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Abstract: To overcome the issue of multidrug resistant (MDR) microbes, the exploration of ways
to improve the antimicrobial efficiency of existing antibiotics is one of the promising approaches.
In search of synthons with higher efficiency, in current investigations, cocrystal and amorphous
salt of levofloxacin hemihydrate (LEV) were developed with phthalimide (PTH) and caffeic acid
(CFA). New materials were characterized with the help of FT-IR, Raman spectroscopy, powder X-ray
diffraction (PXRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).
Shifting, attenuation, appearance/disappearance and broadening of bands were observed in the FT-IR
and Raman spectra of the materials as evidence of the required product. The PXRD diffraction pattern
observed for LEV-PTH indicated cocrystal while halo diffractogram of LEV-CFA revealed amorphous
nature. DSC/TG analysis confirmed the hydrated nature of the cocrystal/salt. The dissolution rate
and antimicrobial activity against selected strains, K. pneumonia, E. coli and S. typhi of parent drug
and the new material were compared. The zone of inhibition (ZI) observed for 5 µg LEV-PTH was
30.4 + 0.36 (K. pneumonia), 26.33 + 0.35 (E. coli) and 30.03 + 0.25 mm (S. typhi) while LEV-CFA salt
(5 µg) against the same strains inhibited 33.96 ± 0.25, 31.66 ± 0.35 and 27.93 ± 0.40 mm, respectively.
These novel formulations enhance the dissolution rate as well as antibacterial efficiency and are
expected to be potent against MDR bacterial strains.

Keywords: levofloxacin/phthalimide; levofloxacin/caffeic acid; heterosynthons; antibacterial activity;
MDR strains

1. Introduction

Solid state properties of APIs can be improved via salt [1,2], cocrystal [3,4] and coamor-
phous [5–7] conversions. Such multicomponent solid formulations containing an API
and a coformer in a well-defined stoichiometric ratio and interact through non-covalent
interactions. Cocrystallization [8,9], designing of salt [10–12] and coamorphization [5–7]
approaches are preferably used to enhance the solubility, dissolution rate and permeability.
Recently such approaches have been used for taste masking [13,14], photostabilization [15–17],
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color tuning [18] and improving antimicrobial properties [8,12,19,20]. Cocrystals/salts of
ciprofloxacin with thymol, carvacrol [20], hippurate [12] and polymers [19] have been
successfully prepared. The cocrystals/salts exhibit better antibacterial efficiency than the
respective pure drug [20]. Lima et al. tested synergistic antibacterial effect of caffeic acid
(CFA) with antibiotics norfloxacin, imipenem and gentamicin tested against three bacterial
strains Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Pseudomonas aeruginosa
(P. aeruginosa). They observed significant improvement in antibacterial spectrum of the
tested antibiotics [21]. Phthalimide (PTH) is usually employed in the design of potential
anti-tumor [22], immunemodulatory [23], anti-angiogenic [24], anti-microbial [25] and
anti-inflammatory [26] drugs. The Lamotrigine-PTH and venlafaxine-CFA cocrystal/salt
have also been reported in literature which showed better performance than respective
pure drug [27].

Levofloxacin hemihydrate (LEV hereafter) is a broad-spectrum antibiotic which is
a third-generation fluroquinolone. It is the levo isomer of oflaxacin [28–30] soluble up
to 25 mg/mL in water and having bitter taste [31]. According to the biopharmaceutical
classification system, it has been classified as a class-I drug which has no severe solubil-
ity or bioavailability problems [32]. It is absorbed well from the gastrointestinal tract,
and maximum peak plasma concentration is reached within 1 to 2 h when administered
orally under fasting conditions [13]. It is available in different formulations that can be
administered orally, in the form of eye drops and intravenously. Though LEV has been
used globally, antimicrobial resistance against LEV has also surfaced in several studies,
which reduced its efficacy [33,34]. Two hydrates (monohydrate and hemihydrate) forms
and four anhydrous polymorphs have been reported in currently available literature.
The anhydrous polymorphs quickly absorb water and get hydrated which changes the
physicochemical properties of the formulation. Data on their changed physicochemical
properties in the literature are scarce. The crystal structure of hydrated LEV has been well
documented [32,35,36] while two anhydrous polymorphs structure have been recently
determined using high-temperature PXRD [37]. Cocrystal, which was superior to hydrated
forms of LEV in both pharmacological and physicochemical properties, can be a promis-
ing API candidate. Cocrystal of LEV and metacetamol exhibited better physicochemical
properties, including as hygroscopicity, physical stability, and photostability, while keeping
good dissolving characteristics and chemical stability under a variety of temperature and
humidity circumstances [15]. Bandari et al. [13] used a solvent evaporation approach
to create LEV cocrystals, resulting in taste masking and increased LEV dissolution rate.
Singh et al. [32] reported that they obtained several salts by solvent-drop grinding while
screening for LVFX coformers.

