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Due to differences in potency, efficacy, and affinity for CB1 receptors, similarities and

differences in psychoactive effect profiles of natural cannabis and synthetic cannabinoids

(SCs) cannot reliably be derived from equipotent dose comparisons. Instead, the

current study proposes to compare the intrinsic psychoactive effects of natural cannabis

(THC) and an SC, JWH-018, at psychotropic dose equivalence. Participants from two

placebo-controlled studies were matched for their levels of subjective high to compare

neurocognitive and psychotomimetic effects of THC and JWH-018. At equal subjective

intoxication levels, both drugs impaired psychomotor, divided attention, and impulse

control, with no significant difference between the two drugs. Both drugs also caused

significant psychotomimetic effects, but dissociative effects were considerably more

pronounced for JWH-018 than THC. We conclude that psychotropic dose equivalence

provides a uniform approach for comparing the neurocognitive and psychotomimetic

profiles of CB1 agonists, which can also be applied to other drug classes.

Keywords: cannabinoids, THC, JWH-018, psychotropic dose equivalence, neurocognitive effects,

psychotomimetic effects

INTRODUCTION

The availability of novel psychoactive substances (NPS), which mimic the effects of traditional
drugs of abuse, has increased rapidly over the past decades (1). NPS include diverse classes of
substances, such as synthetic cannabinoids, synthetic cathinones, phenethylamines, piperazines,
tryptamines, aminoindanes, and NPS opioids (2). Although NPS use is less common than the use
of other illicit drugs (3), the harm caused to individuals can be quite serious, ranging from acute
impairment and adverse effects, to drug addiction (1).

One class of NPS, synthetic cannabinoids (SCs), includes compounds initially designed since
the 1970’s by researchers to investigate the cannabinoid system and to explore new therapeutic
indications, e.g., pain disorders and cancer (4, 5). However, in the early 2000s, these compounds
(e.g., JWH-018) appeared in smoking mixtures, such as Spice or K2, which were advertised as
“natural” alternatives for cannabis. These smoking mixtures became popular rapidly, especially in
countries where recreational use of cannabis was illegal or in situations where users wanted to avoid
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detection in routine drug screening (6). However, it also became
clear from anecdotal reports that these SCs come with serious
side effects, such as agitation, psychotomimetic effects, and
cardiac events (7–10), as well as fatalities (11, 12). As a result,
more and more of these SCs were added to the list of controlled
substances in progressively more countries. In response to
these bans, the content of the smoking mixtures has changed
continuously, with new and more potent SCs being released on
the market at an increasing speed (13–15).

SCs bind to the central cannabinoid receptors (CB1 and CB2),
which are also the target receptors for 19-tetrahydrocannabinol
(THC), the main psychoactive component of cannabis. However,
the effects elicited by most SCs are more powerful than the
effects of natural cannabis (16). The risk of emergency medical
treatment is about 30 times greater following the use of SCs
than following cannabis (17), with tachycardia, agitation, and
nausea as the most frequently reported adverse events (8). Cases
of SC intoxication often display cognitive impairment (16).
Compared to natural cannabis users and non-cannabis users,
frequent SC users were found to perform worse on cognitive
tasks, including working memory, inhibition, and long-term
memory (18). The most well-known adverse effects linked to
SCs are probably psychological symptoms, including agitation,

FIGURE 1 | Timeline of subjective questionnaires and cognitive tests relative

to time of drug administration.

anxiety, and psychosis (16, 19). Psychotomimetic and dissociative
effects, often referred to as “zombie effect,” have been noted in up
to 28% of the people who admitted using an SC (20, 21). Although
the symptoms of SCs overlap with those of cannabis, the stronger
and more unpredictable effects of SCs cause the majority of users
to express a preference for natural cannabis (22).

