are considered natural reservoirs of Y. enterocolitica, which explains its presence in
slaughterhouses, and the association between pork consumption and yersiniosis. As this pathogen
persists in the pork chain from the initial steps of production, contamination of carcasses and pork
products can occur, particularly during handling of the head, tongue, and palatine tonsils [90].
In addition, Y. enterocolitica may be present in the intestinal contents and mesenteric lymph nodes of
pigs, which are also considered relevant sources of contamination during slaughtering [91].

Only a few studies regarding this agent in Brazil have been conducted. In the past ten years, the
occurrence of Y. enterocolitica was low, but still suggesting that pigs serve as a primary source in the
transmission of this bacteria to humans [92]. Noteworthy, multidrug resistance is commonly found
among isolates of this species in Brazil, with variable resistance profiles [91–93].

Among these isolates, resistance to beta-lactams was widespread. Frazão et al. (2017) studied 34
isolates obtained in 30 years, and most of them (94.1%) were resistant to ampicillin and ticarcillin even
when associated with a beta-lactamase inhibitor, the resistance persisted [93]. Other studies could also
observe high frequencies of resistance to aminopenicillins [91,92]. Among 16 isolates obtained from 10
pig production lots, this trend was also described to other beta-lactams, such as cephalosporins and
carbapenems, both in frequencies as high as 100% [91].

Resistance to fluoroquinolones was very unusual, with only one isolate from all Brazilian studies
displaying this phenotype. Resistance to nalidixic acid (NAL) was more common but not frequent.
Indeed, other studies demonstrated that frequencies of fluoroquinolone resistance were significantly
lower than those observed for nalidixic acid alone [94].
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Table 2. Resistance profile of Salmonella sp. Escherichia coli and Yersinia enterocolitica isolated from pigs, Brazil (data published between 2009 and 2019).

Ref. Sampling
Period

Geographic
Region a Local (n) Isolate (n)

Antimicrobial Resistanceb

Beta-lactam Tetracycline Quinolone Sulfonamide Aminoglycoside Others

Salmonella sp.

Kich et al.,
2011 [81] 2007 S various 8 serotypes (572)

Amc: 1.0%
Amp: 46.6%

Cfl: 5.0%
Cfo: 1.0%

Tet: 79.0% Nal: 5.0% Sul: 23.0%
Sut: 10.0%

Gen: 39.0%
Kn: 41.0%
Str: 35.0%

Clo: 10.0%

Morales et
al., 2012 [88] – – swine herds S. enterica (124) – – – – – Col: 21.0%

Lopes et al.,
2015 [80] 2008–2011 S

slaughterhouses (1)/
intestinal content

and carcasses

28 serotypes
(225) Amp: 29.8% Tet: 54.5% Cip: 0.9%

Nal: 33.3%

Sul: 39.6%
Str: 33.7%
Tri: 8.0%

Gen: 10.7%
Kn: 14.7% Clo: 14.2%

Almeida et
al., 2016 [83] 2000–2012 S various S. Typhimurium

(22) Amp: 81.4% Tet: 62,9% Cip, Lev: 3.0%
Nal: 59.0% Sut: 66.6% – Clo: 74.0%

Souto et al.,
2017 [84] 2011–2014 SE fecal samples Salmonella sp.

(39)

Amo: 89.7% Amp:
82.0%

Cfo: 2.6 %
Tet: 97.4% Nal: 33.3%

Nor: 2.6 % Sut: 53.8% Gen: 87.1% –

Rau et al.,
2018 [95] 2011–2017 S animal products

(40)
Salmonella sp.

(40) – – v – Col: 1 isolate
(mcr-1 positive)

Viana et al.,
2019 [85] – – pork production

chain
25 serotypes

(280)
Amp: 81.0%

Caz, Cfo: 4.8% Tet: 88.1% Cip: 50.0% Sut: 19.0% Gen: 16.7%Str:
90.5% Clo: 71.4%

E. coli

Morales et
al., 2012 [88] – – swine herds ETEC (126) – – – – – Col: 6.3%

Silva et al.,
2016 [87] 2012 – swine herds E. coli (267) Ctf: eight isolates

(CTX-M-15-producing) – – – – –

Kiefer et al.,
2018 [89] – – swine herd (126) colistin-resistant

E. coli (8) – – – – –
Col:

colistin-resistant
E. coli

Spindola et
al., 2018 [86] – SE swine urine (300) E. coli (186)

Amc: 1.1%
Amp: 80.1%

Cfo: 1.1%
Ctf: 2.6%

Tet: 91.9%

Cip: 22.5%
Eno: 33.3%
Nal: 66.1%
Nor: 21.5%

Sul: 94.6%
Sut: 54.6%

Gen: 2.6%
Spe: 11.2%
Str: 52.6%

Flo: 83.3%
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Table 2. Cont.

Ref. Sampling
Period

Geographic
Region a Local (n) Isolate (n)

Antimicrobial Resistanceb

Beta-lactam Tetracycline Quinolone Sulfonamide Aminoglycoside Others

Yersinia enterocolitica

Ruzak et al.,
2014 [92] 2005–2011 SE, NE, S various Y. enterocolitica

(60)
Amp: 100% Cfl: 97.0%

Cfo: 13.0% Tet: 8.0% –
Sul: 68.0%
Sut: 10.0%
Tri: 12.0%

Ami: 2.0% -

Frazão et al.,
2017 [93] 1979–2012 – various Y. enterocolitica

(39)

Amc: 55.8%
Cfo, Cfz: 100%

Amp, Tic: 94.0%
– – – – -

Martins et
al., 2018 [91] – SE

Pig farm (2/20
samples);

slaughterhouse
(1/960 samples

Y. enterocolitica
(16)

Amo, Amp, Ipm:
100% Tet: 12.5% Nal: 100.0% Sul: 100.0%

Gen: 37.5
Neo: 100%
Str: 100%

a Geographic Region: S (South), SE (Southeast) and MW (Midwest); b Ami: amikacin; Amc: amoxicillin + clavulanic acid; Amo: amoxicillin; Amp: ampicillin; Caz: ceftazidime; Cip:
ciprofloxacin; Cfo: cefoxitin; Cfl: cephalothin; Cfz: ceftazidime; Clo: chloramphenicol; Col: colistin; Ctf: ceftiofur; Eno: enrofloxacin; florfenicol; Gen: gentamicin; Ipm: imipenem; Kn:
kanamycin; Lev: levofloxacin; Nal: nalidixic acid; Neo: neomycin; Nor: norfloxacin; Nit: nitrofurantoin; Rif: rifampicin; Spe: spectinomycin; Str: streptomycin; Sul: sulfonamide; Sut:
sulfamethoxazole-trimethoprim; Tet: tetracycline; Tic: ticarcillin; Tri: trimethoprim.
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5. Antimicrobial Resistance in Dairy and Beef Cattle Breeding

5.1. Staphylococcus aureus and other Staphylococcus spp.

Brazil is the world’s largest milk producer, accounting for 7% of milk produced in the world.
Minas Gerais State (SE) is the largest producer, followed by the Rio Grande do Sul (S), Paraná (S),
Goiás (MW), Santa Catarina (S), São Paulo (SE), and Bahia (NE) States [96]. Bovine mastitis is an
infectious disease that impacts milk production, leading to economic loss and public health concern.
It may present as subclinical, clinical (or acute), and chronic forms, with subclinical mastitis being
the most common. Since clinical mastitis may be associated with higher virulence and antimicrobial
resistance profiles of the microorganism, this information is presented in Table 3 and along with the
text, when available and necessary. According to the National Syndicate of the Animal Health Products
Industry, there are 166 veterinary products to treat mastitis marketed in Brazil, including beta-lactams,
macrolides, tetracycline, quinolones, sulfonamides, and others [97].