The emergence and spread of antimicrobial resistance have been of serious concern
to human health and the management of bacterial infectious diseases [38]. The good
health benefits that have been accomplished with antibiotics lurk due to speedily evolving
resistant bacteria. The lack of new antimicrobial agents development [39] and bacteria that
were susceptible to antibiotics are receiving tolerant to these drugs [40] have been serious
concerns globally. In recent years, AMR has intensified which is a threat for public health
globally [41]. Intensive overuse of antibiotics to control infections in human, animals and
agriculture is the main reason for drug resistance development in microbes [42]. Actually,
the reason AMR is a significant concern is the high mortality level attributed to infections
caused by multi drug resistant germs [43]. A number of common pathogenic strains
already bear antibiotic-resistant genes, and presumably, more antibiotic-resistant pathogens
will emerge in the future, if no different and more cautious use of antimicrobials takes
place [44]. Two possible approaches can be used to deal with the antimicrobial resistance
(AMR): the first is the development of novel active materials, but it faces increasing bench-
to-market costs and times [45]; the second is the investigation of ways to enhance the
efficacy of current antimicrobials, and it is more favorable [46]. In this investigation,
cocrystallization/salt strategies were applied to cope with the AMR problem, as the AMR
is currently one of the burning issues in most healthcare systems worldwide [47]. Based on
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the improving antimicrobial potencies of antibiotics through synthesis of cocrystals/salts
and pharmaceutical applications of coformers (PTH and CFA), the LEV cocrystal/salt
with the coformers was prepared to improve antibacterial and dissolution rates. The work
developed in the present study shows unprecedented importance, especially in the case
of the evaluation of antimicrobial modulation through the synthesis of cocrystal/salt.
Therefore, the objective of this work was to investigate biological properties of the resulting
formulations, including dissolution rate and antimicrobial activities.

2. Results and Discussion
2.1. Theoretical Considerations

The chemical structures of LEV and coformers (PTH and CFA) are displayed in
Figure 1. The LEV molecule contains one hydrogen bond donor (O–H group of carboxylic
acid) and seven potentially hydrogen bond acceptors (three N-atoms and four O-atoms) [32].
LEV and coformers (CFA and PTH) structures presented in Figure 1 evidence the pres-
ence of active groups (OH, COOH, piperazine ring and NH) which may interact and
form a cocrystal/salt. The hydrogen bond donor/acceptor (OH) and (C=O) groups of
LEV and imide group of PTH would form heterosynthon with the carboxylic group as
previously reported for levofloxacin-saccharine [13] and indomethacin-saccharine [48,49]
cocrystal systems, while CFA would possibly form homosynthon with the carboxylic
group of the drug [13]. LEV may also form homodimer synthon which further interacts
with amide group of PTH like indomethacin-saccharin [48] and carbamazepine-saccharin
cocrystals [50]. In contrast, the OH group of LEV is involved in intermolecular hydrogen
bonding with adjacent carbonyl oxygen-atom which makes them unavailable for estab-
lishing supramolecular structure [15,32]. However, the carboxy oxygen of the carboxylic
group acts as a hydrogen bond acceptor and establishes hydrogen bond with the NH
(amide) group of metacetamol [15]. The absence of strong hydrogen bond donor groups
and a high acceptor/donor ratio also makes it susceptible for hydration under normal
conditions. The N-methylpiperazine group accepts protons from several coformers and
forms molecular salts [32]. Shinozaki et al. report a cocrystal of LEV whereas nitrogen
of the methylpiperazine ring was found to be involved in hydrogen bond formation [15].
Therefore, the active interaction sites of PTH and CFA have also the possibility to in-
teract with N of methylpiprizine ring to form supramolecular synthons. Furthermore,
in lamotrigine-PTH cocrystals the amide part of PTH interacts with the aminopyridine of
lamotrigine [27] while transfers of protons from the carboxylic group of CFA to the tertiary
amino group of venlafaxine have taken place in venlafaxine-CFA salt [51].
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Figure 1. Chemical structures of LEV (a), CFA (b), and PTH (c).