Most SCs have a specifically high affinity for CB1 (16, 23–
26). Furthermore, they act as agonists with high efficacy (i.e.,
act as a full agonist) (23, 24, 27). This is in contrast to THC,
which has low efficacy, low affinity for CB1, and is less potent,
and thus is not able to stimulate cannabinoid receptors to the
same degree as SCs (24, 28). Consequently, the behavioral effects
of a given dose of an SC are not simply comparable to those
of an equivalent dose of THC. In pioneering studies conducted
in our lab with an early SC, JWH-018, we demonstrated that
a low dose produced significant psychomotor and cognitive
impairment, as well as psychotomimetic symptoms (29–32)
even at subjective intoxication levels that were lower than what
is normally reported for natural cannabis. It seems therefore
appropriate to take the level of subjective intoxication into
account when establishing the psychotropic dose equivalence
between an SC and natural cannabis.

In the present manuscript, we defined psychotropic dose
equivalence as the dose at which an identical level of subjective
high is achieved with an SC and natural cannabis. Subsequently,
we aimed to compare neurocognitive and psychomimetic effects
of an SC (i.e., JWH-018) and cannabis in participants from two
previous placebo controlled studies (31–34) that were matched
for their levels of subjective high. We expected that a comparison
at psychotropic dose equivalence would allow for an objective
comparison of the neurocognitive and psychotomimetic profiles
of JWH-018 and THC.

MATERIALS AND METHODS

Subjective and performance data analyzed in this study comes
from two studies with a comparable design and setup (31–
34). Both studies were placebo-controlled, cross-over studies
examining the acute effect of either cannabis (THC) or JWH-
018 in healthy cannabis users. The type of cannabis users was
comparable in that both studies included occasional users (i.e.,
cannabis use between 8 and 120 times/year). The studies used the
same test battery and questionnaires to measure cognitive and
subjective effects that were administered within a similar time
window relative to drug dosing. A summary of the subjective and
objective tests applied in both studies, and at which time after
dosing they were administered, is provided in Figure 1.

Samples and Matching
THC Study
THC data was taken from a previous study from our group
(33, 34). In this randomized, double-blind experimental study,
122 cannabis-experienced (at least 8 times/year) participants
received 450 µg/kg THC (cannabis plant material, divided into
two doses of 300 and 150 µg/kg; i.e., 21 and 11mg for a
70 kg person), cocaine, and placebo on three separate test days.
Cannabis treatment was split into two doses, with the second one
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given 1 h after the first dose. Cannabis was prepared from batches
containing 11–12% THC, while placebo cannabis consisted of
Knaster Hemp. Cannabis and placebo were administered using a
vaporizer (Volcano) which heated the materials to a temperature
of about 225 ◦C, while storing the vapor in a polythene bag
equipped with a valved mouthpiece. Subjects were instructed
to inhale according to a standardized manner, inhaling deeply
and holding their breath for 10 s after each inhalation. The bag
had to be emptied completely, taking about 2–3min. Subjective
and performance measures were taken within 3.5 h after the first
administration (see Figure 1). The cocaine condition has been
omitted from the current study.

JWH-018 Study
Subjective and performance data after an acute dose of JWH-
018 was taken from a previous study performed by our
group (31, 32). In this placebo-controlled, cross-over study,
24 healthy occasional cannabis users inhaled the vapor of 75
µg JWH-018/kg body weight and placebo on two separate
test days (i.e., 5.25mg for a 70 kg person). Placebo consisted
of Knaster Hemp (Zentauri, Germany), a herbal blend with
hemp aroma (0% THC). Both treatments were administered
via a vaporizer pen, which heated the materials to ∼380◦C.
Participants inhaled the vapor in five intakes, according to a
strict inhalation regimen. A booster dose of 50 µg JWH-018/kg
body weight was administered in case participants did not show
a subjective response (i.e., a minimum subjective high score of
30% was required) within 15min after administration of JWH-
018. Performance and subjective measures were taken in the
4 h following drug administration (or booster in case needed)
(Figure 1). Subjective intoxication was measured regularly after
JWH-018 treatment but was maximal at 30min post drug.