Although different species may cause mastitis, S. aureus is one of the most frequently isolated
etiological agents of these infections, which justifies the largest number of studies regarding this
species [98]. Most published data are from S. aureus isolates recovered from herds localized in the
Southeast and South states. In general, the comparison of resistance frequencies as a function of herd
location has limitations, mainly because studies that include isolates from different states sometimes
do not discriminate the origin of the samples. Similarly, data on the sample collection period have not
been reported in several studies, which does not allow reliable temporal analysis. Table 3 presents the
available data on Staphylococcus spp. mastitis resistance profile (see also Figure A1), and Table 4 shows
the genes detected in these isolates.

Susceptibility to the majority or all antimicrobial agents tested against S. aureus isolates from bovine
mastitis has been observed in Brazilian herds [90–92,99–101]. However, resistance frequencies have
increased for some antimicrobial agents compared to studies published in earlier periods [102–105].

Beta-lactam resistance, especially to penicillinase-labile penicillins (PSLP; for example, amoxicillin,
ampicillin, penicillin G), has been widely observed among Staphylococcus isolates recovered from
bovine mastitis [91,97–100,106–108]. Penicillin G resistance frequencies have ranged from 30.4% to
100% in the studies published in the last ten years [100,101,109,110]. Some studies have also tested
other PSLPs, sometimes with slightly higher resistance frequencies than penicillin G [106,111–113].

Marques et al. (2017) detected the blaZ gene in 14 of 20 isolates considered resistant to penicillin G
by the edge zone, and among them, only five isolates had the phenotype confirmed by disk diffusion
test [110]. High PSLP resistance frequencies (>80%) were observed in isolates obtained between 2004
and 2008 from cows with clinical (59 isolates) and subclinical (293 isolates) mastitis belonging to 38
herds [114]. In another study in Minas Gerais State (SE), 266 S. aureus isolates were characterized
to assess the susceptibility to ampicillin, penicillin G, and tetracycline. Resistance to ampicillin and
penicillin G was detected in 66.5% and 70.7% of the isolates, respectively. Ninety isolates resistant
to the antimicrobial agents originally tested were subjected to minimum inhibitory concentration
(MIC) and investigation of resistance genes. The MIC50 and MIC90 were, respectively, 1 µg/mL
and 2 µg/mL for ampicillin and 0.5 µg/mL and 1 µg/mL for penicillin. The blaZ gene was detected
in almost all isolates [108]. Another study evaluated the antimicrobial susceptibility profile of 46
bacteriocin-producing S. aureus isolates obtained from cows with mastitis from 12 herds. Resistance to
PSLP was prevalent among these isolates, being 67.4% and 65.2% of the isolates resistant to ampicillin
and penicillin G, respectively [106].

The PSLP resistance frequencies were higher among S. aureus isolates recovered from lactating
cows than from heifers in two experimental herds in São Paulo State (SE). Eighty-three and 27 isolates of
heifers and cows, respectively, were evaluated. Among heifer isolates, 39.6% and 14.5% were resistant
to penicillin G and ampicillin, respectively. In the case of cow isolates, 62.9% and 40.7% were resistant
to penicillin G and ampicillin, respectively [111].
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In some studies, PSLP resistance was not prevalent compared to other antimicrobial agents, but
significant frequencies were observed. Among 27 S. aureus and three coagulase-negative Staphylococcus
(CNS) isolates characterized by Freitas et al. (2018), the highest resistance frequencies were observed
for trimethoprim (100%), neomycin and tetracycline (96.7% each). However, 70% of the isolates were
resistant to penicillin G [113]. Haubert et al. (2017) reported a penicillin G resistance frequency of 48%
among S. aureus isolates, but the resistance rate to sulfonamides was higher (65%) [112].

Few studies have been published on the antimicrobial susceptibility profiles of CNS and
coagulase-positive staphylococci other than S. aureus (oCPS) from bovine mastitis. Fernandes dos
Santos et al. (2016) characterized isolates obtained between 2008 and 2010, in three different regions
of the country and identified 79 of 1365 S. aureus, and 91 of 1484 CNS displaying smaller growth
inhibition zones for oxacillin. Considering these sub-groups, a penicillin G resistance frequency of
30.4% and 34.1% for S. aureus and CNS were detected, respectively [109]. Laport et al. (2012) observed
penicillin G resistance among 51% of CNS isolates of an older collection (1995–2003) obtained from
bovine mastitis in the Southeast region [107]. Da Costa Krewer et al. (2015) evaluated the antimicrobial
resistance profiles of 126 S. aureus, 61 oCPS, and 31 CNS isolates obtained of herds from the Northeast
region. The total PSLP resistance frequency was higher than 60%, and the lowest frequency (36%) was
observed for CNS [100].

Penicillinase-stable penicillins (PSSP), of which methicillin is a prototype, are semi-synthetic
drugs that have been developed to treat infections caused by beta-lactamase-producing S. aureus.
Methicillin-resistant S. aureus strains (MRSA) have resistance to all beta-lactam agents, except for new
fifth generation cephalosporins. The gene most commonly related to methicillin resistance is the mecA,
but a mecA homolog gene (mecC), still rarely detected, has been described [115,116].

Cloxacillin is one PSSP that may be used to treat bovine mastitis and, consequently, may contribute
to the selection of strains resistant to this antimicrobial group. MRSA isolation has been reported
from mastitis cases in Brazilian herds, but the prevalence is low. In most studies, MRSA strains
were not isolated [100,106,109–111] or were isolated from few animals [101,114,117,118]. In 2012,
Costa et al. published a study with milk samples from 38 herds, in which 2% of S. aureus isolates
from mastitis were MRSA [114]. A similar MRSA isolation prevalence (1.4%) was observed by
Bonsaglia et al. (2018), who analyzed 285 isolates recovered from 18 herds in São Paulo State (SE).
They detected neither the mecA nor the mecC genes among the isolates [101]. Guimarães et al. (2017)
reported an outbreak of MRSA intramammary infections in Dutch cows from a dairy herd in São Paulo
(SE). From a total of 103 cows investigated, 12.2% of the mastitis cases were caused by S. aureus. In this
collection of isolates, mecA was also detected in isolates that did not express the resistance phenotype
(OS-MRSA—oxacillin-susceptible mecA-positive S. aureus) [119]. Haubert et al. (2017) reported MRSA
isolation, identified by phenotypic methods, in herds from the Rio Grande do Sul State (S). However,
the authors did not detect the mecA gene among the isolates [112].