Generally, it is accepted that the reaction of base (in our case LEV) with acid (in our
case PTH and CFA) is projected to form a salt if ∆pKa = pKa(base) − pKa(acid) > 2 or 3 and
a smaller ∆pKa (less than 0) will form cocrystal exclusively [10,52–54]. We can also describe
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equilibrium phenomena of solution from pKa values which is to be a useful parameter to
predict preliminary the state of ionization in solid state (salt/cocrystal) [53–57].

LEVH+ 
 LEV + H+ pKa = 7.94

PTH 
 PTH− + H+ pKa = 8.3

CFA 
 CFA− + H+ pKa = 4.37

For reaction, PTH + LEV 
 PTH− + LEVH+

Keq = [PTH−][LEVH+]/[PTH][LEV] = 107.94/108.3 ≈ 0.436

For reaction CFA + LEV 
 CFA− + LEVH+

Keq = [CFA−][LEVH+]/[CFA][LEV] = 107.94/104.37 ≈ 3.717 × 103

The equilibrium equations of LEV and PTH indicate that the concentration of ionized
species is less than that of unionized species in the solution containing the same molar
ratio while the equimolar solution containing LEV and CFA revealed that ionized species
are 3.717 × 103 greater in numbers than nonionized species. The cocrystal formation of
LEV-PTH and salt formation of LEV-CFA is consistent with the ∆pKa rules (also called rule of 3).

2.2. Construction of Binary Phase Diagram and Determination of Melting Point

A binary phase was constructed to predicate an appropriate ratio of drug-coformer for
preparation of cocrystal/salt [58,59]. Melting point data of physical mixtures with different mole
ratios were plotted against melting temperature, as shown in Supplementary Figures S1 and S2.
The “W” shape binary phase diagrams of LEV with PTH and CFA indicate that 1:1 mo-
lar ratio leads the formation of cocrystal/salt [58–61]. Additionally, the melting point of
respective pure materials, LEV-PTH cocrystal and LEV-CFA salt are presented in Table 1.
The melting points of cocrystal and salt are different than drug and respective coformers
which provided preliminary evidence regarding the successful formation of the cocrys-
tal/salt in 1:1 molar ratio [12].

Table 1. Melting point of raw materials and cocrystal.

Sample Melting Point (◦C)