Subjective Intoxication
Subjective high was self-rated on a 10 cm Visual Analog Scale
(VAS), with 0 indicating “not high at all,” and 10 indicating
“extremely high.” Participants reported their highest scores
within the first hour after administration for both THC and
JWH-018, followed by a return to baseline levels in the following
hours (32, 35, 36). In the THC study, subjective high score was
determined 5min after the first administration, when subjective
intoxication for THCwasmaximal in occasional users (36). In the
JWH-018 study, subjective intoxication was maximal at 30min
post drug.

Matching
To ensure comparable cannabis use patterns across the samples,
only participants who used cannabis a maximum of 10
times/month were included from the THC and JWH-018 study.
Subsequently, participants with a comparable subjective high
score after THC or JWH-018 were selected (max, mean, SD
difference was 0.8, 0.28, and 0.36). This resulted in 24 participants
of the THC sample who could be matched to the participants
in the JWH-018 sample. The characteristics of both samples are
shown in Table 1.

TABLE 1 | Demographics of the participants in the THC and JWH-018 sample.

THC (N = 24) JWH-018 (N = 24)

Male/female 20/4 10/14

Mean (SD) Mean (SD)

Age (years) 21.95 (4.0) 22.8 (3.05)

Subjective high score (cm) 6.46 (2.0) 6.41 (1.9)

Estimated cannabis use (times)

in the month

5.5 (2.5) 3.4 (2.3)

Performance Measures
Critical Tracking Task
The CTT is a psychomotor test that assesses the participant’s
ability to control a displayed error signal in a first-order
compensatory tracking task (37). Error is displayed as a
horizontal deviation of a cursor from the midpoint on a
horizontal, linear scale. Compensatory joystick movements null
the error by returning the cursor to the midpoint. Total duration
of the task is ∼3min. The frequency at which the participant
loses control is the critical frequency or lambda-c (λc). The test
included five trials, of which the lowest and the highest score
were removed; the average of the remaining scores is taken as
the final CTT-score. This test has repeatedly been shown to be
sensitive to the effects of many sedative drugs, including cannabis
(36, 38–40).

Divided Attention Task
The DAT measures the ability to divide attention between
two tasks performed simultaneously (41). Participants have to
perform the same tracking task as described above, but now
at a constant difficulty level. As a secondary task, the subject
monitors 24 single digits presented in the corners of the computer
screen. The participants have to react to the target number “2”
by removing their foot as fast as possible from a pedal switch.
Duration of the task is 12min. The mean absolute tracking error
(in mm) and the number of control losses are the performance
measures of the primary task. The number of misses, false alarms,
and mean reaction time (msec) of the responses to the target
number, are the performance measures in the secondary task.
Performance in this test has proven to be sensitive to the effects
of many sedative drugs (36, 38–40).

Stop Signal Task
The SST measures motor impulsivity, which is the inability
to inhibit an activated or pre-cued response leading to errors
of commission. The current test is adapted from an earlier
version (42) and has been validated for stimulant and sedative
drug effects (43). The task requires participants to make quick
responses to visual go-signals and to inhibit their response if a
subsequent visual stop-signal, i.e., “∗”, appears in one of the four
corners of the screen. Total task duration is ∼8min. Dependent
variables are go reaction time (ms), stop reaction time, number
of correct responses, omission (not responding on go-trials),
and commission errors (not inhibiting a response to a no go
trial). Stop reaction time represents the estimated mean time

Frontiers in Psychiatry | www.frontiersin.org 3 May 2022 | Volume 13 | Article 891811

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Theunissen et al. Cannabinoids at Psychotropic Dose Equivalence

required to inhibit a response. Stop reaction time is calculated
by subtracting the stop signal delay from the reaction time on
go-trials associated with nth percentile of the reaction time (RT)
distribution (44).