Some studies have also investigated the methicillin resistance among isolates of other Staphylococcus
species. Approximately 18% of 82 S. aureus isolates and 99 other staphylococci obtained from
herds from six states exhibited resistance to methicillin by epsilometer test but only one strain
was MRSA. Methicillin-resistance was also observed among isolates of Staphylococcus chromogenes,
Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus, Staphylococcus
simulans, Staphylococcus xylosus, and Staphylococcus warneri, but the gene mecA gene was detected only
in eight S. epidermidis isolates [118]. Besides, 26 methicillin-resistant Staphylococcus (MRS) isolates
belonging to the species S. epidermidis, S. chromogenes, S. warneri, S. simulans, and Staphylococcus hyicus
were recovered from CMT-positive cows from 11 herds in São Paulo (SE), all of them phenotypically
resistant to PSSP and carrying the gene mecA [117]. In another study, methicillin non-susceptible CNS
isolates were obtained from dairy herds localized in Southern and Southeastern States. Nine of them,
all S. epidermidis, carried the mecA gene, and two Staphylococcus sciuri isolates had a mecA-homolog gene.
The mecC gene was screened but not detected in any of the isolates [109]. Furthermore, some studies
identified low frequencies (<5%) of MRS isolation among strains of cows with mastitis [100,107].
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Resistance frequencies for tetracycline have varied in different studies published over the period
evaluated [106,108,113,114]. The highest rate reported (96.7%) was observed among isolates obtained
in herds from the Rio Grande do Sul (S). In this study, the isolates also presented high resistance
frequencies to other antimicrobial agents [113]. In the same State, a lower frequency of resistance to
tetracycline (39%) was observed. Sulfonamide resistance frequency (65%) was the highest among
the drugs tested [112]. Low tetracycline resistance frequencies (<10%) have also been reported
among S. aureus isolates [101,109,110,117]. In most of these studies, the resistance frequencies to other
antimicrobial agents tested were low as well [101,117]. In a study performed in the Northeast region
with 195 isolates of different staphylococcal species, 17.4% and 11.9 % of the isolates were resistant to
tetracycline and doxycycline, respectively [100]. Laport et al. (2012) reported a tetracycline resistance
rate of 14.3% among 54 CNS isolates recovered from herds located in the Southeast region [107].
In another study, the authors observed higher tetracycline resistance frequencies among CNS (24.2%)
compared to S. aureus (8.9%) isolates [109].

Erythromycin and clindamycin are often tested for S. aureus isolates recovered from bovine
mastitis. Although macrolide resistance frequencies have also varied in different studies, in most of
them, the frequencies were 0%–10% [101,110,117]. The highest erythromycin resistance frequency
was 58.7% [106]. For lincosamides, resistance frequencies ranged from 0%–52%, most of them less
than 15%. Among CNS, the highest resistance frequency (18.4%) was reported by Laport et al. (2015).
The authors also reported resistance to clindamycin, but at a lower prevalence [101,107,112].

In most studies published, the quinolone resistance frequencies have been low [100,101,112].
However, high resistance frequencies have been reported in specific studies [110,113]. Freitas et al.
(2018) reported 43.3% of enrofloxacin-resistant Staphylococcus spp. isolates. This result is questionable
because interpretation criteria were not clear [113]. In another study, the resistance frequencies ranged
from 20% to 25%, according to the quinolone tested [110].

For the treatment of bovine mastitis, aminoglycosides may also be used. Gentamycin resistance
frequencies observed are generally lower when compared to other aminoglycosides, ranging from 0% to
2% [101,107,109,111], while resistance against streptomycin is higher, although only a few studies have
evaluated this drug. Marques et al. (2017) and da Costa Krewer et al. (2015) reported a streptomycin
resistance rate of 25% and 11.9%, respectively [100,110]. High frequencies of resistance were observed
for gentamicin (86.7%) and neomycin (96.7%) in the study by Freitas et al. (2018); however, they
analyzed a small number of bacterial strains and did not inform the interpretation criteria [113].

Although glycopeptides are not employed for the treatment of bovine mastitis, isolates have been
evaluated for vancomycin susceptibility due to its importance to the treatment of human infections.
Two studies reported the absence of vancomycin resistance through by the disk diffusion method;
however, they did not employ the agar dilution method recommended for this evaluation [101,106]. On
the other hand, Mello et al. (2017) detected vancomycin heteroresistance in 7.2% of the 181 isolates [118].

Trimethoprim/sulfamethoxazole resistance, also prescribed for the treatment of bovine
mastitis, has not been detected or detected in less than 10% of the isolates [100,101,109,114,117].
Although sulfonamide resistance frequency has been very high in one study (65%),
trimethoprim/sulfamethoxazole resistance rate was also low (3%) [112]. Regarding other antimicrobial
agents, resistance to amphenicols [110,114,117] and novobiocin [110,114] also has been reported in
some studies.

5.2. Streptococcus spp.

Streptococcal species, especially Streptococcus agalactiae, are also critical etiologic agents of bovine
mastitis. However, data on resistance of these bacteria isolated from Brazilian herds are very scarce.
Recently, Miranda et al. (2018) analyzed 16 S. agalactiae isolates from subclinical mastitis from five
herds localized in Pernambuco State (NE). All the isolates were susceptible to penicillin, ceftriaxone,
levofloxacin, chloramphenicol, linezolid, and vancomycin. The highest resistance frequency was
observed for tetracycline (87.5%). Erythromycin and clindamycin resistant isolates were also resistant
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to tetracycline, being these strains considered as MDR (25%) [120]. In another study, S. agalactiae isolates
from bovine and human were analyzed to determine their serotypes and antimicrobial susceptibility
profiles. Only 29 of 392 isolates were obtained from milk samples of cows with mastitis. The bovine
isolates were collected in two periods (1987–1989 and 2003–2006) from five herds localized in three
Southeastern states. Resistance was observed to tetracycline (89.6%), erythromycin (27.6%), and
clindamycin (20.7%), which frequencies were higher than those reported for the isolates of human
origin [121].

5.3. E. coli, Salmonella sp., and Listeria monocytogenes

Even though E. coli is a relevant etiologic agent of environmental mastitis, scarce data on
antimicrobial resistance are available. Fernandes et al. (2011) analyzed 27 E. coli isolates obtained
from clinical mastitis recovered from seven herds localized in Minas Gerais State (SE). The isolates
were resistant or intermediate to trimethoprim-sulfamethoxazole (51.8%) and ampicillin (14.8%),
and some isolates were simultaneously non-susceptible to neomycin (3.7%) [122]. In another study,
260 pasteurized cow’s milk samples were collected in commercial establishments from Paraná
State (S), from 2000 to 2007. Among the coliform isolates, E. coli was identified in 77.05% of
the samples. The highest resistance frequency was observed for cephalothin (23.4%), followed
by ampicillin (19.2) and tetracycline (10.6%). Resistance frequencies less than 6.5% were seen for
amoxicillin-clavulanic acid, trimethoprim-sulfamethoxazole, and ciprofloxacin. None of the isolates
produced ESBLs [123]. Alves et al. (2018) detected flies carrying MDR E. coli isolates in two dairy
farms from São Paulo State (SE). Resistance was observed for ampicillin, amoxicillin-clavulanic
acid, tetracycline, trimethoprim-sulfamethoxazole, enrofloxacin, chloramphenicol, and ciprofloxacin,
associated with the occurrence of blaTEM (36.3%), tetA (14.8%), and blaCTX-M (11.1%) genes [124].

Regarding beef cattle, Brazil is the world’s largest exporter, with the second world’s largest herd
of cattle (232 million) and reaching a beef production of 9.9 million tons [125]. However, in contrast to
poultry and pigs, production is often extensive, reducing the necessity of antibiotic usage. Nevertheless,
large consumer markets require monitoring of specific bacterial species such as E. coli, Salmonella sp.,
and Listeria sp. to ensure pathogen-free production.