Levofloxacin 224–226

phthalimide 234–236

Caffiec acid 220–224

Cocrystal (LEV-PTH) 172–176

Salt (LEV-CFA) 150–152

2.3. FT-IR Analysis

The FT-IR spectra of LEV, PTH, CFA and the resulted cocrystal/salt are presented
in Figure 2. The bands of LEV [13,15], PTH [62] and CFA [63,64] were assigned based
on previously published data. LEV showed characteristics bands in the range of 3450 to
1100 cm−1. The broad band at 3252 cm−1 corresponds to the stretching vibration of
O-H, while 2972, 2934 cm−1 corresponds to the stretching vibrations of methyl groups.
The C=O and C-N stretching vibration bands of LEV appeared at 1722 and 1087 cm−1,
respectively. The N-H stretching band of PTH appeared at 3190 cm−1, while NH in-plane
and out of plane bands were observed at 1380 and 1055 cm−1. The C=O bands appeared
at 1775 and 1722 cm−1, two bands 1354 and 1307 cm−1 appeared due to C-N vibration.
The range 1603–1407 cm−1 is attributed to C=C vibration. The very strong bands at
1645 and 1642 cm−1 in the CFA spectrum were assigned to the C=O stretching modes of the
carboxylic group. Bands appearing at 3399 and 3222 cm−1 correspond to the COOH and
OH groups, respectively. In addition, the bands of the very strong and medium intensities
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in the IR spectrum at 1620, 1524, and 1450 cm−1 were assigned to the CC stretching modes
of both benzene moiety and acyclic chain.
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An FT-IR spectroscopic study was performed to identify the non-covalent interactions
within the cocrystal/salt. A shift in the carbonyl group of the acid or amide derivatives is
common when the group is involved in intermolecular interactions [65,66]. In LEV-PTH
cocrystal spectrum the N-H and two C=O bands shifted to lower wavelength 3180, 1770 and
1711 cm−1, respectively. In LEV-CFA salt the CFA COOH group bands disappeared due
to deprotonation whereas the OH peak disappeared due to its involvement in hydrogen
bonding, these bands disappeared in the reported FTIR spectrum of venlafaxine-CFA
salt [51]. Additionally, the COO− bands appeared at 1524, 1375 and 702 cm−1 which
suggests a deprotonated form of CFA [64] in LEV-CFA. Furthermore, the CFA carbonyl
band in the LEV-CFA salt spectrum appeared at a different position with low intensity while
a broad band formed in the tentative range 2700–2400 cm−1 due to protonated piperazine
nitrogen (NH+). Different FT-IR patterns (bands attenuation, shifting and disappearance)
of LEV-PTH and LEV-CFA than respective parental material particularly NH, OH and
C=O bands lead to the conclusion that cocrystal/salt is formed due to intermolecular
interactions [67]. The pka1 (carboxylic group) and pKa2 (piperazine) have been reported
5.59 and 7.94, respectively [55]. The pKa difference (−0.9) between the drug (piperazine)
and PTH (amide; pKa 8.3) [56] falls within the limits of cocrystal formation while the pKa
difference (3.34) between the piperazine and carboxylic acid of CFA (carboxylic group;
pKa 4.37) [57] supports salt formation. Therefore, based on FT-IR analysis and ∆pKa rule,
it is suggested that LEV-PTH and LEV-CFA afford cocrystal and salt, respectively.
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2.4. Raman Analysis

The Raman spectra of LEV, PTH, CFA, and formulations (LEV-PTH and LEV-CFA) are
given in Figure 3. The peaks of LEV-PTH appeared with low intensity and slight shifting
in comparison with parental materials. In the spectrum of LEV-CFA salt, the prominent
peaks of both raw materials were observed with low intensity. Additionally, some peaks
disappeared, which may be due to non-covalent interactions. Many researchers have previ-
ously reported attenuation, broadening, shifting and appearing/disappearing of Raman
bands in cocrystals/salts spectra [68–72]. Based on literature data for cocrystals/salts, it is
suggested that LEV-PTH and LEV-CFA interact with each other, which is the requirement
for successful preparation of cocrystal/salt.
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2.5. PXRD Analysis