Matching Familiar Figures Test
TheMFFTmeasures reflection impulsivity, which is the tendency
to reflect on the validity of problem-solving under the particular
condition of several possible alternatives. The test involves
simultaneous presentation of a target figure positioned on the
left of the screen and an array of six alternatives on the right
half of the screen, all except one differing in one or more
details from the target figure. The participants are asked to select
from the alternatives the figure that exactly matches the target
figure as quickly as possible. Task duration is ∼5min. Two
dependent measures, mean latency to first response (ms) and the
total number of errors, are automatically recorded. In addition,
an impulsivity score (I-score) is calculated by subtracting the
standard score of the mean latency to the first response from
the standard score of the total number of errors committed. An
efficiency score (E-score) is calculated by summing the standard
score of the mean latency to the first response with the standard
score of the total number of errors committed.

Subjective Measures
Clinician Administered Dissociative States Scale
The Clinician Administered Dissociative States Scale (CADSS)
(45) comprises of 19 self-rated items, ranging from 0 “not
at all” to 4 “extremely.” It is divided into three components:
depersonalisation (5 items), derealisation (12 items), and amnesia
(2 items). A total dissociative score is achieved by summing all
items. The CADSS is designed to be a standardized measure of
present-state dissociative symptomatology and was previously
found to be sensitive to dissociative effects of psychedelics and
drugs of abuse, such as ketamine and THC (46–48).

Bowdle Visual Analog Scales
Psychedelic symptoms are assessed using a 13-item VAS (49).
Two scales measure subjective “high” and “drowsiness.” From the
other scales, composite scores of “internal perception” (reflecting
inner feelings that do not correspond with reality) and “external
perception” (reflecting a misperception of an external stimulus
or a change in the awareness of the subject’s surroundings) are
calculated (50).

Profile of Moods States
The POMS is a self-assessment mood questionnaire with 72
items, rated on a 5-point Likert scale, with 0 being “not at all”
to 4 “extremely.” Participants have to indicate to what extent
these items were representative of their mood at that moment.
Eight mood states are classified and quantified by calculating
the sum score of associated items for each mood state, i.e.,
anxiety, depression, anger, vigor, fatigue, confusion, friendliness,
and elation. Two composite scales are derived; arousal and
positivemood (51).

Procedure
Participants for both studies were recruited via advertisements.
Data collection in the THC study was part of a more extensive
study that included fMRI scanning after the booster dose.
Participants of both studies were only included if they had prior
experience with cannabis. They were medically examined by a
physician, who checked for general health and took blood and
urine samples for standard chemistry and hematology. Both
studies were approved by the standingMedical Ethics Committee
of Maastricht University and were carried out in compliance
with the revision of the Declaration of Helsinki applicable at
that time (i.e., Seoul, 2008; Fortaleza, 2013) and the International
Conference on Harmonization guidelines for Good Clinical
Practice. A permit for obtaining, storing, and administering
cannabis and JWH-018 was obtained from the Dutch drug
enforcement administration. All participants gave written
informed consent and received financial compensation for their
participation. All tests were taken after acute administration of
the drug (see Figure 1).

Statistical Analyses
A student’s t-test was used to compare differences in monthly
cannabis use, while chi-square test was used to compare
distributions of sexes between the two studies.

Outcome data that was normally distributed was analyzed
using GLMRepeatedMeasures ANOVA, with Drug (placebo and
drug condition (i.e., THC or JWH-018) as within-subject factor
and Study (THC and JWH-018 study) as between-subject factor.
Partial eta squared (partial η2) is reported to demonstrate the
effect’s magnitude and is based on Cohen’s f, which defines small,
medium, and large effect sizes as, respectively 0.10, 0.25, and
0.40, which corresponds to partial η2 values of 0.01, 0.06, and
0.14 (52). Subsequently, difference scores (THC/JWH-018 minus
placebo) were analyzed with pairwise comparisons with a t-test
for independent samples.

Non-normal distributed data was analyzed with the non-
parametric Wilcoxon signed-rank test, to test for significant
differences between the drug condition (THC or JWH-018)
and placebo. Difference scores (THC or JWH-018–placebo)
were tested with a Mann-Whitney test, to assess for differences
between THC and JWH-018. A p-value of <0.05 was considered
statistically significant. The effect size (r) for non-parametric tests
is calculated by dividing the Z-score by the square root of N,
indicating a large effect size using Cohen’s d criteria of 0.10,
0.30, and 0.50 for defining small, medium, and large effect sizes.
All statistical tests were conducted using IBM SPSS statistics,
version 26.