In the last ten years, some studies have evaluated antimicrobial resistance of E. coli, Salmonella,
and Listeria monocytogenes isolates obtained from cattle carcasses, beef-products, and meat-processing
environments. Moreover, dos Santos et al. (2018) investigated the contamination by Shiga
toxin-producing E. coli (STEC) of beef and carcasses from one slaughterhouse located in Mato
Grosso State (MW). All 18 STEC isolates detected were susceptible to 12 antimicrobial agents tested,
except streptomycin [126]. In contrast, the MDR profile has been detected among E. coli isolates [127],
including serotype O157: H7 isolates [128].

Few Salmonella sp. isolates have been evaluated for antimicrobial resistance due to low levels of
their detection in carcasses, production line, and slaughterhouse environment [127–130]. Salmonella
sp. isolates susceptible to all antimicrobial agents tested were observed in some studies [127,130].
However, isolates resistant to trimethoprim-sulfamethoxazole, sulfamethoxazole, and tetracycline were
detected in cutting boards of butcher shops from Minas Gerais State (SE). All isolates were susceptible
to amikacin and cefotaxime [129].

Listeria monocytogenes obtained from carcasses have also been evaluated for antimicrobial
susceptibility. Susceptibility has been observed for most drugs tested [128,131]. Camargo et al.
(2015) evaluated antimicrobial resistance of L. monocytogenes isolates recovered from meat-processing
environments, beef products, and clinical cases. All the isolates were susceptible to most of the tested
antimicrobial agents tested, but many strains were resistant or intermediately resistant to clindamycin
(88.3%) and oxacillin (73.7%) [131].
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Table 3. Resistance profile of Staphylococcus spp, Salmonella sp., Escherichia coli, and Listeria monocytogenes isolated from dairy and beef cattle, Brazil (data published
between 2009 and 2019).

Ref.
Sampling

period
Region a Local (n) Isolate b(n)

Antimicrobial Resistance c

Beta-lactam Tetracycline Quinolone Sulfonamide Aminoglycoside Others

Staphylococcus sp.

Ceotto et al.,
2009 [106] – SE dairy herd S. aureus (46) **

Amp: 67.4%
Oxa: 0.0%

Pen G: 65,2%
Tet: 41.3% Cip:10.9% – Gen:15.2% Cli: 13.1%

Ery: 58.7%

Laport et al.,
2012 [107] 1995–2003 SE dairy herd (21) CNS (49) *** Oxa: 6.1%

Pen: 51.0% Tet: 14.3% Cip: 2,0% Sut: 10.2% Gen: 2,0%
Cli: 12.2%
Ery: 18.4%
Rif: 0.0%

Costa et al.,
2012 [114] – – dairy herd (38) S. aureus (352) **

Amp: 81.4%
Oxa: 2.0%
Pen: 82.3%

Tet: 16.7% Eno: 0.3% Sut: 6.3% Gen: 1.7%
Neo: 3.4%

Clo: 1.7%
Flo: 0.3%
Lin: 7.9%
Nit: 0.0%

Nov: 1.4%
Silva et al.,
2013 [117] – SE dairy herd (11) S. aureus (56)*** Cfl, Oxa: 0.0% Tet: 3.5% Cip: 0.0% Sut: 0.0% Gen, Tob: 0.0% Cli, Ery: 0.0%

Clo: 3,5%

Silva et al.,
2014 [132] – SE dairy herd CNS (128) *** Cfl, Oxa: 20.3% – – – – –

da Costa
Krewer et al.,

2015 [100]
– NE dairy herd (8)

S. aureus (126) **
oCPS (61)
CNS (31)

Amp: 67.0%
Amo: 67.4%
Oxa: 1.8%
Pen: 66.0%

Dox: 11.4%
Tet: 17.4%

Cip: 0.9%
Eno: 0.5% Sut: 2.2% Gen: 0.5%

Str: 11.9%
Ery, Lin: 1.8%

Rif: 0.0%

Castelani et
al., 2014

[111]
2009-2010 SE dairy herd (2)

S. aureus *
(110: 83 from heifers
and 27 from cows)

Heifers
Amp: 14.5%
Oxa: 0.0%
Pen: 39.6%

Cows
Amp: 40.7%
Oxa: 0.0%
Pen: 62.9%

– – v

Heifers
Gen, Kn: 0%

Neo: 8.4%
Cows

Gen, Kn: 0%
Neo: 7.4%

Flo: 0.0%

Fernandes
dos Santos et

al., 2016
[109]

2008–2010 NE, S, SE dairy herd (48) S. aureus (79) * 91 CNS
(91)

S. aureus
Oxa: 0.0%
Pen: 30.4%

CoNS
Oxa: 47.0%
Pen: 34.1%;

S. aureus
Tet: 8.9%

CNS
Tet: 24.2%

S. aureus
Eno MIC90

0.06-0.5
CNS

Eno MIC90
0.06-32

S. aureus
Sul: 1.3%
Sut: 0.0%

CNS
Sul: 4.4%
Sut: 2.2%

S. aureus
Gen: 0%

CNS
Gen: 6.6%

S. aureus
Ery: 1.3%
Cli MIC90

0.125
CNS

Ery: 13.2%
Cli MIC90

0.25
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Table 3. Cont.

Ref.
Sampling

period
Region a Local (n) Isolate b(n)

Antimicrobial Resistance c

Beta-lactam Tetracycline Quinolone Sulfonamide Aminoglycoside Others

Marques et
al., 2017

[110]
2012 SE dairy herd (3) S. aureus (20) ***

Amo: 5.0%
Amp: 25.0%
Oxa: 0.0%
Pen: 100%

Tet: 5.0%
Cip: 25.0%
Eno, Moxi:

20.0%
Sut: 35.0% Neo: 15.0%

Str: 25.0%

Azi, Clo: 20.0%
Ery: 10.0%
Nov: 30.0%

Mello et al.,
2017 [118] – 6 states dairy herd S. aureus (82) ***

others (99)

Oxa: 18.2%
(1 S. aureus)

S. aureus
MIC50 0.094
MIC90 0.25

Others
MIC50 0.25
MIC90 1.50

Van: 0.0%
S. aureus

MIC50 0.5
MIC90 1.0

Others
MIC50 1.0
MIC90 1.5

hR: 7.1% (1 S.
aureus)

Guimarães
et al., 2017

[119]
– SE dairy herd (1) S. aureus (60) **

MRSA: 23.3%
OS-MRSA: 25.0%

MSSA: 51.7%
Haubert et

al., 2017
[112]

– S dairy herd S. aureus (31) **
Amp: 52.0% Cef:
19.0% Oxa: 42.0%

Pen: 48.0%
Tet: 39.0% Eno: 6.0% Sul: 65.0% Str: 16.1%

Tob: 29.0%

Cli: 52.0%
Ery: 35.0%
Tri: 0.0%

Martini et al.,
2017 [108] – SE dairy herd (10) S. aureus (266) *

Amp: 66.5%
Oxa: 0.0%
Pen: 70.7%

Tet: 27.4%

Freitas et al.,
2018 [113] – S dairy herd S. aureus (27) ***

CNS (3)

Amo: 50.0%
Amp: 43.3%
Pen: 70.0%

Tet: 96.7% Eno: 43.3%
Nor: 6.7%

Gen: 86.7%
Neo: 96.7%

B: 43.3%
Tri: 100%

E. coli

Fernandes et
al., 2017

[127]
2014 -

industry (beef jerky)
(1)/ processing

surfaces
2

Amc, Ctx, Ipm:
0%

Amp, Cef: 50%
Tet: 50% Cip: 50% (I) Sut: 50% Ami, Gen: 0%

Str: 50% (I)
Clo, Nal: 50.0%

Tri: 0.0%

Santos et al.,
2018 [126] 2015 SE slaughterhouse

(1)/carcasses 18 STEC Amp, Cef, Caz,
Imp: 0% Tet: 0% Cip 0% Sut 0% Gen, Str: 0% Clo, Nal, Nit:

0.0%
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Table 3. Cont.