For detailed structural information, crystals with appropriate dimensions and sizes
have to be prepared, which is often a hectic task and fails in many instances. Another
limitation of single crystal analysis is that the selected crystal may represent a side prod-
uct, not the desired polycrystalline product (bulk). Moreover, single crystal analysis is
a time consuming and not readily available technique. Conversely, PXRD is a readily
available technique generally used for confirmation and determination of bulk purity and
crystallinity of the bulk material [73]. Reference X-ray diffraction patterns should be those
calculated from single crystal X-ray diffraction measurements. However, it is difficult to
get suitable single crystals for single crystal X-ray diffraction to get the data. Therefore,
we selected the X-ray diffraction patterns of the powder crystalline material for cocrys-
tal as the reference. Crystals were crushed before measurements to eliminate the effects
of preferential orientation and enhance the clarity of the small diffraction peaks [74,75].
The diffractograms of LEV, PTH, CFA and formulations (LEV-PTH and LEV-CFA) are given
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in Figure 4. The LEV high intensity peaks showed at 2-theta (deg) values 6.29◦, 9.93◦,
12.91◦, 15.50◦, 19.03◦ and 26.3◦ while PTH showed sharp diffraction peaks at 8.1◦, 13.86◦,
15.50◦, 23.77◦, 26.60◦, 27.07◦ and 28.75◦. The diffraction peaks of CFA observed at 2-theta
(deg) and PDA peaks were noted. The diffraction peaks of starting material LEV [13,15],
PTH [27] and CFA [51,76] show good consistency with previously compiled values. New
diffraction peaks appeared at 11.50◦, 20◦, 29.699◦ and 44.2◦ while LEV peaks (6.29◦ and
26.36◦) and some of the PTH peaks disappeared in the diffractogram of LEV-PTH cocrystal.
Moreover, the peaks intensity pattern of the cocrystal is different from that of the respective
parental materials. On the other hand, the LEV-CFA diffractogram showed no distinctive
peaks. The diffractogram pattern of the LEV-PTH cocrystal in terms of position, appear-
ance/disappearance and intensity of peaks is different than parental materials, suggesting
the formation of a new crystalline phase [13,15], while the halo diffractogram of LEV-CFA
revealed an amorphous nature [77].
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2.6. DSC Analysis

The cocrystalline nature of the solid can be characterized by their melting peak while
characteristic glass transition temperature revealed an amorphous system [77–79]. The DSC
thermograms of cocrystal/amorphous and respective pure material are shown in Figure 5.
Crystalline LEV, PTH and CFA exhibited melting peaks at 230, 234 and 220 ◦C, respectively,
which shows good agreement with previously reported values [13,80,81]. The thermogram
of the cocrystal showed a broad peak with maximum intensity at 97.21 ◦C. This peak may
be attributed to bound and unbound solvate molecules. The desolvation is followed by
a small endothermic peak (170 ◦C) and two strong endothermic peaks (174 and 226 ◦C).
The obtained thermogram of LEV-PTH is characteristic of a cocrystal, as it is different
from the V-shaped one, specific for eutectic mixture and respective starting materials [67].
Moreover, a lower endothermic peak can also be observed in an eutectic system, but the
vibrational shifts in FT-IR and Raman and unique PXRD diffractogram confirm cocrys-
tal formation. The DSC thermogram of LEV-CFA salt showed broad peaks, which are
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attributed to water/solvent molecules, while it underwent a glass transition event at 54 ◦C
followed by a recrystallization peak and melting peak at 104 and 148 ◦C, respectively. After
the melting peak, the observed peaks correspond to decomposition [78]. Considerably dif-
ferent thermal behaviors of LEV-PTH and LEV-CFA than those observed for the respective
pure materials suggested a new solid form formation where parent molecules interact with
each other.
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2.7. TG Analysis

Thermal stability and hydration of the formulations were evaluated by TGA and
thermograms are presented in Figure S3. The thermograms revealed a transformation into
anhydrous form with increasing temperature. LEV-PTH cocrystal showed a gradual mass
loss (2.60%) up to 90 ◦C, which corresponds to solvate molecules and solvent residues,
while no considerable amount of mass loss was observed from 90 to 175 ◦C. A small
amount of mass loss between 175–225 ◦C and onward steep mass loss were observed,
which is attributed to decomposition of the cocrystal. In the case of LEV-CFA salt, a 6.6%
mass loss was observed up to onset temperature (147 ◦C) which indicates the presence
of solvate and solvent residues. This is to be expected for amorphous formulations due
to their hygroscopic nature. Beyond the onset temperature, a substantial mass loss of the
amorphous salt occurred which corresponds to decomposition. The decomposition of
amorphous salt began at a lower temperature than the corresponding pure constituents.
This may be due to the higher molecular mobility of the amorphous LEV-CFA, which can
increase their reactivity and thus make them more prone to chemical degradation [82].
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2.8. 1H-NMR Studies