Missing Data
There were several missing data due to technical malfunctioning
or the participant not being capable of performing the test. For
the THC study, CTT data from one participant in the THC
condition was missing, as was DAT data from three participants
in the placebo and three other participants in the THC condition.
In the JWH-018 study, the following was missing: CTT-score
for one participant in the JWH-018 condition; DAT for one
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FIGURE 2 | Scatter plot with mean and range of subjective high scores in

placebo and drug conditions in both samples.

participant in the placebo and one participant in the JWH-
018 condition; SST data for one participant in the JWH-018
condition, and MFFT data for one participant in the placebo and
one participant in the JWH-018 condition. Missing data of these
participants were replaced by the study and condition’s average
before entering the RM ANOVA analysis.

RESULTS

Demographics
Participants in both groups used cannabis <10 times/month,
nevertheless, the average consumption in the groups was
statistically different [t(46) = 3.17, p < 0.01]. Also, the division
of sexes was significantly different according to a Chi-square test
[X 2(1, N = 48)= 8.89, p < 0.01].

Subjective High
Individual subjective high scores per treatment condition are
presented in Figure 2. Mean subjective high score was 6.46 after
THC and 6.41 after JWH-018 administration. Subjective high
score demonstrated a significant effect of Drug [F(1, 46) = 329.1;
p < 0.001, ηp2 = 0.88]. No significant effect of Study or Drug x
Study was found, confirming that subjective high in both samples
was comparable.

Cognitive and Psychomotor Tests
Critical Tracking Task
GLM Repeated measures ANOVA showed a significant effect
of Drug and Study on CTT score [F(1, 46) = 9.8; p =

0.003, ηp
2

= 0.18; F(1, 46) = 8.88; p = 0.005, ηp
2

=

0.16], indicating that drug conditions impaired performance
(Figure 3A), as compared to placebo. Subsequent t-test analysis
on the difference scores showed no significant difference between
the change in CTT scores caused by THC or JWH-018
(Figure 3B).

Divided Attention Task
GLM Repeated measures ANOVA showed a significant effect
of Drug on tracking error [F(1, 46) = 17.66; p < 0.01, ηp

2
=

0.27] and RT [F(1, 46) = 5.25; p = 0.027, ηp
2
= 0.10]. Tracking

error and RT increased after the drug conditions (Figure 3A).
T-test analysis showed that the change in tracking error and
RT did not differ significantly between THC and JWH-018
(Figure 3B).

Control losses and false alarms were analyzed with the
non-parametric Wilcoxon signed-rank test, which showed
that these were significantly higher after drug conditions
compared to the placebo conditions (Z = −4.83; p <

0.01; r = 0.49 and Z = −4.14; p < 0.01; r = −0.42).
The change in number of control losses and false alarms
was not different between THC and JWH-018, according to
Mann-Whitney tests.

Stop Signal Task
Non-parametric testing showed that the number of omission
and commission errors increased (Z = −2.50; p = 0.012;
r = −0.25 and Z = −2.68; p=0.007; r = −0.27) in
the drug conditions compared to placebo (Figure 4A). No
effect was found on Stop or Go reaction time. Paired
comparison of change scores from placebo demonstrated
that the changes in number of omission and commission
errors did not differ significantly between THC and JWH-018
(Figure 4B).

Matching Familiar Figures Test
GLM Repeated measures ANOVA demonstrated a significant
effect of Study on Latency (F(1, 46) = 9.27; p = 0.004) with
participants in the JWH-018 study showing slower responses.
GLM did not show an effect on I-score.

Non-normally distributed E-score and errors were analyzed
using Wilcoxon signed-rank test, and this showed that the E-
score significantly decreased after the drug conditions compared
to placebo (Z = −2.17; p = 0.03; r = −0.22) (Figure 4A).
No significant difference was found in the number of errors.
Pairwise comparison of change scores from placebo indicated no
significant difference on E-scores between THC and JWH-018
(Figure 4B).