Ref.
Sampling

period
Region a Local (n) Isolate b(n)

Antimicrobial Resistance c

Beta-lactam Tetracycline Quinolone Sulfonamide Aminoglycoside Others

Salmonella spp.

Cossi et al.,
2013 [129] v MW

butcher shops
(3)/environment,
equipment and

employee hands

7 (cutting board
surfaces)

Ctx: 0%
Cfo: 29%

Cef: 29%, 14% (I)
Ipm: 14%

Min: 71%,
14% (I)

Tet: 86%
– Sul, Sut:

86%

Ami: 0%
Kn: 14%

Tob: 29%, 14%
(I)

–

da Silva et
al., 2014

[130]
2009–2010 S Slaughterhouse

(1)/carcasses (120) 6 Amp, Cef, Cfo,
Ctx, Ipm: 0% Tet: 0% Cip: 0% Sul, Sut: 0% Ami, Gen, Kn,

Str: 0% Clo, Nal: 0%

Loiko et al.,
2016 [128] 2010–2012 S Slaughterhouse

(1)/carcasses (108) 1
Amp, Cef, Cfo:

100%
Ctx, Ipm: 0%

Tet: 0% Cip: 0% Sul, Sut: 0% Ami, Gen, Kn,
Str: 0%

Clo: 0%
Nal: 100% (I)

Fernandes et
al., 2017

[127]
2014 -

industry (beef jerky)
(1)/environment and

food

1 (processing surfaces)
3 (raw material)

Amp, Amc, Cfo,
Cef, Ctx, Ipm: 0% Tet: 0% Cip: 0% Sut: 25% Ami, Gen, Str:

0%
Clo, Nal,
Tri: 0%

Listeria monocytogenes

Camargo et
al., 2014

[133]
– SE

slaughterhouse
(2)/animals and
carcasses (209)

5 Amp: 0% Tet: 0% – – Gen: 0% Ery, V: 0%

Camargo et
al., 2015

[131]
1978–2013 11 states –

69 (from carcass and
food-processing
environments),

43 (from beef food)
and

25 (from clinical
cases)

Imp, Pen: 0%
Oxa: 57%, 17% (I) Tet: 0% – Sut: 0% Gen: 0% Clo, Ery, Rif, V: 0%

Cli: 53%, 36% (I)

Loiko et al.,
2016 [128] 2010–2012 S slaughterhouse

(1)/carcasses (108) 7

Amp, Ipm: 0%
Cef: 82%, Cfo:

91%
Ctx: 100%
Ipm: 0%

Tet, Min: 0% Cip: 0% Sul: 55%
Sut: 0%

Ami, Gen, Kn:
20–10%

Tob: ~30%

Clo, Ery, Tri, V: 0%
Nal: 100%

a Geographic region: S (South), SE (Southeast), NE (Northeast) and MW (Midwest); b CNS: coagulase-negative Staphylococcus; oCPS: other coagulase-positive Staphylococcus; STEC: shiga
toxin-producing E. coli; between parenthesis: number of isolates tested; c Ami: amikacin; Amc: amoxicillin + clavulanic acid; Amo: amoxicillin; Amp: ampicillin; Azi: azithromycin;
B: bacteriocin; Caz: ceftazidime; Cip: ciprofloxacin; Cfo: cefoxitin; Cfl: cephalothin; Clo: chloramphenicol; Cli: clindamycin; Ctx: cefotaxime; Dox: doxycycline; Eno: enrofloxacin;
Ery: erythromycin; Flo: florfenicol; Gen: gentamicin; Ipm: imipenem; Kn: kanamycin; Lin: lincomycin; Min: minocycline; Moxi: moxifloxacin; Nal: nalidixic acid; Neo: neomycin;
Nov: novobiocin; Nor: norfloxacin; Nit: nitrofurantoin; Oxa: oxacillin; Pen: penicillin G; Rif: Rifampicin; Str: streptomycin; Sul: sulfonamide; Sut: sulfamethoxazole-trimethoprim; Tet:
tetracycline; Tob: tobramycin; Tri: trimethoprim, Van: vancomycin; MIC50: minimum concentration required to inhibit 50% of bacterial isolates (µg/mL); MIC90: minimum concentration
required to inhibit 90% of bacterial isolates (µg/mL); MRSA: Methicillin-resistant S. aureus; MSSA: Methicillin-sensitive S. aureus; * clinical form not reported, ** from clinical and sub-clinical
mastitis, *** from subclinical mastitis.
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Table 4. Antimicrobial resistance genes detected among Staphylococcus spp. isolates recovered from bovine mastitis, Brazil (data published between 2009 and 2019).

Reference Bacterial Species a Year of Samples
Isolation

Region b
Antimicrobial Resistance Gene

Beta-lactam Tetracycline MLSBc Aminoglycoside Others

Laport et al.,
2012 [107]

S. chromogenes, S. sciuri, S.
xylosus – SE mecA – – – –

Silva et al., 2013
[117] S. aureus – SE – tet(K) – – fexA

Silva et al.,
2014b [132] CNS, oCNP – –

blaZ, mecA (S.
epidermidis, S.
chromogenes, S.

warneri, S. hyicus, S.
simulans)

tet(K) (S.
epidermidis, S.
chromogenes, S.

warneri)

ermC (S.
epidermidis);
lnuB, lsaE (S.
chromogenes)

ant(4’)-Ia (S. epidermidis, S.
chromogenes, S. warneri);

aac(6’)-aph(2”) (S. epidermidis, S.
warneri); aadE (S. chromogenes);

str (S. hyicus, S. warneri, S.
epidermidis)

gyrA, grlA
(mutation)

da Costa Krewer
et al., 2015 [100] S. aureus 2004–2008 NE blaZ, mecA – – – –

Fernandes dos
Santos et al.,
2016 [109]

S. epidermidis 2008–2010 SE, S, NE mecA – – – -

Martini et al.,
2017 [108] S. aureus – SE blaZ tet(K), tet(L),

tet(M), tet(O) – – –

Guimarães et al.,
2017 [119] S. aureus – SE mecA – – – –

Haubert et al.,
2017 [112] S. aureus – S blaZ tet(B), tet(K),

(tet)L, (tet)M ermB, ermC, ereB strA, strB dfrA, dfrG

Marques et al.,
2017 [110] S. aureus – SE blaZ, mecA – – – –

Mello et al., 2017
[118]

S. aureus, S. chromogenes,
S. S. epidermidis, S.

haemolyticus, S.
saprophyticus, S. simulans,

S. xylosus, S. warneri

– 6 states mecA – – – –

a CNS: coagulase-negative Staphylococcus; oCPS: other coagulase-positive Staphylococcus; b Geographic region: S (South), SE (Southeast) and NE (Northeast); c MLSB: macrolides,
lincosamides and streptogramin B.
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6. Mobile Genetic Elements Associated with Emergent Antimicrobial Resistance Mechanisms
Detected in Isolates from Farm Animals and Animal-Derived Foods Produced in Brazil