NMR spectroscopy is of immense importance in elucidating the structure of com-
pounds. In the field of cocrystals, it helps to determine the presence of molar ratio of
various components in heterosynthons. The 1H-NMR data of LEV-CFA indicate a very
broad peak with a shoulder in downfield at 15.18 ppm which can be assigned to OH
groups of the molecules. There are some unambiguous peaks in both fractions which can
be assigned with greater certainty to the respective protons. The vinyl hydrogens in CFA
are trans to each other and give duplet peaks at 7.42–7.39 and 6.15–6.19 ppm with a 3J
(1H,1H) coupling equal to 15.9 Hz, while one of the ring protons of LEV gives a singlet in
the low field at 8.95 ppm. Integration of these protons is exactly in a 1:1 ratio, indicating
that components in bulk amount of the material are present in equimolar ratios. Other
signals of the compound are within the expected range, given in supporting file; Figure S4.
The 1H-NMR of LEV-PTH is not as straightforward as that of LEV-CFA. There are four
aromatic and one NH protons in PTH. The latter is broader, and it does not give exact
value integration, and aromatic protons appear very close to each other in the aromatic
region as multiplets. An overview of the spectrum reveals that both synthons are present
in a 1:1 ratio. NMR data provides enough insights regarding the molar ratio of individual
components present in the bulk material.

2.9. In Vitro Powder Dissolution Study

The dissolution profiles of LEV-PTH and LEV-CFA formulations were evaluated in
salivary pH 6.8 (phosphate buffer) and simulated gastric fluid pH 1.2 (free enzyme), and the
results are displayed in Figure 6. The result obtained revealed that the dissolution profile of
LEV-PTH cocrystal in salivary pH is lower than pure LEV, while LEV-CFA amorphous salt
exhibited better performance than the respective drug. On the other hand, the dissolution
profile of the cocrystal and amorphous salt in simulated gastric fluid improved as compared
with the pure drug.
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2.10. In Vitro Antimicrobial Study

The improvement of antibacterial activity against bacterial strains through cocrystal-
lization [8,20,83–85] and amorphous salt [19] has been reported in literature. Therefore,
the comparative zone of inhibition and minimum inhibitory concentration (MIC) studies
of LEV and respective formulations were performed against bacterial strains Escherichia
coli (E. coli), MTCC 1687; Salmonella typhi (S. typhi), MTCC 734 and Klebsiella pneumonia
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(K. pneumonia), MTCC 1030; the results have been presented in Tables 2 and 3. LEV-PTH
and LEV-CFA showed better performance than the parental drug despite a lower amount
of LEV being present in drug formulations. The improvement of antibacterial activity can
be explained as CFA exhibited an antimicrobial as well as synergistic effect with antibi-
otics [21] while PTH have also been used for designing antimicrobial agents [25]. Moreover,
enhancement of antimicrobial activity of fluroquinolone drug (ciprofloxacin) cocrystals
with natural preservatives has also been reported in the literature [20]. The activity of
the prepared formulations in terms of bacterial inhibition was improved; the technique is
promising and can be modified for MDRS (multidrug resistant strains) in future studies.

Table 2. Zone of inhibition values of LEV, cocrystal and amorphous salt against different bacterial strains.

Bacterial Strain Sample
Amount (µg)

LEV
(100%)

Zone of
Inhibition (mm)

LEV-PTH
Cocrystal (71%)

Zone of
Inhibition (mm)

LEV-CFA
Amorphous Salt

(66.7%)
Zone of

Inhibition (mm)

K. pneumonia

5 28.16 ± 0.76 30.4 ± 0.36 33.96 ± 0.25
2.5 23.33 ± 0.57 24.16 ± 0.47 28.30 ± 0.26
1.25 17.63 ± 0.77 19.93 ± 0.60 21.76 ± 0.25
0.62 12.26 ± 0.30 14.36 ± 0.35 18.00 ± 0.30

E. coli

5 25.033 ± 0.25 26.33 ± 0.35 31.66 ± 0.35
2.5 18.13 ± 0.32 21.3 ± 0.30 26.23 ± 0.25

1.25 14.36 ± 0.40 15.43 ± 45 21.30 ± 0.30
0.62 12.3 ± 0.26 14.03 ± 15 18.23 ± 0.20

S. typhi

5 27.03 ± 0.65 30.03 ± 0.25 32.80 ± 0.20
2.5 22.16 ± 0.37 22.93 ± 0.50 27.93 ± 0.40

1.25 17.96 ± 0.15 19.30 ± 30 22.73 ± 0.25
0.62 11.06 ± 0.20 14.26 ± 25 17.03 ± 0.25

Percent concentration of active antibiotic in the formulations present in the bracket in first row of column two,
three and four of the table.