Subjective Questionnaires
POMS
All scales of the POMS were analyzed using non-parametric
testing. Wilcoxon signed-rank test showed that all scales of the
POMS, except anger, were significantly different in the drug
conditions compared to placebo (see Supplementary Material

for Z and p-values). While scores on the anxiety, depression,
fatigue, confusion scale increased, scores on vigor, friendliness,
elation, arousal, and positive mood decreased after treatment
(Figure 5A).

Pairwise comparison showed that scores on vigor, friendliness,
elation, and positive mood were significantly different between
THC and JWH-018 (see Supplementary Material for U and
p-values) (Figure 5B).
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FIGURE 3 | (A) Mean (SEM) values for lambda-c in the critical tracking task, and tracking error and reaction time in the divided attention task for placebo and drug

conditions, in the THC and JWH-018 study. (B) Lambda-c in the critical tracking task, and Tracking error and reaction time in the divided attention task for both drug

conditions shown as difference scores (relative to placebo). *Significant difference between the active condition (THC/JWH-018) and placebo.

CADSS
All scales of the CADSS were analyzed non-parametrically,
and responses were significantly higher in the drug conditions
than in placebo (see Supplementary Material for Z and p-
values) (Figure 6A). Pairwise comparison of change scores
from placebo demonstrated that the scores in the JWH-018
condition were significantly higher than in the THC condition
(see Supplementary Material for U and p-values) (Figure 6B).

Bowdle
Wilcoxon signed-rank tests showed that all scales of the Bowdle
were significantly increased after drug treatment compared
to placebo (see Supplementary Material for Z and p-values).
Pairwise comparison of change scores from placebo showed

that there was no difference in the scores on the Bowdle scales
between THC and JWH-018.

DISCUSSION

Although SCs act on the same receptors as THC, it is
not straightforward to compare these compounds based on
equipotent doses due to the additional differences in affinity, and
efficacy. Instead, in this study, the effects of an SC were compared
with cannabis (THC), based on psychotropic dose equivalence
as represented by subjective intoxication levels. We selected a
group of occasional cannabis users who took part in a large THC
study and, based on their acute subjective intoxication score,
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FIGURE 4 | (A) Mean (SEM) number of omission and commission errors in the stop signal task and E-score in the matching familiar figures test for placebo and drug

conditions, in the THC and JWH-018 study. *Significant difference between the active condition (THC/JWH-018) and placebo. (B) E-score in the matching familiar

figures test for both drug conditions shown as difference scores (relative to placebo).

matched these to a group of participants who took part in a
JWH-018 study. The design and measures used in both studies
were similar, making these datasets ideal for conducting this
comparative analysis.

When using equipotent doses in our earlier study [i.e.,
with JWH-018 being 4–5 times as potent as THC, a dose 5
times as low as a standard THC dose was selected for JWH-
018 (i.e., 3mg JWH-018)], levels of subjective intoxication
produced by JWH-018 were much lower than what has been
shown previously for typical THC doses (29). In the current
study, using psychotropic dose equivalence, i.e., at similar
levels of subjective intoxication after both cannabinoids (i.e.,
6.46 and 6.41 cm), comparable effects were demonstrated on

cognitive performance tests. Both drugs impaired performance
on psychomotor, divided attention, and impulsivity tasks with
similar magnitudes. Likewise, no significant differences between
THC and JWH-018-induced levels of cognitive impairment
were found. Subjective questionnaires demonstrated that both
drugs caused significant psychotomimetic effects but that the
dissociative effects were considerably stronger for JWH-018
than for THC, while positive mood states were more affected
by THC. Psychotomimetic effects of JWH-018 at psychotropic
dose equivalence in the present study were higher than those
observed at equipotent dose equivalence in a previous study (30),
which underscores the relevance of distinguishing between these
comparative approaches.
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FIGURE 5 | (A) Mean (SEM) scores on the POMS scales vigor, friendliness, elation, arousal, and positive mood, for placebo and drug conditions, in the THC and