6.1. β-Lactams Resistance-ESBL and Plasmid-Mediated AmpC (pAmpC)

First reports of blaCTX-M-2, blaCTX-M-8, and blaCMY-2 in animal-derived foods produced in Brazil
date from 2008 to 2010 in studies involving chicken meat imported by Denmark and the United
Kingdom [134,135]. Since then, particularly after 2014, extended-spectrum β-lactamase (ESBL) and
plasmid-mediated AmpC (pAmpC) encoding-genes have been extensively reported in chicken and
chicken meat produced in Brazil. Studies indicate that these genes are mainly carried by E. coli and
nontyphoid Salmonella, but also by Escherichia fergusonii, Klebsiella pneumoniae, Citrobacter diversus, and
Proteus mirabilis [136–140]. Reports include animals on farms [36,136–138,141–147], whole carcasses, or
meat pieces available in Brazilian retail markets [69,136,138,140,145,148,149], and exported chicken
meat [150–152]. The same genes were detected in turkeys with clinical signs of colibacillosis [153].
Although a study stated that the prevalence of ESBL and pAmpC genes was higher in conventional
than in free-range chicken, blaCTX-M-2, blaCTX-M-8, blaCTX-M-15, and blaCMY-2 were also detected in
carcasses of antibiotic-free grown animals [69,140]. Such occurrences may be related to environmental
contamination with bacteria carrying these genes. For instance, Salmonella sp. and E. coli producing
blaCTX-M-variants have been detected in poultry farms environment and on the surface of flies from
dairy farms, respectively [124,145]. In addition, a study has shown that the prophylactic administration
of ceftiofur to one-day-old broiler chicks may be associated with early carriage of ESBL-producing E.
coli in the gut of these animals [154]. Table 5 describes the source, geographic location of sampling, and
bla genes found in studies that reported ESBL and pAmpC-encoding genes in food or food-producing
animals in Brazil.

In Salmonella, blaCTX-M-2 was identified in non-transferable and conjugative plasmids of 90 to 290 kb.
These plasmids belonged to IncI1, IncHI2, or non-typable incompatibility groups [36,145,155,156]. Part
of isolates characterized by Fernandes and coworkers was not able to transfer blaCTX-M-2 to E. coli,
suggesting a possible chromosomal location of this gene [145]. In contrast, in E. coli, most studies
suggest a chromosomal location of blaCTX-M-2 with a few reports of this gene in plasmids belonging to
IncK, IncHI2, IncP incompatibility groups ranging from 35 to 280 kb [137,139,146,147,157]. Always
when investigated, both in Salmonella sp. and in E. coli, this gene was surrounded by ISCR1 and class
I integron structures [36,136,137,157]. Differently, blaCTX-M-8 has been associated, both in Salmonella
sp. and in E. coli, with IS10 and IncI1 conjugative plasmids ranging from 50 to 100 kb [137,138,157].
The blaCTX-M-15 gene was reported in isolates recovered in 2011 and 2014 located in IncX plasmids of
50kb [146,157]. Blast alignment suggested that an ISEcp element mobilized this gene to a plasmid
previously detected in Shigella flexneri and E. coli strains [157].

The blaCMY-2 gene has been reported in S. Heidelberg and S. Minnesota harboring IncI plasmids
varying in size from 90 to 148 kb [36,129,135]. In contrast, this genetic environment is more diverse in
E. coli. The mobilization of the gene seems to be associated with ISEcp1, and with IncI, IncFIB, IncK,
IncB/O, IncAC, and non-typable plasmids, most of them 80-90 kb long [143,146,147,157].

6.2. β-Lactams Resistance-mecA and Van

Staphylococcus β-lactam resistance mediated by the mecA gene has been reported in S. aureus
(MRSA) from chicken meat, swine swabs, bovine mastitis, and cheese processing plants [99,119,158–160].
Also, different species of mecA-producing coagulase-negative strains (S. epidermidis, S. chromogenes, S.
hyicus, S. warneri, S. simulans; methicillin-resistant CoNS (MRCoNS)) have been recovered from cows
with mastitis [109,118,132]. Among S. aureus from mastitis or swine samples, mecA was associated with
staphylococcal cassette chromosome mec (SCCmec) types III, IV, or V in MDR isolates [132,159,160].
Among MRCoNS, mecA was encoded in SCCmec types I, IV or V, or non-typable SCCmec elements, in
some cases displaying only resistance to β-lactams [109,118,132].
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In 2013 one MRSA/vancomycin-resistant S. aureus (VRSA) strain was isolated from chicken meat,
harboring mecA, vanA, vanB, and vanC2/3 genes. In this study, the same genes were detected in one
Staphylococcus intermedius isolate. Such van genes were probably expressed because vancomycin
minimal inhibitory concentration displayed by these isolates were 512 and 64 µg/mL, respectively [158].
To the best of our knowledge, this is the only report of VRSA in food-producing animals in Brazil.
In fact, since 2005, even regarding enterococci, there are a small number of reports describing the
occurrence of van genes in isolates from animals or animal-derived foods [161–164].

6.3. Colistin Resistance-Mcr

Colistin resistance gene determinant mcr-1 was first described in Brazil in 2016 by screening
isolates collected as part of different surveillance projects on carbapenemase and ESBL-producing
bacteria. Using MacConkey agar plates supplemented with colistin (2 mg/L) followed by a polymerase
chain reaction, Fernandes et al. identified mcr-1 in E. coli strains from fecal samples of pigs and chickens.
The samples were collected between 2012–2013 in Santa Catarina (S), Minas Gerais (SE), Paraná (S), and
São Paulo (SE) states [165]. Following, mcr-1 was identified in rectal swabs of chicken never exposed
to polymyxin, collected in 2015 in the Southern region. These authors successfully transferred mcr-1
to E. coli J53, demonstrating that the gene was located on plasmids [166]. The occurrence of mcr-1 in
birds not treated with polymyxin may be related to a previously undetected environmental presence
of this gene [167]. For instance, a study developed with soils from a vegetable production area in Rio
de Janeiro State (SE) where poultry litter is commonly used as organic fertilizer, indicated the presence
of mcr-1 not only in the production area but also, at lower concentrations, in the surrounding native
vegetation [168].

Regarding food samples, mcr-1 was detected in E. coli obtained from chicken meat samples
acquired in retail markets in São Paulo State (SE), and from three of 409 chicken carcasses produced in
the three Southern states, most of them in isolates carrying β-lactamase genes [149,169]. The gene has
also been reported in S. Typhimurium, and S. Schwarkergund collected from pork meat, and poultry
meat acquired in the Rio Grande do Sul (S) and São Paulo (SE) States, respectively [95,170].