Table 3. MIC values of pure LEV, cocrystal and amorphous salt against different bacterial strains.

Sample
MIC (µg/mL)

E. coli S. typhi K. pneumonia

Pure LEV (100%) 32 128 64
LEV-PTH cocrystal (71%) 16 64 32

LEV-CFA salt (66.7%) 16 16 16
In the bracket in first column of the table is percent concentration of active antibiotic in the formulations.

3. Experimental Section
3.1. Materials

LEV powder was obtained from local pharmaceutical industry and used without fur-
ther purification. Distilled water was purchased from local market while rest of the reagents
and solvents used in this work were of HPLC grade and purchased from Sigma-Aldrich.

3.2. Cocrystal/Salt Synthesis

LEV cocrystal/salt was synthesized using a solvent evaporation method. LEV and
coformers (PTH and CFA) solutions were prepared in equimolar (1:1) ratio using a mixture
of solvents (water: methanol, v/v 50:50%). The solutions were sonicated for 15 min at 60 ◦C,
and volatiles were allowed to evaporate. Crystalline material of LEV-PTH and glass like
material of LEV-CFA were obtained and stored for further studies.

3.3. Construction of Binary Phase Diagram and Determination of Melting Point

Physical mixtures (LEV-PTH and LEV-CFA) of different mole ratios were grinded for
15 min using pestle and mortar. The melting points of physical mixtures were measured
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using a thermal apparatus (Bibby Scientific Limited Stone, Staffordshire, ST15 OSA, UK).
Additionally, the melting points of LEV-PTH, LEV-CFA and respective pure materials were
also measured.

3.4. Characterization of Cocrystal/Coamorphous

Cocrystals/salt was characterized by vibrational spectroscopy (FT-IR, Raman), PXRD,
thermal analysis (DSC and TGA) and 1H-NMR. The FT-IR analyses, 4000–500 cm−1 at
2 cm−1 spectral resolution with the accumulation of 256 spectral scans were performed
using an FT-IR (perkinelmer spectrum−10.5.1) spectrophotometer. The sample placed
on the sample holder directly and the IR spectrums of the sample are obtained on the
computer screen. Raman spectra were obtained (1800–200 cm−1) using Lab RAM HR,
Horiba Jobin Yvon, France, operated at a resolution of 5 cm−1 and using a laser wavelength
of 785 nm. The data were acquired using front-face scattering from a thick powder bed
contained in an aluminum sample holder. The PXRD analyses were performed using an
EQUINOX 3000 X-Ray diffractometer with CPS-120 detector, thermo scientific company,
Cu-Kα radiation, wavelength 1.54056 . The samples were scanned at 2θ from 5–50◦ with
time 0.05 s per scan. Thermal responses of cocrystal/salts, drug and corresponding coform-
ers were measured by DSC-60 (Shimadzu, Japan). The STARe software was used for data
processing and analysis. Thermal gravimetric studies were performed with the help of
Diamond Series TG/DTA Perkin Elmer, USA, using Al2O3 as reference. 1H-NMR spectra
of both the products were measured in deuterated solvents and room temperature using
Bruker AVANCE spectrophotometer (400 MHz).