JWH-018 study. *Significant difference between the active condition (THC/JWH-018) and placebo. (B) Scores on the POMS scales vigor, friendliness, elation, arousal,

and positive mood for both drug conditions shown as difference scores (relative to placebo). *Significant differences between THC and JWH-018.
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FIGURE 6 | (A) Mean (SEM) scores on the CADSS derealisation, depersonalisation amnesia, and total score for placebo and drug conditions, in the THC and

JWH-018 study. *Significant difference between the drug condition (THC or JWH-018) and placebo. (B) scores on the CADSS derealisation, depersonalisation

amnesia, and total score for both drug conditions shown as difference scores (relative to placebo); significant differences between THC and JWH-018.
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Dissociative symptoms, known to occur in psychiatric
disorders such as schizophrenia, have been reported during
cannabis intoxication (53), and the link between the use of
cannabis and psychosis has been reported recurrently (54–58).
The risk of an adverse psychotomimetic experience after cannabis
use is dose-related, with higher doses increasing the risk (59–
61). The current finding that synthetic cannabinoids induce
stronger psychotomimetic effects is in line with the many
case reports and epidemiological data showing SCs to elicit
psychotomimetic effects in vulnerable populations or patients
with schizophrenia and healthy individuals (19, 55, 56, 62–
64). The lack of cannabidiol (CBD), the non-psychoactive
constituent of cannabis, might explain the increased risk of
experiencing psychotomimetic effects after SC use. CBD, which
is present in different ratios in natural cannabis, has been
found to protect against THC’s psychotic effect (65–69). It
has also been suggested that, due to the higher efficacy, SCs
alter the function of the neurotransmitter systems involved
in schizophrenia, such as dopamine and glutamate, to a
considerable extent (70). In addition, SCs yield metabolites
with partial to full agonist activity (24), which again can
interact with these neurotransmitter systems, leading to an
increased effect. For THC, acute administration has been found
to increase glutamate and dopamine levels (71), and increases
in striatal glutamate levels were found to underlie the acute
psychotomimetic effects of intravenously administered THC
(72). It can be hypothesized that the association between
striatal glutamate and psychotomimetic symptoms is even more
prominent for SC due to their higher levels of efficacy. Studies
into the effect of SCs on the neurotransmitter systems involved in
schizophrenia are needed to determine the role of these systems
in explaining the strong psychotomimetic effects compared to
natural cannabis.

As in our previous studies (32, 34), the current analysis
demonstrated that drug treatment (THC and JWH-018) affected
mood states, with the negative states (except anger) increasing
and the positive states decreasing. The decrease in friendliness,
vigor, elation, and positive mood was apparent after THC, while
both drugs decreased arousal. The effects of THC on mood have
not been consistent in previous studies. Some studies showed
no effect of THC on mood (73–75), while others demonstrated
negative effects (76–78), whereas a more recent study showed
elevated scores on positive states (79, 80). These inconsistencies
in the effect of THC on mood can possibly be explained by
essential differences in study designs, such as differences in dose,
route of administration, time of assessment after dosing, and
participants’ drug use history. SCs users also often report negative
mood changes (81) when intoxicated. This negative effect on
mood was confirmed for JWH-018 in the current comparative
analysis and in the previous studies (30, 32). However, in the
current study, the changes in mood after JWH-018 appeared
to be less prominent than after THC. This could be due to
baseline differences in mood states, which were incorporated
in the previous JWH-018 study (30, 32). However, no baseline
measurement of mood was taken in the THC-study, hence
no correction for baseline differences could be applied in the
current study.