In Brazil, mcr-1 has been consistently associated with IncX4 plasmids, both in E. coli and Salmonella
sp. strains, isolated from animal, animal-derived food, and clinical and environmental sources [169–174].
Moreno et al. published the complete sequence of a 32kb mcr1_IncX4 plasmid harbored by Salmonella
sp. isolated from chicken meat [170]. Although hitherto, mcr-1 is the only variant systematically
identified among MCR producers in Brazil, an MCR-3-like enzyme-producing E. coli was recovered
from swine in Minas Gerais State (SE). The isolate had colistin MIC of 4 µg/mL, and biochemical
analysis demonstrated that the enzyme acts similarly to MCR-1. The mcr-3.12 gene was located between
two insertion sequences belonging to the IS66 and IS30 families embedded into an IncA/C2 plasmid [89]

6.4. Quinolones Resistance-Qnr

In Brazil, the plasmid-mediated fluoroquinolones resistance qnr genes have been reported in
samples from animals or animal-derived foods mainly after 2013. Overall, qnrB and qnrS are the most
prevalent qnr families detected. Different qnrB variants (when specified recognized as qnrB2, qnrB5,
qnrB19) have been reported in E. coli, E. fergusonii, K oxytoca, S. Corvallis, S. Schwarzengund, and
S. Newport isolates obtained from chicken or chicken meat [36,140,147,175–178]. qnrS was reported
in E. coli obtained from chicken meat and swabs from healthy poultry and pork [140,177,179]. More
recently, qnrE was detected in an MDR S. Typhimurium strain isolated from a swine carcass [180].
The occurrence of qnrA in animal-derived samples was no reported in the studies covered by this review.
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Table 5. Occurrence of ESBL and pAmpC-encoding genes in isolates from animals or animal-derived foods, Brazil (2009–2019).

Ref. Year of Isolation Source Country/ Region a Bacterial Species β-Lactamase Genes or
Group of Genes Found (bla)

Mattiello et al.,
2015 [181] 2002–2012

Poultry producing
environment and
by-product meals

Brazil/SE
Salmonella Schwarzengrund, Salmonella enterica, Salmonella

Infantis, Salmonella Senftenberg, Salmonella Montevideo,
Salmonella Cerro, Salmonella Worthington, Salmonella Heidelberg

TEM, CTX-M, CMY

Fernandes et al.,
2009 [155] 2004 Poultry Brazil/SE Salmonella Typhimurium CTX-M-2

Fitch et al., 2016
[141] 2004–2011 Poultry during

slaughter Brazil/MW, S

Salmonella Agona, Salmonella Brackenrindge, Salmonella Emek,
Salmonella Enteritidis, Salmonella Gaminara, Salmonella Give,

Salmonella GroupIII, Salmonella Hadar, Salmonella Heidelberg,
S. Infantis, Samonella Minnesota, Salmonella Newport, Salmonella

Panama, Salmonella Poona, Salmonella Rissen, Salmonella
Saintpaul, Salmonella Schwarzengrund/, Bredeney, and S.

Typhimurium, Salmonella Weslaco

TEM, CTX-M-1, CTX-M-2,
CTX-M-8, CTX-M-14, CMY-2

Moura et al., 2018
[138] 2008–2015

Chicken and
turkey meat;
swine feces

Brazil/MW, SE, S S. Agona, S. Typhimurium, S. Minnesota, S. Heidelberg, S.
Infantis CTX-M-2, CTX-M-8, CMY-2

Penha Filho et al.,
2019 [36] 2009–2012 Poultry at farms Brazil/MW, SE S. Schwarzengrund, S. Newport, S. Heidelberg CTX-M-2, CMY-2

Moura et al., 2017
[156] 2010 Chicken meat Brazil/MW S. Minnesota CMY-2

Botelho et al., 2015
[140] 2010–2011 Chicken carcasses

(frozen) Brazil/SE Escherichia. coli CTX-M-1, CTX-M-2,
CTX-M-8, CMY-2

Ferreira et al., 2014,
2016, 2017; Galetti,

2019
[137,139,143,178]

2011–2012 Poultry cloacal
swabs Brazil/SE E. coli, E. fergusonii, K. pneumoniae CTX-M-2, CTX-M-8,

CTX-M-15, CMY-2

Casella et al., 2015
[136] 2011, 2013 Chicken meat Brazil/SE Proteus mirabilis, Citrobacter diversus, Klebsiella pneumoniae, and E.

coli
TEM, SHV, CTX-M-2,

CTX-M-8
Fernandes et al.,

2017 [127] 2012 Poultry meat Brazil/SE Salmonella Muenchen, S.Typhimurium, Salmonella Corvallis CTX-M-2, CTX-M-8

Ibbe et al., 2017
[142] 2012–2013 Chicken (live and

carcasses) Brazil/MW, S S. Minnesota, S. Hilderberg CTX-M-8, ACC-1, CMY-2

Koga et al.,
2015a,b [69,148] 2013 Chicken carcasses

(refrigerated) Brazil/S E. coli SHV, CTX-M-1, CTX-M-2,
CTX-M-8, CIT

Cyoia et al., 2019
[149] 2013–2014 Chicken carcasses Brazil/S E. coli TEM, SHV, CTX-M-1,

CTX-M-2, CTX-M-8
Cunha et al., 2017

[147] 2013–2016 Poultry cloacal
swabs Brazil/S E. coli TEM, CTX-M-2, CTX-M-55,

CMY-2
Casella et al., 2018

[146] 2014 Chicken meat and
cloacal swabs Brazil/SE E. coli CTX-M-2, CTX-M-8,

CTX-M-15, CTX-M-55, CMY-2
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Table 5. Cont.

Ref. Year of Isolation Source Country/ Region a Bacterial Species β-Lactamase Genes or
Group of Genes Found (bla)

Hoepers et al.,
2018 [153] 2014–2015 Turkeys with

clinical signs Brazil/ MW, SE, S E. coli TEM, CTX-M-2, CTX-M-8,
CMY-2

Tiba Casas et al.,
2019 [144] 2014–2016 Poultry and

poultry meat Brazil/SE S. Heidelberg CMY-2

Zogg et al., 2016,
[150] 2015 Chicken carcasses

(frozen) Swiss E. coli CTX-M-2, CTX-M-8

Nahar et al., 2018
[151] 2015 Chicken meat Japan E. coli TEM, CTX-M-1, CTX-M-2,

CTX-M-8
Brisola et al., 2019

[179] 2016-2017 Swine feces Brazil/SC E. coli TEM, CMY-2

Kim et al., 2018
[152] n.d. Chicken meat South Korea E. coli TEM, CTX-M-2, CTX-M-94,

OXA-1
a Geographic region: S (South), SE (Southeast) and MW (Midwest)
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The genetic occurrence of qnrB seems to be strongly associated with low molecular weight ColE
plasmids [36,147,177]. Nevertheless, in Salmonella, the gene has also been detected in large 280 kb
IncHI2A plasmids, co-located with blaCTX-M-2 [36]. The same was noticed for qnrS. Although Ferreira
et al. described this gene in ColE plasmids, it was also described in a 49kb IncX1 plasmid carried by E.
coli, co-located with blaCTX-M-15 [157,177].

7. Concluding Remarks

As has been occurring around the world, there is a growing concern in Brazil regarding increased
antimicrobial resistance related to farm animals. This fact is demonstrated by the number and variety
of regulations that have been proposed over time, especially from 1998 onwards, when at least 14
regulations directly related to the theme have been implemented. The Brazilian official institutions
of agriculture, sanitary surveillance, human health, and animal health have elaborated and executed
plans and programs to control and monitor the occurrence of these microorganisms in recent years,
seeking to know the Brazilian reality and establish procedures for the effective reduction of the problem.
However, it is clear that a more representative, transparent, and continuing program must be done to
support the position of Brazil as a producer and exporter of high-quality meat products.