3.5. In Vitro Powder Dissolution Study

Dissolution study of cocrystal/salt and parental drug were performed using USP
apparatus type-2 (paddle method). Samples were converted into fine powders and sieved
through 100-mesh sieves to reduce effect of size on dissolution rate. Exactly 30 mg of
samples were added to the vessels of apparatus having 900 mL phosphate buffer (pH 6.8).
The rotation speed was adjusted to 75 rpm at 37 ◦C. Aliquots of 5 mL were withdrawn at
predetermined time intervals up to 60 min. After withdrawing aliquots, the same volume of
dissolution medium was added to the vessel. The samples were filtered, and drug releases
were analyzed by UV-spectroscopy. The same dissolution procedure was followed for a
0.1 mM HCl dissolution medium. Since coformers interfere with the λmax of LEV, multiple
component analysis was used for concentration measurement.

3.6. In Vitro Antibacterial Study

Petri dishes and agar solution were sterilized in autoclave. A known volume (20 mL)
of agar solution under sterile condition was added to each petri dish and incubated for 24 h.
The plates with no contamination were used in further studies. The bacteria strains E. coli,
MTCC 1687; S. typhi, MTCC 734 and K. pneumonia, MTCC 1030 were inoculated to plates
with the help of sterile cotton swabs. The drug and equivalent cocrystal/salt (1000 µg/mL)
solutions were prepared separately and further diluted to different concentrations (500,
250, 125 and 62.5 µg/mL). From each solution, 5 µL volumes were added to 6 mm disk
filter paper. The plates were incubated at 37 ◦C for 24 h, and diameters of zone of inhibition
were manually noted.

The minimal inhibitory concentration (MIC) of LEV-PTH, LEV-CFA and pure LEV
were also evaluated against selected bacterial strains using the broth dilution method.
Twofold serial dilutions of pure active pharmaceutical ingredient (API) and prepared for-
mulations were made in sterile nutrient to give concentrations ranging from 2–256 µg/mL.
For each MIC experiment, ten sterile tubes were labeled each 1 through 8, along with a
negative control and a positive control. In separate test tubes, about 1 mL of selected strain
suspensions (106 CFU/mL) and 1 mL of different concentration solutions were added.
The inoculated tubes were incubated at 37 ◦C for 24 h after which they were inspected for
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turbidity. A positive control (growth) was formed by culture broth with microorganisms
while the negative control (sterility) consisted of broth with no microorganisms.

4. Conclusions and Future Work

In the current study, cocrystal/salt LEV-PTH/LEV-CFA was prepared. The PXRD
diffractograms confirmed their crystalline/amorphous natures which were further con-
firmed by DSC. The FT-IR and Raman studies exhibited the non-covalent interactions estab-
lished between LEV and the respective coformers. The dissolution rate of parental drug was
improved through cocrystal/salt formation. The antimicrobial efficiency of formulations
was high in comparison to parental drug against the selected bacterial strains. However,
in vivo confirmations are required to exploit their applications in the field of pharmacy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11060797/s1, Figure S1: Binary phase diagram for LEV
and CFA in different molar ratios; Figure S2. Binary phase diagram for LEV and CFA in different
molar ratios; Figure S3. TG thermograms of cocrystal (LEV-PTH) and amorphous salt (LEV-CFA);
Figure S4. 1H-NMR (400 MHz, in CDCl3) spectra of LEV-PTH, integrated protons (red in individual
Chemdraw structures) showing their presence in 1:1 ratio are marked by arrows. NMR Chemical
Shift values (s ppm, nJ(1H,1H) in Hz) = 15.18 br, 8.95 s, 7.56–7.53 d (12.3 Hz), 7.42–7.39 d (15.9 Hz),
7.02 s, 6.96–6.95 d (7.8 Hz), 6.76–6.74 d (8.0 Hz), 6.19-6.15 d (15.9 Hz), 4.91 q, 4.59–4.56 d (11.5 Hz),
4.38–4.35 d (11.5 Hz), 3.30 q, 2.45, 2.24, 1.45 d (6.7 Hz). Figure S5. 1H-NMR (400 MHz) spectra of
LEV-CFA. NMR Chemical Shift values (s ppm, nJ(1H,1H) in Hz) = 8.82 s, 8.00–7.98 d, 7.69, 4.88 s, 3.82,
3.79, 3.65, 3.50, 1.45, 1.45. Table S1: Flow properties of LEV, cocrystal and salt.
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