Participants in the current study were matched on subjective
intoxication levels to accomplish psychotropic dose equivalence.
However, there were significant differences in the average
monthly consumption of cannabis and the males/females ratio
in the two groups (83.3%males in the THC study vs. 41.7% in the
JWH-018 study). With respect to cannabis use history, an earlier
study comparing a large sample of infrequent and daily cannabis
users demonstrated that the acute effects on neurocognitive
performance were similar across users irrespective of their
cannabis use history (33). With the current participants’ use
history falling in a much narrower range of cannabis use (i.e.,
excluding using more than 3 times/week), it is unlikely that this
small difference in cannabis use history might have contributed
to different findings for THC and JWH-018. With regard to
sexes, there have been suggestions that women are more sensitive
to the effects of THC than men (82). However, several studies
were unable to confirm this, showing no differences between
men and women in the acute effect of THC on neurocognitive
function (80, 83). In the current study, it is also unlikely that
sex differences significantly affected the study results. Men were
overly represented in the THC study, but nevertheless, the effects
of THC were apparent on a wide range of measures. Overall, by
using the subjective high scores as the matching factor between
our groups, potential confounding of differences in sex and
cannabis use history between participants of the two studies
were eliminated.

The proposed method of comparing drugs at psychotropic
dose equivalence can also be applied to other drugs of
abuse. Especially with the large number of NPS entering
the market since the early 2000s, it has been challenging to
determine the risks associated with these new compounds. The
EMCDDA (84) has, nevertheless, recommended that individual
health risks of NPS be assessed in pharmacological studies in
humans and include psychological and behavioral measures.
Moreover, the EMCDDA guidelines advise evaluating the risk
of novel NPS relative to traditional drugs of abuse. However,
when comparing different compounds within various drug
classes, different neurotransmitter binding profiles are typical.
Psychedelic drugs, for example, all act as agonists at the
serotonin 2a receptor. Nonetheless, there is a wide variety in
the subjective effects they can elicit (85), which is attributed
to, among others, the binding affinities for serotonin receptor
subtypes. Stimulants, on the other hand, typically act on multiple
neurotransmitter systems, such as dopamine, noradrenaline,
and serotonin (86, 87). However, based on their binding
profiles, it is difficult to predict and compare effects (88).
Therefore, to make a fair judgment on the neurocognitive and
psychotomimetic effects and addictive potential of different
drugs, it is advised to compare them based on psychotropic
dose equivalence. When using psychotropic dose equivalence
in other drug classes, it is advised to use the primary
subjective motive for that class of drugs, e.g., feeling energetic
with stimulants, or experiencing broadened consciousness with
psychedelics (89). In the current study, subjective intoxication
levels were used to determine psychotropic dose equivalence,
as feeling high is the primary goal for recreational users
of cannabinoids.
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Up until now, more than 190 SCs have been reported by
the EMCDDA, and only for a few of them the acute effects
have been studied in humans (29–32, 90, 91). In addition, the
most recent generations of SCs, which show increased potency
and efficacy at CB1 receptors (92, 93), have not yet been
tested in controlled studies. Whether using equipotent dose or
psychotropic dose equivalence, controlled clinical studies with
SCs and other NPS are challenging for ethical and safety reasons.
A safe starting dose should be determined using all available
preclinical data on pharmacology, toxicology, pharmacokinetics,
and pharmacodynamics, including information retrieved from
recreational users. It is vital to find a balance between
minimizing the risks and maximizing the benefits (i.e., eliciting a
pharmacological response). Furthermore, first-in-human studies
with NPS should be conducted as phase 1 studies and implement
the guidelines and regulations associated with this type of
research (94).

CONCLUSIONS

Findings in the present study suggest that the method of
psychotropic dose equivalence is more accurate to predict drug
outcome as compared to the method of dose equivalence
(i.e., based on differences in potency). At psychotropic dose
equivalence, THC and JWH-018 impaired cognitive performance
to a similar extent, while dissociative effects were more
pronounced for JWH-018 than for THC, and positive mood
states were more affected by THC. The effects of JWH-018
that we reported in previous laboratory studies may have
underestimated the neurocognitive and psychotomimetic effects
that SC users may experience in real life when they achieve their
maximal desired state of subjective high. In addition, with the

high potency of SCs and the inconsistent content of smoking
mixtures, it is very difficult for users to predict the maximal
subjective high, resulting in very unpredictable neurocognitive
outcomes and common overdosing.
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