The Brazilian scientific community studies different aspects of resistance to multiple antimicrobial
drugs, with a significant number of publications involving microorganisms isolated from Brazilian
regions that concentrate most of the meat production (beef, pork, and poultry), milk, and eggs. The data
presented in this review denotes a wide variety of resistance profiles, generally irrespective of the
region of the country. However, as stated above, most information comes from states or regions that
concentrate the animal production, including the South region concerning poultry and pig production,
and South and Southeast regions related to dairy production (Figure A1). Although there is a vast
area of beef production in the North and Midwest regions, fewer data were available. However,
it is important to note that cattle managing and production in Brazil are mainly extensive with
no use of prophylactic or growth-enhancing antimicrobial agents, and little use of these drugs for
therapeutic purposes.

A recently published metadata study about trends in antimicrobial resistance in middle and
in low-income countries, using, among other parameters, the proportion of antimicrobial agents
with resistance above 50% (P50) in each study as indicators for comparisons, demonstrated that,
unlike many countries in Asia, studies developed in most areas of Brazil have low P50. Some spots
with P50 above 0.5 (the index is presented on a scale from 0 to 1) were reported in different regions
of the country, mainly in the Southeast region, where many scientific institutions take place, or in
states not classically associated with intensive animal production. However, an emerging hotspot for
antimicrobial resistance was recognized in the South region of the country, which is relevant because
this geographic area has a vigorous poultry and swine productive chain. Comparing the resistance
profiles of cattle, chickens, and pigs in America, the analysis indicated slightly higher resistance
frequencies associated with chickens than with pigs, and E. coli as somewhat more resistant than
Salmonella [182]. Evaluating the resistance data presented in this review with a P50 rationale, we
also identified E. coli as more resistant than Salmonella sp. in both swine and poultry. Moreover, the
resistance of Salmonella strains isolated from pigs was higher than those obtained from poultry. Data
on Campylobacter in poultry and Yersinia in pigs are scarce, but they demonstrate the high resistance of
strains. Overall, these observations indicate trends; however, the analysis of a more extensive and
representative set of strains is imperative to confirm these findings.

In this context, the creation of a national surveillance plan is underway in Brazil, as part of
the commitments with the FAO, WHO, and OIE global initiatives. Currently, internal regulations
are in place, and significant updates to growth-promoting additive control legislation are due to be
implemented soon. Moreover, recently a coalition of prominent associations of livestock producers
(including poultry, pig, cattle, and fish) has been formed with the mission of “promoting the responsible
and rational use of antimicrobial agents, through the engagement of different links in the animal
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protein production chain” (https://aliancaproteinaanimal.com.br/). Brazil also has a highly capacitated
and engaged scientific community. If these forces work together, a favorable perspective for the
control and monitoring of antimicrobial resistance in Brazil may be provided. However, long-term
investments are required, especially for research, surveillance, laboratories, human health systems,
basic sanitation, animal health, and training. Political commitment, availability of financial resources,
technical investments, and international collaboration can make the development and implementation
of effective national plans and programs viable.

Author Contributions: Conceptualization, A.M.F.C., R.R.B., and R.F.R.; methodology, A.M.F.C.; formal analysis,
A.M.F.C., R.R.B., and R.F.R.; investigation, R.F.R., R.R.B., J.P.A., B.A.P., R.M.S., A.M.F.C.; data curation, A.M.F.C.,
R.R.B.; visualization, J.P.A.; writing—original draft preparation, R.F.R., R.R.B., J.P.A., B.A.P., R.M.S., A.M.F.C.;
writing—review and editing, A.M.F.C., R.R.B., and R.F.R.; supervision, A.M.F.C.; All authors have read and agreed
to the published version of the manuscript.

Acknowledgments: We thank Felipe Piedade Gonçalves Neves for the technical writing assistance.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

https://aliancaproteinaanimal.com.br/


Animals 2020, 10, 552 30 of 43

Table A1. Specific current legislation in Brazil for the use of antimicrobials in animal production.

Legislation Public Agency * Year Objective Reference

Circular Letter nº 047/1998 MAPA 1998 Prohibits the use of avoparcin for growth promoter or animal performance enhancer purposes. [11]
Normative Instruction N.º 42 MAPA 1999 Change the National Plan for the Control of Residues in Products of Animal Origin - PNCR and

the Programs for the Control of Residues in Meat - PCRC, Honey - PCRM, Milk - PCRL and Fish -
PCRP.

[12]

Ordinance Nº 31 MAPA 2002 Prohibits the use of arsenicals and antimonial active ingredients in the manufacture of products
intended for animal feed, for growth promoters or animal performance improvers.

[13]

Normative Instruction N.º 09 MAPA 2003 Prohibits the use of chloramphenicol and nitrofurans, and products containing these active
ingredients for veterinary use, and susceptible to feeding to all animals and insects.

[14]

Normative Instruction N.º 11 MAPA 2004 Prohibits the manufacture, import, sale, and use of the chemical called olaquindox, as a
growth-promoting additive in food-producing animals.

[15]

Normative Instruction N.º 35 MAPA 2005 Prohibits the use of feed products containing the chemical called carbadox. [16]
Normative Instruction Nº 26 MAPA 2009 Approves the technical regulation for the manufacture, quality control, marketing and

employment of veterinary antimicrobial products, and determines that amphenicols,
tetracyclines, beta-lactams (systemic benzyl penicillamines and cephalosporins), quinolones, and
systemic sulfonamides are for use exclusively in veterinary antimicrobial products, and are
prohibited for use as performance-enhancing zootechnical additives, or as food preservatives.

[17]

Ordinance N.º 396 MAPA 2009 Establishes responsibilities of the units of the Secretariat of Agricultural Defense (SDA) involved
in the PNCRC/MAPA research subprogram.

[183]

Normative Instruction Nº 14 MAPA 2012 Prohibits the import, manufacture, and use of antimicrobial substances spiramycin and
erythromycin throughout the national territory for zootechnical additive to improve performance
in animal feed.

[18]

ANVISA—Resolution Nº 53 -
Internalize the Resolution Mercosul
N.º 54/2000

MS 2012 Approves the maximum residue levels of veterinary medicines in animal food. [184]

Codex Alimentarius—N.º 02/2015 FAO-OMS/ANVISA 2015 Updates maximum residue limits for veterinary food products. [185]
Normative Instruction Nº 45 MAPA 2016 Prohibits, throughout the national territory, the import and the manufacture of the antimicrobial

substance colistin sulfate, with the purpose of a performance-enhancing feed animal additive.
[19]

Normative Instruction Nº 54 MAPA 2018 Approves the technical regulation for the registration of performance-enhancing antimicrobial
additives and anticoccidial feed additives.

[186]

ANVISANormative Instruction Nº
51

MS 2019 Establishes the list of maximum residue limits (LMR), acceptable daily intake (IDA) and acute
reference dose (DRfA) for active pharmaceutical ingredients (IFA) of veterinary drugs in foods of
animal origin.

[187]

Normative Instruction No 1 MAPA 2020 Prohibits, throughout the national territory, the importation, manufacture, sale, and use of
performance-enhancing additives containing the antimicrobial agents tylosin, lincomycin, and
tiamulin, classified as important in human medicine.

[20]

* MAPA, Ministry of Agriculture and Livestock; MS, Ministry of Health; FAO, Food and Drug Organization; OMS, World Health Organization; ANVISA, National Sanitary Vigilance Agency
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